文档库 最新最全的文档下载
当前位置:文档库 › 材料力学性能

材料力学性能

材料力学性能
材料力学性能

第一章

一.静载拉伸实验

拉伸试样一般为光滑圆柱试样或板状试样。

若采用光滑圆柱试样,试样工作长度(标长)l0 =5d0 或l0 =10d0,d0 为原始直径。

二.工程应力:载荷除以试件的原始截面积。σ=F/A0

工程应变:伸长量除以原始标距长度。ε=ΔL/L0

低碳钢的变形过程:弹性变形、不均匀屈服塑性变形(屈服)、均匀塑性变形(明显塑性变形)、不均匀集中塑性变形、断裂。

三.低碳钢拉伸力学性能

1.弹性阶段(Ob)

(1)直线段(Oa):

线弹性阶段,E=σ/ε(弹性模量,比例常数)

σp—比例极限

(2)非直线段(ab):

非线弹性阶段

σe—弹性极限

2. 屈服阶段(bc)

屈服现象:当应力超过b点后,应力不再增加,但应变继续增加,此现象称为屈服。

σs—屈服强度(下屈服点),屈服强度为重要的强度指标。

3.强化阶段(ce)

材料抵抗变形的能力又继续增加,即随试件继续变形,外力也必须增大,此现象称为材料强化。

σb—抗拉强度,材料断裂前能承受的最大应力

4.局部变形阶段(颈缩)(ef)

试件局部范围横向尺寸急剧缩小,称为颈缩。

四.主要力学性能指标

弹性极限(σe):弹性极限即指金属材料抵抗这一限度的外力的能力

屈服强度(σs):抵抗微量塑性变形的应力

五.铸铁拉伸力学性能

特点:

(1)较低应力下被拉断

(2)无屈服,无颈缩

(3)延伸率低

(4)σb—强度极限

(5)抗压不抗拉

讨论1:σs 、σr0.2、σb都是机械设计和选材的重要论据。实际使用时怎么办?

塑性材料:σs 、σr0.2

脆性材料:σb

屈强比:σs /σb

讨论2:屈强比σs /σb有何意义?

屈强比s / b值越大,材料强度的有效利用率越高,但零件的安全可靠性降低。

六.弹性变形及其实质

定义:当外力去除后,能恢复到原来形状和尺寸的变形。

特点:单调、可逆、变形量很小(<0.5~1.0%)

2E 21

a 2e e e e σεσ=

=七.弹性模量

1、物理意义:材料对弹性变形的抗力。

工程上E 称做材料的刚度。其值越大,则在相同应力下产生的弹性变形越小。

零件的刚度与材料的刚度不同,它除了决定于材料的刚度外,还与零件的尺寸与形状,以及载荷作用方式有关。

2、用途:计算梁或其他构件挠度时的重要力学性能指标。 八、弹性比功ae

又称弹性比能、应变比能,是指材料吸收变形功而不发生永久变形的能力,它标志着单位体积材料所吸收的最大弹性变形功。

实际意义:

(1)弹簧零件要求其在弹性范围内(弹性极限以下)有尽可能高的弹性比功ae 和低的E 。 (2)成分和热处理对σe 影响大,对E 影响不大。

(3)仪表用铍青铜,磷青铜等软弹簧材料,其σe 较高,E 较低,ae 较高。 九、滞弹性(弹性后效)

定义:在弹性范围内快速加载或卸载后,随时间的延长而产生的附加弹性应变,即应变落后于应力的现象。 重点十:

弹性滞后环和循环韧性

(1) 弹性滞后环:金属在弹性区内加载,由于应变落后于应力,使加载线与卸载线不重合而形成一封闭回线,称为弹性滞后环。

(2) 内耗:弹性滞后环的存在,说明加载时消耗于金属的变形功大于卸载时金属放出的变形功,有一部分变形功为金属所吸收,这部分功称之为内耗。

(3) 循环韧性:金属材料在交变载荷作用下吸收不可逆变形功的能力,叫做循环韧性。

(4) 循环韧性与内耗的区别

循环韧性指金属在塑性区内加载时吸收不可逆变形功的能力。 内耗指金属在弹性区内加载时吸收不可逆变形功的能力。 (5) 循环韧性(内耗)的意义

循环韧性是金属的力学性能,它表示材料吸收不可逆变形功的能力,又称消振性。循环韧性越高,消振性越好 十一.塑性变形方式

1.滑移:最主要的变形机制

2.孪生:重要的变形机制,一般发生在低温形变或快速形变时;

十二、屈服机理

外应力作用下,晶体中位错萌生、增殖和运动过程。

十二、影响屈服强度的因素

内在因素

(1) 金属本性及晶格类型

位错运动的阻力:晶格阻力(P-N力)、位错交互作用产生的阻力(平行位错间交互作用;运动位错与林位错交互作用)。

(2) 晶粒大小和亚结构

晶界是位错运动的障碍。要使相邻晶粒中的位错源开动,必须加大外应力。

(3) 溶质元素

形成晶格畸变,塑性变形抗力增大—固溶强化

间隙固溶体的强化效果高于置换固溶体。

溶质和溶剂原子尺寸相差越大或固溶度越小,固溶强化越明显。

(4) 第二相

不可变形的第二相:位错绕过机制。

可变形的第二相:位错切过机制。

外在因素

1.温度提高,位错运动容易,σs↓。

2.应变速率提高,σs↑——应变速率硬化

3.应力状态:分切应力τ↑,σs↓。扭转< 拉伸< 弯曲

十三、应变硬化(形变强化)

基本概念

定义:随变形量的增加,金属的强度、硬度上升,塑性、韧性下降的现象。或称形变硬化,加工硬化。

原因:位错增殖、缠结、运动受阻——位错运动困难

十四、包申格效应

概念

材料经过预先加载并产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,屈服强度增加,反向加载,屈服强度降低的现象。

