文档库 最新最全的文档下载
当前位置:文档库 › 流式细胞仪Protocol

流式细胞仪Protocol

流式细胞仪Protocol
流式细胞仪Protocol

第一章流式细胞仪的结构和原理

第1节流式细胞术发展史

纵观历史,几乎没有哪一门科学技术象流式细胞术这样凝结了众多不同学术背景、不同科研领域科学家的心血。从流式细胞术的发明、改进、革新,到今天在各个领域应用的拓展,每一步都是诸如生物学、生物技术、计算机科学、流体力学、激光技术、高等数学、临床医学、分子生物学、有机化学和生物物理学等学科知识综合运用的结晶。现代流式细胞术更是由于结合了单克隆抗体技术、定量细胞化学技术和定量荧光细胞化学,使其在生物学、临床医学、药物学等等众多研究领域中的应用有了更加突飞猛进的发展。临床流式细胞术发展趋势可归纳为:①流式细胞仪从单纯大型仪器发展为适应各种实际应用的便携式、台式、高分辨率、高质量分选的研究型流式细胞仪;②对流式细胞术检测荧光参数,从采用荧光单色、双色分析发展为多色分析,目前最多可同时检测15 种荧光信号;③从检测参数的相对定量发展为绝对定量;④从检测参数的手动人工分析发展为计算机软件的自动分析;⑤所采用的荧光试剂,从非配套试剂发展为配套的试剂盒试剂。而这一切,就要求我们流式细胞仪使用者和科研人员一定要不断地有意识地学习上述各门学科知识,只有这样才能更好地将流式细胞术应用到生物医学的临床实践和基础科学研究工作中去。

流式细胞术的发展简史:

1930年 Caspersson 和 Thorell 开始致力于细胞的计数;

1934年 Moldaven 是世界上最早设想使细胞检测自动化的人,他试图用光电仪记录流过一根毛细管的细胞数量;

1936年 Caspersson等引入显微光度术;

1940年 Coons 提出用结合了荧光素的抗体去标记细胞内的特定蛋白;

1947年 Guclcer 运用层流和湍流原理研制烟雾微粒计数器;

1949年 Wallace Coulter 提出在悬液中计数粒子的方法并获得专利;

1950年 Caspersson用显微分光光度计的方法在紫外线(UV)和可见光光谱区检测细胞:1953年 Croslannd-Taylor应用分层鞘流原理,成功地设计红细胞光学自动计数器;

1953年Parker和Horst描述一种全血细胞计数器装置,成为流式细胞仪的雏形;

1954年 Beirne和Hutcheon发明光电粒子计数器;

1959年B型Coulter计数器问世;

1965年 Kamemtsky等提出两个设想,一是用分光光计定量细胞成份;二是结合测量值对细胞分类;

1967年 Kamemtsky和Melamed在Moldaven的方法基础上提出细胞分选的方法;

1969年Van Dilla,Fulwyler及其同事们在Los Alamos,NM(即现在的National Flow Cytometry Resource Labs),发明第一台荧光检测细胞计;

1972年 Herzenberg 研制出一个细胞分选器的改进型,能够检测出经荧光标记抗体染色的细胞的较弱的荧光信号;

1975年Kochler和Milstein提出了单克隆抗体技术,为细胞研究中大量的特异的免疫试剂的应用奠定了基础。

从此,大量厂家不断研制生产出各具特色的流式细胞仪,流式细胞术进入了一个空前飞速发展的时代。科学家们、仪器制造商们又纷纷将流式细胞仪的研究焦点转向染料的开发、细胞的制备方法和为提高电子信号的处理能力上来。进入21 世纪,流式细胞术作为一门生

物检测技术已经日臻完善,成为分析细胞学领域中无可替代的重要工具。

第2节流式细胞仪结构和工作原理

流式细胞仪(Flow cytometry ,FCM)是一种集激光技术、电子物理技术、光电测量技术、电子计算机以及细胞荧光化学技术、单克隆抗体技术为一体的新型高科技仪器。概括来说,流式细胞术就是对于处在快速直线流动状态中的细胞或生物颗粒进行多参数、快速的定量分析和分选的技术。从开始设想到第一台仪器问世,科技工作者们进行了不懈的努力,随着各项相关技术的迅速发展,FCM技术已经成为日益完善的细胞分析和分选的重要工具。

流式细胞仪分为三大类:

一类为台式机,临床型,其特点为:仪器的光路调节系统固定,自动化程度高,操作简便,易学易掌握,见图1-2-1。

图1-2-1 临床型台式流式细胞仪

(左:BD FACSCalibur—2L,4F;右:Coulter EPICS XL/XL-MCL—1L,4F

中:Partec,cyFlow—1L,3F)

第二类为大型机,科研型,其特点为分辨率高,可快速将所感兴趣的细胞分选出来,并可以将单个细胞或指定个数的细胞分选到特定的培养孔或培养板上,同时可选配多种波长和类型的激光器,适用于更广泛更灵活的科学研究应用,见图1-2-2、1-2-3。

图1-2-2 大型科研型流式细胞仪

(左:BD,FACSDiVa—14F,four-sorting;右:Coulter EPICS ALTRA—4L,8F;

中:Partec,CyFlow SPACE―2L,6F)

第三类为新型流式细胞仪,随着激光技术的不断发展,仪器选用2-4根激光管,最多检测十三个荧光参数,加上散射光信号可达到15个参数的同时分析。并且可以实现高速分选,速度达到50,000个/秒,并可进行遥控分选,能够满足多种科学研究的要求。

图1-2-3 目前最新型流式细胞仪

(左上:partec,CyFlow ML―FSC,2xSSC,FL1~FL13;右上:Coulter,Cytomics TM FC 500 左下:FACSAria,FSC,SSC,FL1-FL13;右下:BD,BD LSR,4L,10F)

(一)流式细胞仪的结构

FCM的结构一般分为5部分:①流动室及液流驱动系统;②激光光源及光束成形系统;

③光学系统;④信号检测、存贮、显示、分析系统;⑤细胞分选系统。见图1-2-4。

图1-2-4 流式细胞仪的光路结构

1、流动室与液流驱动系统

流动室(Flow Chamber 或 Flow Cell)是仪器核心部件,被测样品在此与激光相交。流动室由石英