原因

包申格效应与金属材料中位错运动所受的阻力变化有关。在金属预先受载产生少量塑性变形时,位错沿某滑移面运动,遇到林位错而弯曲。结果,在位错前方,林位错密度增加,形成位错缠结或胞状组织。这种位错结构在力学上是相当稳定的,因此,如果此时卸载并随后同向加载,位错线不能作显著运动,宏观上表现为规定残余伸长应力增加。但如卸载后施加反向力,位错被迫作反向运动,因为在反向路径上,像林位错这类障碍数量较少,而且也不一定恰好位于滑移位错运动的前方,故位错可以再较低应力下移动较大距离,即第二次反向加载,规定残余伸长应力降低。

十五、断裂的类型

1.韧性断裂和脆性断裂(宏观)

韧性断裂断口分区:

纤维区(裂纹形成和缓慢扩展。颜色灰暗,如山脊)

放射区(裂纹快速扩展。表面光亮平坦,细放射条纹。)

剪切唇(剪切唇:试样边缘,剪切断裂,表面光滑)

一般试样的强度提高,塑性降低时,断口中放射区的比列增大

2.穿晶断裂与沿晶断裂(微观)

沿晶断裂一般是脆性断裂,而穿晶断裂既有脆性断裂又有韧性断裂

3、纯剪切断裂与微孔聚集型断裂、解理断裂(机理)

普通常用金属——微孔聚集型断裂

解理断裂在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂解理面一般是指低指数晶面或表面能量低的晶面。

bcc的Fe——{001}

hcp的Mg——{0001}

fcc金属一般不发生解理断裂。

十六、解理断裂的微观断口特征

河流花样、舌状花样

河流花样

①是解理断裂最典型的微观特征;

②判断是否解理断裂的重要微观依据;

③顺河流反方向可找到裂纹源。

舌状花样

解理裂纹沿孪晶界扩展留下的舌状凹坑或凸台。

十七、准解理与解理的不同点

①准解理小刻面不是晶体学解理面;

②真正解理裂纹常源于晶界,而准解理裂纹则常源于晶内硬质点;

③准解理不是一种独立的断裂机理,而是解理断裂的变种。

十八、微孔聚集断裂的微观断口特征

韧窝—微孔聚集断裂的断口特征

等轴韧窝:正应力⊥微孔的平面,形成等轴韧窝;

拉长韧窝:扭转、或双向不等应力状态;切应力,形成拉长韧窝;

撕裂韧窝:拉、弯应力状态。

作业

1、画出典型的低碳钢拉伸曲线,并指出其各变形阶段和主要强度指标和塑性指标

2、什么是滞弹性?说明循环韧性与内耗的区别和实际意义。

(1)在弹性范围内快速加载或卸载后,随时间的延长而产生的附加弹性应变,即应变落后于应力的现象

(2)循环韧性指金属在塑性区内加载时吸收不可逆变形功的能力。

内耗指金属在弹性区内加载时吸收不可逆变形功的能力。

(3)循环韧性是金属的力学性能,它表示材料吸收不可逆变形功的能力,又称消振性。循环韧性越高,消振性越好。

3、详细说明影响屈服强度的因素有哪些?

内在因素

(1) 金属本性及晶格类型(2) 晶粒大小和亚结构(3) 溶质元素(4) 第二相

外在因素

1.温度提高

2.应变速率提高

3.应力状态

第二章

一、正应力与切应力

正应力容易导致脆性的解理断裂,切应力容易导致材料的塑性变形和韧性断裂

二、应力状态软性系数

α越大,最大切应力分量越大,表示应力状态越软,材料越易于产生塑性变形。反之,α越小,表示应力状态越硬,材料越容易产生脆性断裂。

低塑性材料只有采用α大的加载方式,才能表现出塑性

单向拉伸:0.5

扭转:0.8

单向压缩:2

三、铸铁压缩试验

压缩过程可以看成是反向拉伸。铸铁受压没有比例极限,只有强度极限σbc

铸铁抗压不抗拉,其受压强度极限σbc较大。

四、低碳钢压缩试验

塑性较好材料(退火钢、黄铜)只能被压扁,一般不会破坏。

压缩试验时,试样端面存在很大的摩擦力,L/do↓摩擦力↑,影响试验结果的准确性;

试验时尽量减小摩擦力,但L/do太大易造成失稳。

五、弯曲试样尺寸要求

跨距L为直径d或高度h的16倍。

六、扭转试样尺寸

七、抗扭强度

八、扭转试验的特点

1、扭转试验的应力状态软性系数为0.8,比拉伸的大,易于显示金属的塑性行为。

2、圆柱形试样扭转时,整个长度上塑性变形是均匀的,没有颈缩现象。

3、较灵敏地反映出金属表面缺陷及表面硬化层的性能。

九、断口判断

缺口最大的影响是应力集中。缺口根部的应力最大,离开缺口根部,应力逐渐减小,一直减小到某一恒定数值,这时缺口的影响便消失了。

十、缺口的效应

①产生应力集中或局部应力升高;

②改变了缺口前方(附近局部区域)的应力状态

十一、缺口试样进行拉伸试验时,有以下3种情况

(1) 缺口根部只有弹性变形。

(2)在缺口根部可发生少量塑性变形,最大轴向应力已不在缺口顶端的表面处,而是位于塑性变形区和弹性区的交界处。

(3)断裂抗力远高于屈服强度。

十二、硬度试验

1.布氏硬度

用直径为D(mm)的钢球或硬质合金球的压头,加一定的试验力F(N),将其压入试样表面,经过规定的保持时间t(s)后卸除试验力,试样表面将残留压痕,然后测量压痕的平均直径d(mm),求得压痕的球形面积A(mm2)

当压头为淬火钢球时,其符号为HBS(适用于布氏硬度值在450以下的材料);

当压头为硬质合金球时,其符号为HBW(适用于布氏硬度值为450~650的材料)。

按照最新国家标准:压头统一使用硬质合金球

压头直径D有10、5、2.5和1mm四种。

主要根据试样厚度来选择,应使压痕深度h小于试样厚度的1/10。

2.维氏硬度

基本原理与布氏硬度相同,也是根据压痕单位面积上的载荷来计量硬度值。

3.肖氏硬度

是一种动载荷试验法,其原理是将一定重量的带有金刚石圆头或钢球的重锤,从一定高度落于金属试件表面,根据重锤回跳的高度来表征金属硬度值的大小,因而也称回跳硬度。

第三章

一、冲击弯曲试验

1、试样尺寸:采用10mm×10mm×55mm的缺口试样

2、试验原理

利用摆锤的势能,测量试样变形和断裂所吸收的冲击吸收功。用AK表示,AK=mg

(H1-H2),单位J

3.试样开缺口的目的:

在缺口附近造成应力集中,使塑性变形局限在缺口附近,保证试样一次就被冲断且使断裂发生在缺口处。

4. 试验特点

(1)冲击载荷作用力在极短时间内有很大变化幅度

(2)缺口试样(有缺口效应)

(3)低温都是致脆因素下测定试样的冲击功。

5.应用

(1)原理:缓冲,塑性变形,延长受力时间

(2)测试材料低温脆性

低温脆性-材料的强度随温度的降低而升高,而塑性则相反,冲击吸收功明显下降,称为低温脆性或冷脆。

6.测试方法:

系列冲击试验—将某一材料制成的冲击试样冷却到不同的温度测定冲击功,可得到这种材料冲击韧性与温度的关系曲线。

二、产生低温脆性的机理

材料低温脆性的产生与其屈服强度和断裂强度随温度的变化有关。

三、韧脆转化温度及应用(重点)

韧脆转化温度——由韧性状态(发生塑性变形而断裂)转变为脆性状态(发生弹性变形而断裂)的温度定义为韧脆转化温度,用tk表示。

韧脆转化温度的用途:在进行工程设计时,了解这一温度可以确定材料在某温度下工作时是否安全,当使用温度大于它时,脆性断裂不会发生。

四、韧脆转化温度评价方法

1.能量法

采用系列低温冲击试验确定冲击功与温度的关系曲线。

2.断口形貌特征法

依据断口形貌特征法确定的韧脆转化温度称为FATT。断口上出现50%纤维状韧性断口和50%脆性结晶状断口的试样所对应的温度。

五、影响材料韧脆转化温度的因素

1.晶体结构

bcc有冷脆,fcc无冷脆

2化学成分

间隙溶质元素含量增加,韧脆转化温度升高,如含碳量增加,钢的韧脆转化温度升高;杂质元素含量增加,容易偏聚在晶界附近,产生沿晶脆性断裂(Ni和Mn除外)。

3 晶粒大小

βtk=lnB-lnC-lnd-1/2

韧脆转化温度与晶粒直径d-1/2成线性关系。随晶粒减小,韧脆转化温度减小。

原因:晶粒减小,晶界前塞积的位错数减少,有利于降低应力集中;晶界总面积增加,使晶界上杂质浓度减少,避免产生沿晶脆性断裂;晶界是裂纹扩展的阻力。

4、金相组织韧性增大的顺序:珠光体-上贝氏体-下贝氏体-回火索氏体;

5、加载速率

提高加载速率,提高缺口处塑性变形的应变率,从而使材料脆性增大,韧脆转变温度提高。

6、缺口尖锐度

缺口越尖锐,应力集中越明显,塑性变形区越小,导致韧脆转变温度的提高。7、试样尺寸因素

试样尺寸增大,材料韧性下降,韧脆转变温度提高。

a 增加了材料的内部缺陷出现的几率。

b 增大了三向应力状态程度。

作业:影响材料低温脆性的因素有哪些?

1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。

2.化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高。

3.显微组织:

①晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。因为晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减少,有利于降低应力集中;同时晶界上杂质浓度减少,避免产生沿晶脆性断裂

②金相组织:较低强度水平时强度相等而组织不同的钢,冲击吸收功和韧脆转变温度以马氏体高温回火最佳,贝氏体回火组织次之,片状珠光体组织最差。钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。

第四章

一、裂纹扩展的基本方式

1 张开型(I型)

2 滑开型(II型)

3 撕开型(III型)

二、裂纹尖端附近的应力分布

三、说明断裂韧度指标KIC和KI的意义及其相互关系。

①KIc是材料的力学性能指标之一,反映了材料抵抗裂纹失稳扩展即抵抗脆性断裂的能力。它决定于材料的成分、组织结构等内在因素,而与外加应力及试样尺寸等外在因素无关。

②KIc是KI的临界值,与KI有相同的量纲,但KIc与KI的意义截然不同。KI描述裂纹前端内应力场强弱的力学参量,决定于外加应力、试样尺寸和裂纹类型,而与材料无关。

四、裂纹扩展阻力

裂纹扩展要消耗能量于:

1)裂纹上下形成两个新表面的表面能,用单位面积表面能2γs表示;

2)对金属材料,裂纹扩展前都要产生塑性变形,设裂纹扩展单位面积所消耗的塑性变形功为2γP。

因此,裂纹扩展单位面积所消耗的总能量R为:

R=2 (γs+γP)

五、影响断裂韧度的因素

内部因素

合金元素、晶体结构、晶粒大小、杂质及第二相、显微组织

外部因素

1温度

结构钢的KIC随T的降低而下降,高于冷脆温度

时KIC较大,低于冷脆温度时KIC很低

2.应变速率

作业

1、详细说明影响断裂韧度的因素有哪些。

2.有一大型薄板构件,承受工作应力为500 MN/m3/2,板的中心有一长为2 mm的裂纹,裂纹面垂直于工作应力,钢材的σs=600 MN/m3/2,试确定:

(1)裂纹尖端的应力场强度因子KⅠ;

(2)裂纹尖端的塑性区尺寸R。

第五章

一、疲劳研究的主要目的

①精确地估算机械零件和工程结构的构件的疲劳寿命,简称定寿,保证在服役期内零构件不会发生疲劳失效;

②采用经济而有效的技术和管理措施以延长疲劳寿命,简称延寿,从而提高产品质量,增强产品在国内外市场上的竞争力。

二、疲劳失效:工件在变动载荷和应变长期作用下,因累积损伤而引起的断裂——积劳成疾

三、应力循环常见参数

.平均应力、应力幅、循环特征(应力比)、最大应力、最小应力

四、疲劳的分类

(1) 高周疲劳(疲劳寿命Nf >105)

断裂应力水平较低,σ<σs,也称低应力疲劳,即通常所说的疲劳——也称机械疲劳;

(2) 低周疲劳(疲劳寿命Nf=102~105)

断裂应力水平较高,σ≥σs,也称高应力疲劳或应变疲劳。

五、疲劳宏观断口特征

疲劳源、疲劳区、瞬断区。

1、疲劳源:光亮度大。

疲劳裂纹的萌生地;应力状态及大小不同,可有一个或几个疲劳源。

2、疲劳区:光滑,分布有贝纹线。

疲劳裂纹亚稳扩展所形成的断口区域。

贝纹线是疲劳裂纹扩展过程中留下的一条条以裂纹源为中心的同心弧线。是疲劳区的最典型宏观特征。是判断疲劳断裂的重要依据。

贝纹线的意义

是疲劳断口最典型的宏观特征;通过其可寻找疲劳源—凹向为疲劳源,凸侧指向裂纹扩展方向。

贝纹线的间距越小,说明疲劳裂纹的扩展速率越慢。

3、瞬断区:粗糙,结晶状或放射状。裂纹失稳扩展形成的断口区域。

六、疲劳极限:

定义:材料能经受无限次应力循环而不发生疲劳断裂的最大应力,也称疲劳强度。通常用σ

r 表示,对称循环σ-1。 2.疲劳试样

直径d 可为6mm 、7.5mm 、9.5mm 。 3.试验方法

常规试验法、单点法

单点法是在每一应力水平下试验1个试样。试验时,一般从最高应力水平开始,逐级降低应力水平,记录在各级应力水平下试样的疲劳寿命(破坏时的循环数),直到完成全部试验为止。

七、过载损伤和过载持久值(重点)

过载损伤:在高于疲劳极限的应力水平下运转一定周次后,其疲劳极限或疲劳寿命减小的现象。

过载持久值:金属材料在高于疲劳极限的应力下运行时,发生疲劳断裂的应力循环周次。

八、疲劳裂纹扩展门槛值△Kth

(1) 定义:疲劳裂纹不扩展的应力强度因子幅△K 的临界值称为疲劳裂纹扩展门槛值。 (2) 意义:表示材料阻止疲劳裂纹开始扩展的性能,是材料的力学性能指标,单位与K 相同。 应用

△Kth 与σ-1的异同

△Kth 与σ-1都是表示无限寿命的疲劳性能,都受材料成分和组织、载荷条件及环境因素等影响;

σ-1:光滑试样的无限寿命疲劳强度,用于传统的疲劳强度设计; △Kth :裂纹试样的无限寿命疲劳性能,适于裂纹体的设计。 九、疲劳过程:裂纹萌生、亚稳护展、失稳扩展。 十、影响疲劳强度的主要因素

一、表面状态的影响 1、应力集中

缺口导致应力集中,高于平均应力,微裂纹产生,σ-1↓。 2、表面粗糙度

表面粗糙程度增加、表面氧化、脱碳等缺陷,均使σ-1↓。

二、表面层残余应力及表面强化的影响

(1) 表面残余拉应力导致疲劳强度降低;表面残余压应力可以提高疲劳强度。 (2) 表面强化处理可提高疲劳强度。

(3) 表面强化处理可以显著提高缺口试样的疲劳强度。 三、材料成分及组织的影响

2()th

th K Y a K Y σσ≤

?

1、合金成分

提高结构钢C含量,可以提高疲劳强度。但过高时,由于太脆,又会使疲劳极限降低。

固溶于奥氏体的合金元素能提高钢的淬透性,使疲劳强度上升。

2、晶粒尺寸

细化晶粒可以提高材料的疲劳强度

3、热处理组织

4、非金属夹杂物及冶金缺陷

非金属夹杂物及冶金缺陷一般使疲劳强度下降。

提高疲劳强度的途径:

(1) 减少夹杂物数量、减小尺寸;

(2) 夹杂物表面改性:添加稀土;用塑性较好的硫化物夹杂包裹脆性氧化物夹杂。

第七章

一、

1. 两个相互接触的物体或物体与介质之间在外力作用下,发生相对运动,或者具有相对运动的趋势时,在接触表面上所产生的阻碍作用称为摩擦。

2. 阻碍相对运动的阻力称为摩擦力。摩擦力的方向总是沿着接触面的切线方向,跟物体相对运动方向相反,阻碍物体间的相对运动。

3. 摩擦力(F)与施加在摩擦面上的法向压力(p)之比称为摩擦系数,以μ表示,即μ=F/p 。

二、磨损的类型

①粘着磨损;

②磨料磨损;

③腐蚀磨损;

④微动磨损;

⑤表面疲劳磨损(接触疲劳)。

三、减少粘着磨损的措施

(1)合理选择摩擦副材料。

(2)环境的影响

(3)对摩擦副材料进行表面覆层处理和化学热处理是减少粘着磨损的有效措施。

(4)控制摩擦速度和接触压应力

(5)改善润滑条件

(6)提高氧化膜稳定性

(7)降低表面粗糙度

四、影响磨料磨损的因素

外部载荷、磨料硬度和颗粒大小、相对运动情况、环境介质

材料组织和性能等。

五、接触疲劳的类型

1.麻点剥落

麻点剥落是从表面产生裂纹,因油楔作用而引起的浅层剥落破坏。

2.浅层剥落

浅层剥落本质上也是一种麻点剥落,只是疲劳裂纹萌生于次表面层而已。

3.硬化层剥落

仅发生在经表层处理过的零件上。是由于过渡层强度不足造成的。

金属材料力学性能

金属材料力学性能文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

常见的金属材料力学性能一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。 几种常用金属材料力学性能一览表

注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]=σσ σ, σu ={σσσσ 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σs ;对于脆性材料n 为,σu=σb 。 强度条件 σmax=(σ σ)max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ; A ,承受载荷作用的面积,单位mm2; [σ],材料的许用应力,单位MPa ;

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

工程材料力学性能 东北大学

课后答案 第一章 一、解释下列名词 材料单向静拉伸载荷下的力学性能 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。包辛格效应可以用位错理论解释。 第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。这一般被认为是产生包辛格效应的主要原因。 其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。 实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。可以从河流花样的反“河流”方向去寻找裂纹源。解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。派拉力:位错交互作用力(a 是与晶体本性、位错结构分布相关的比例系数,L 是位错间距。) 2.2.晶粒大小和亚结构晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

材料力学性能-考前复习总结(前三章)

金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。 材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR 材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性 第一章单向静拉伸力学性能 应力和应变:条件应力条件应变 = 真应力真应变 应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。其中必有一主平面,切应力为零,只有主应力,且 ,满足胡克定律。 应力软性系数:最大切应力与最大正应力的相对大小。 1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。ae=1/2σeεe=σe2/2E。取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。需通过合金强化及组织控制提高弹性极限。 2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。 ①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。金属中点缺陷的移动,长时间回火消除。 弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。吸收变形功 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。 ②包申格效应: 定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。(反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了) 解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。卸载后同向拉伸,位错线不能显著运动。但反向载荷使得位错做反向运动,阻碍

材料力学性能 9

(一)名词解释:第一章: 滞弹性:在外加载荷作用下,应变落后于应力现象。 穿晶断裂:裂纹穿过晶界。从宏观看,穿晶断裂可以是韧性断裂或脆性断裂;两者有时可混合发生。 沿晶断裂:裂纹沿晶扩展。从宏观看,沿晶断裂多数是脆性。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象。 第二章 应力状态软性系数:材料最大切应力与最大正应力的比值,记为α。α越大τmax越大,应力状态越软,金属易变性,韧性断裂;反之α越小σmax越大,应力状态越硬,不易变形,脆性断裂。 缺口敏感度:金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。 第三章 冲击韧度:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。 低温脆性:体心立方晶体金属及其合金或某些密派六方晶体金属及其合金在试验温度低于某一温度时,材料由韧性状态转变为脆性状态的现象。 韧脆转变温度:材料呈现低温脆性的临界转变温度。 第四章 低应力脆断:当机件(包括构件)存在宏观裂纹时,在应力水平不高,甚至低于材料屈服极限的情况下所发生的突然断裂现象称为低应力脆断。 应力场强度因子K I:对于给定材料,裂纹尖端附近确定点P(r,θ),KI决定了裂纹尖端应力场的大小或强弱程度;即:表示I型裂纹的应力场强弱程度。 有效裂纹长度:有塑性区存在时,引入有效裂纹长度:a*=a+r y;即把塑性区松弛弹性应力场的作用等效地看成是裂纹长度增加r y的松弛弹性应力场的作用。 裂纹扩展K判据:应力场强度因子K I≥K Ic(只适用于弹性状态下的断裂分析)。 第六章: 应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆性断裂现象——应力腐蚀断裂(SCC)。 第七章: 接触疲劳:接触材料作滚动或滚动加滑动摩擦时,工件表面在交变接触压应力长期作用后所引起的一种局部区域发生小片(块)状剥落的表面疲劳损伤现象,称接触疲劳(表面疲劳磨损、疲劳磨损) 第八章: 蠕变:金属在长时间的恒温、恒载荷作用下缓慢地产生塑性变形的现象,称为蠕变。约比温度T/Tm > 0.3时须考虑。 (二)判断、选择题: 1.影响韧脆变转变温度的冶金因素: ①晶体结构(体心立方金属及其合金存在低温脆性) ②化学成分(提高韧脆变转变温度:间隙溶质元素溶入铁素体基体中、钢中加入置换型溶质元素;降低韧脆变转变温度:钢中加入Ni和一定量的Mn、杂质元素S、P、As、Sn、Sb等)③显微组织(晶粒大小(细晶韧性好)、金相组织(回火索氏体最好>回火贝氏体>片状珠光

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料的力学性能

材料的力学性能 mechanical properties of materials 主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下: 弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。 拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截 面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验 机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。 比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以σp表示。在应力低于σp的情况下,应力和应变保持正比例关系的规律叫胡克定律。载荷超过点p对应的值后,拉伸曲线开始偏离直线。 弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以σe表示。若在应力超出σe后卸载,试样中将出现残余变形。比例极限和弹性极限的测试值敏感地受测试精度的影响,并不易测准,所以在有关标准中规定,对于拉伸曲线的直线部分产生规定偏离量(用切线斜率的偏差表示)的应力作为"规定比例极限"。对于弹性

材料力学性能

第一章 1.退火低碳钢在拉伸作用下的变形过程可分为弹性变形,不均匀屈服塑性变形,均匀塑性变形,不均匀集中塑性变形和断裂 2.弹性表征材料发生弹性变形的能力 3.应力应变硬化指数表征金属材料应变硬化行为的性能指标,反应金属抵抗均匀苏醒变形的能力 4.金属材料在拉伸试验时产生的屈服现象是其开始产生宏观塑性变形的一种标志 5. σs 呈现屈服现象的金属材料拉伸时试样在外力不断增加(保持恒定)仍能继续伸长时的应力称为屈服点,记作σs 6. σ0.2 屈服强度 7.断裂类型:韧性断裂和脆性断裂;穿晶断裂和沿晶断裂;解理断裂、纯剪切断裂和微孔聚集型断裂 8.塑性是指金属材料断裂前发生塑性变形的能力 9.韧性断裂和脆性断裂的断口形貌:①韧性断裂断口呈纤维状,灰暗色;中低碳钢断口形貌呈杯锥状,有纤维区,放射区和剪切唇三个区域②脆性断裂断口平齐而光亮,呈放射状或结晶状,有人字纹花样 10.沿晶断裂断口形貌:沿晶断裂冰糖状 11.常见力学行为:弹性变形,塑性变形和断裂 第二章 1.应力状态软性系数Tmax与σmax的比值 2.相对关系压缩试验α=2,扭转试验α=0.8 3(1)渗碳层的硬度分布---- HK或-显微HV (2)淬火钢-----HRC (3)灰铸铁-----HB (4)鉴别钢中的隐晶马氏体和残余奥氏体-----显微HV或者HK (5)仪表小黄铜齿轮-----HV (6)龙门刨床导轨-----HS(肖氏硬度)或HL(里氏硬度) (7)渗氮层-----HV (8)高速钢刀具-----HRC (9)退火态低碳钢-----HB (10)硬质合金----- HRA 第三章 1.冲击韧性指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用Ak表示 2.冲击吸收功摆锤冲击试样前后的势能差 3.低温脆性实验温度低于某一温度tk时,会由韧性状态转变为脆性状态,冲击吸收功明显下降。原因:材料屈服强度随温度降低急剧增加的结果 4. 韧脆转变温度转变温度tk称为韧脆转变温度 第四章 1.断裂韧度(K IC )在平面应变条件下材料抵抗裂纹失稳扩展的能力(与组织有关) 2.应力场强度因子(K I)受外界条件影响的反映裂纹尖端应力场强弱程度的力学度量(与本身有关) 3.断裂韧度(G IC)表示材料阻止裂纹失稳扩展是单位面积所消耗的能量 4.K IC的测量标准三点弯曲试样,紧凑拉伸试样,F形拉伸试样和圆形紧凑拉伸试样

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

工程材料力学性能各章节复习知识点

工程材料力学性能各个章节主要复习知识点 第一章 弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。 滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。 塑性:指金属材料断裂前发生塑性变形的能力。 脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。 韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。 应力、应变;真应力,真应变概念。 穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。 拉伸断口形貌特征? ①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。用肉眼或放大镜观察时,断口呈纤维状,灰暗色。纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。 ②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。板状矩形拉伸试样断口呈人字形花样。人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。 韧、脆性断裂区别? 韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆 拉伸断口三要素? 纤维区,放射区和剪切唇。 缺口试样静拉伸试验种类? 轴向拉伸、偏斜拉伸 材料失效有哪几种形式? 磨损、腐蚀和断裂是材料的三种主要失效方式。 材料的形变强化规律是什么? 层错能越低,n越大,形变强化增强效果越大 退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。 在某些合金中,增强效果随合金元素含量的增加而下降。 材料的晶粒变粗,增强效果提高。 第二章 应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmax σmax 缺口敏感度:缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比

材料力学性能第四章

第四章缺口试件的力学性能 前面介绍的拉伸、压缩、弯曲、扭转乃至硬度试验等静载荷试验方法,都是采用横截面均匀的光滑试样,但实际生产中存在的构件,绝大多数都不是截面均匀无变化的的光滑体,往往存在着截面的急剧变化,例如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等。这种截面变化的部位可以视为缺口(切口)。由于缺口的存在,在载荷(静载荷或冲击载荷)作用下,缺口截面上的应力状态将发生变化,产生“缺口效应”,从而影响到金属材料的力学性能。 §4.1 静载荷作用下的缺口效应 一、缺口试样在弹性状态下的局部应力和局部应变 1. 应力集中和应变集中 一薄板的中心边缘开缺口,并承受拉应力σ作用。缺口部分不能承受外力,这一部分外力要有缺口截面其他部分材料来的承担,因而缺口根部的应力最大。或者说,远离缺口处的截面上的力线的分布是均匀的,而在缺口截面上,由于截面突然缩小,力线密度增加,越靠近缺口根部力线越密,出现所谓应力集中的现象。 应力集中程度以应力集中系数表示之: max max l t n l n K σ σ σ σ = -缺口截面轴向最大应力 -缺口净截面平均轴向应力(名义应力)

K t 和材料性质无关,只决定于缺口几何形状(所以又称为几何应力集中因子或弹性应力集中因子)。例如: 12t c K ρ=+圆孔:3t K ≈ (无限宽板) 应力集中必然导致应变集中,在弹性状态下,有: E σε= 则: max max l t n l t n n K K K E E εσσεεε?== =?=? 即在弹性状态下,应力集中系数和应变集中系数相同。 2. 多轴应力状态 由图可见,薄板开有缺口承受拉应力后,缺口根部还出现了横向拉伸应力σx ,它是由材料的横向收缩引起的。可以设想,加入沿x 方向将薄板分成很多细小的纵向拉伸试样,每一个小试样受拉伸后都能产生自由变形。根据小试样所处的位置不同,它们所受的纵向拉伸应力σy 大小也不一样,越靠近缺口根部,σy 越大,相应的纵向应变εy 也越大(应力应变集中)。每一个小试样在产生纵向应变εy 的同时,必然也要产生横向收缩应变εx ,且εx =-νεy 。如果横向应变能自由进行,则每个小试样必然相互分离开来。但是,实际上薄板是弹性连续介质,不允许各部分自由收缩变形。由于这种约束,各个小试样在相邻界面上必然产生横向拉应力σx ,以阻止横向收缩分离。因此,σx 的出现是金属变形连续性要求的结果。在缺口截面上σx 的分布是先增后减,这是由于缺口根部金属能自由收缩,所以根部的σx =0。自缺口根部向内部发展,收缩变形阻力增大,因此σx 逐渐增加。当增大到一定数值后,随着σy 的不断减小,σx 也随之减小。(薄板,平面应力,z 向变形自由,σz =0,

《材料力学性能》复习提纲

《材料力学性能》复习提纲 第一章金属在单向静拉伸载荷下的力学性能 1.拉伸变形过程; 2.弹性不完整性(滞弹性,包申格效应),循环韧性; 3.塑性变形方式,滑移,均匀屈服产生机制,影响屈服强度的因素; 4.应变硬化(形变强化)及其产生原因和工程意义; 5.缩颈,抗拉强度; 6.塑性、脆性及韧性,塑性指标; 7.机件的失效形式:磨损、腐蚀和断裂; 8.断裂的分类及各类断口特征,韧性断裂和脆性断裂的区别,哪种断裂更危险及其原因; 9.拉伸断口的三要素以及强度和塑性对断口三个区域组成的影响; 10.微孔聚集断裂过程; 11.格雷菲斯裂纹理论(原理,出发点,必要条件); 12.为什么理论断裂强度与实际断裂强度在数值上有数量级的差别; 13.机械设计中最常用的两个强度指标为:屈服强度和抗拉强度; 14.碳含量对钢拉伸曲线的影响。 第二章金属在其他静载荷下的力学性能 1.应力状态软性系数α及其代表的意义; 2.压缩、弯曲、扭转试验的特点; 3.缺口效应(定义及由于缺口引起的两个效应),理论应力集中系数,缺口敏感度及其代表的意义; 4.硬度的分类、符号表示方法、测试(布氏硬度、洛氏硬度、维氏硬度)原理\方法; 5.课后作业P55页的8题。 第三章金属在冲击载荷下的力学性能 1.冲击韧性; 2.低温脆性、韧脆转变温度及其确定方法、韧性温度储备; 3.产生低温脆性的物理本质和机理; 4.影响韧脆转变温度的因素。 第四章金属的断裂韧度 1.低应力脆断; 2.裂纹的扩展形式; 3.应力场强度因子KⅠ定义及其表达式; 4.材料的断裂韧度,断裂K判据,断裂G判据;5 5.KⅠ和K IC,G IC与K IC的关系; 6.KⅠ的修正条件,考虑应力松弛时塑性区宽度(平面应力,平面应变),修正后KⅠ计算公式; 7.断裂韧度测试时试样的制备(满足条件);

材料力学性能

第一章 一.静载拉伸实验 拉伸试样一般为光滑圆柱试样或板状试样。 若采用光滑圆柱试样,试样工作长度(标长)l0 =5d0 或l0 =10d0,d0 为原始直径。 二.工程应力:载荷除以试件的原始截面积。σ=F/A0 工程应变:伸长量除以原始标距长度。ε=ΔL/L0 低碳钢的变形过程:弹性变形、不均匀屈服塑性变形(屈服)、均匀塑性变形(明显塑性变形)、不均匀集中塑性变形、断裂。 三.低碳钢拉伸力学性能 1.弹性阶段(Ob) (1)直线段(Oa): 线弹性阶段,E=σ/ε(弹性模量,比例常数) σp—比例极限 (2)非直线段(ab): 非线弹性阶段 σe—弹性极限 2. 屈服阶段(bc) 屈服现象:当应力超过b点后,应力不再增加,但应变继续增加,此现象称为屈服。 σs—屈服强度(下屈服点),屈服强度为重要的强度指标。 3.强化阶段(ce) 材料抵抗变形的能力又继续增加,即随试件继续变形,外力也必须增大,此现象称为材料强化。 σb—抗拉强度,材料断裂前能承受的最大应力 4.局部变形阶段(颈缩)(ef) 试件局部范围横向尺寸急剧缩小,称为颈缩。 四.主要力学性能指标 弹性极限(σe):弹性极限即指金属材料抵抗这一限度的外力的能力 屈服强度(σs):抵抗微量塑性变形的应力 五.铸铁拉伸力学性能 特点: (1)较低应力下被拉断 (2)无屈服,无颈缩 (3)延伸率低 (4)σb—强度极限 (5)抗压不抗拉 讨论1:σs 、σr0.2、σb都是机械设计和选材的重要论据。实际使用时怎么办? 塑性材料:σs 、σr0.2 脆性材料:σb 屈强比:σs /σb 讨论2:屈强比σs /σb有何意义? 屈强比s / b值越大,材料强度的有效利用率越高,但零件的安全可靠性降低。 六.弹性变形及其实质 定义:当外力去除后,能恢复到原来形状和尺寸的变形。 特点:单调、可逆、变形量很小(<0.5~1.0%)

材料力学性能

填空 1-1、金属弹性变形是一种“可逆性变形”,它是金属晶格中原子自平衡位置产生“可逆位移”的反映。 1-2、弹性模量即等于弹性应力,即弹性模量是产生“100%”弹性变形所需的应力。 1-3、弹性比功表示金属材料吸收“弹性变形功”的能力。 1-4、金属材料常见的塑性变形方式主要为“滑移”和“孪生”。 1-5、滑移面和滑移方向的组合称为“滑移系”。 1-6、影响屈服强度的外在因素有“温度”、“应变速率”和“应力状态”。 1-7、应变硬化是“位错增殖”、“运动受阻”所致。 1-8、缩颈是“应变硬化”与“截面减小”共同作用的结果。 1-9、金属材料断裂前所产生的塑性变形由“均匀塑性变形”和“集中塑性变形”两部分构成。 1-10、金属材料常用的塑性指标为“断后伸长率”和“断面收缩率”。 1-11、韧度是度量材料韧性的力学指标,又分为“静力韧度”、“冲击韧度”、“断裂韧度”。1-12、机件的三种主要失效形式分别为“磨损”、“腐蚀”和“断裂”。 1-13、断口特征三要素为“纤维区”、“放射区”、“剪切唇”。 1-14、微孔聚集断裂过程包括“微孔成核”、“长大”、“聚合”,直至断裂。 1-15、决定材料强度的最基本因素是“原子间结合力” 2-1、金属材料在静载荷下失效的主要形式为“塑性变形”和“断裂”。 2-2、扭转试验测定的主要性能指标有“切变模量”、“扭转屈服点ηs”、“抗扭强度ηb”。2-3、缺口试样拉伸试验分为“轴向拉伸”、“偏斜拉伸”。 2-5、压入法硬度试验分为“布氏硬度”、“洛氏硬度”和“维氏硬度”。 2-7、洛氏硬度的表示方法为“硬度值”、符号“HR”、和“标尺字母”。 3-1、冲击载荷与静载荷的主要区别是“加载速率不同”。 3-2、金属材料的韧性指标是“韧脆转变温度tk 4-1、裂纹扩展的基本形式为“张开型”、“滑开型”和“撕开型”。 4-2、机件最危险的一种失效形式为“断裂”,尤其是“脆性断裂”极易造成安全事故和经济损失。 4-3、裂纹失稳扩展脆断的断裂K判据:KI≥KIC 4-4、断裂G判据:GI≥GIC 。 4-7、断裂J判据:JI≥JIC 5-1、变动应力可分为“规则周期变动应力”和“无规则随机变动应力”两种。 5-2、规则周期变动应力也称循环应力,循环应力的波形有“正弦波”、“矩形波”和“三角形波”。 5-4、典型疲劳断口具有三个形貌不同的区域,分别为“疲劳源”、“疲劳区”和“瞬断区”。5-6、疲劳断裂应力判据:对称应力循环下:ζ≥ζ-1 。非对称应力循环下:ζ≥ζr 5-7、疲劳过程是由“裂纹萌生”、“亚稳扩展”及最后“失稳扩展”所组成的。 5-8、宏观疲劳裂纹是由微观裂纹的“形成”、“长大”及“连接”而成的。 5-10、疲劳微观裂纹都是由不均匀的“局部滑移”和“显微开裂”引起的。 5-11、疲劳断裂一般是从机件表面“应力集中处”或“材料缺陷处”开始的,或是从二者结合处发生的。”。 6-1、产生应力腐蚀的三个条件为“应力”、“化学介质”和“金属材料”。 6-2、应力腐蚀断裂最基本的机理是“滑移溶解理论”和“氢脆理论”。 6-5、防止氢脆的三个方面为“环境因素”、“力学因素”及“材质因素”。 7-4、脆性材料冲蚀磨损是“裂纹形成”与“快速扩展”的过程。

材料力学性能a 知识点

材料力学性能知识点 1.力学指标的符号及物理意义。 第一章金属在单向静拉伸载荷下的力学性能 2.包申格效应及消除措施。 3.滞弹性的定义。 4.多晶体塑性变形的特点。 5.屈服现象及其本质。 6.应变速率硬化现象。 7.机件失效的三种主要形式。 8.韧性断裂与脆性断裂的定义及区别。 第二章金属在其它静拉伸载荷下的力学性能 9.缺口强化的定义及效应。 10.金属硬度的意义及硬度实验。 第三章金属在冲击载荷下的力学性能 11.低温脆性的定义。 12.细化晶粒提高韧性的原因。 第四章金属的断裂强度 13.裂纹扩展的基本形式。 14.裂纹断裂韧度K IC和断裂K判据的计算。 15.断裂韧度的影响因素。 第五章金属的疲劳 16.常见循环应力的种类。 17.疲劳的定义及分类、特点。 18.疲劳断口的典型形貌。 19.疲劳极限的定义。 20.疲劳过程。 21.影响疲劳强度的主要因素。 第六章金属的应力腐蚀和氢脆断裂 22.应力腐蚀断裂的定义、产生条件、机理、特征,及主要的防止措施。 23.氢脆断裂的定义、类型及其特征。 第七章金属磨损和接触疲劳 24.磨损的定义及分类。 25.各磨损类型的特点及防止措施。 26.机件运行的磨损阶段。 27.接触疲劳的定义及分类,影响接触疲劳寿命的因素。

第八章金属高温力学性能 28.蠕变的定义,典型蠕变曲线的三个阶段分类,蠕变的机理。 29.影响金属高温力学性能的主要因素。 30.应力松弛的定义,与蠕变的区别。 第九章聚合物材料的力学性能 31.高分子链的近程结构(构型)。 32.高分子链的远程结构(构象)。 33.高分子材料的结构特征。 34.聚合物的主要物理、力学性能特点。 35.线型非晶态聚合物的力学行为随温度不同而变化,可处于玻璃态、高弹态和粘流态,各 阶段的特征温度。 36.聚合物的粘弹性,静态(蠕变与应力松弛)和动态(滞后与内耗)的定义及特点。 37.银纹的定义、特征。 38.聚合物的疲劳破坏过程(两种方式)。 第十章陶瓷材料的力学性能 39.陶瓷材料弹性变性的特点。 40.陶瓷材料的增韧途径。 41.热震破坏的形式,热震断裂与热震损伤的定义。 42.

2015年材料力学性能思考题大连理工大学.

一、填空: 1.提供材料弹性比功的途径有二,提高材料的,或降低。 2.退火态和高温回火态的金属都有包申格效应,因此包申格效应是 具有的普遍现象。 3.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为与;按照晶体材料断裂时裂纹扩展的途径,分为和;按照微观断裂机理分为和;按作用力的性质可分为和。 4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加的现象,滞弹性应变量与材料、有关。 5.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力;反向加载,规定残余伸长应力的现象。消除包申格效应的方法有和。 6.单向静拉伸时实验方法的特征是、、必须确定的。 7.过载损伤界越,过载损伤区越,说明材料的抗过载能力越强。 8. 依据磨粒受的应力大小,磨粒磨损可分为、 、三类。 9.解理断口的基本微观特征为、和。10.韧性断裂的断口一般呈杯锥状,由、和三个区域组成。 11.韧度是衡量材料韧性大小的力学性能指标,其中又分为、 和。 12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料; 13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。 14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为 、和三大类;在压入法中,根据测量方式不同又分为 、和。 15. 国家标准规定冲击弯曲试验用标准试样分别为试样 和试样,所测得的冲击吸收功分别用 、标记。 16. 根据外加压力的类型及其与裂纹扩展面的取向关系,裂纹扩展的基本方式有、和。 17. 机件的失效形式主要有、、三种。 18.低碳钢的力伸长曲线包括、、、 、断裂等五个阶段。 19.内耗又称为,可用面积度量。 20.应变硬化指数反映了金属材料抵抗均匀塑性变形的能力,在数值上等于测量形成拉伸颈缩时的。应变硬化指数与金属材料的层错能有关,层错能低

相关文档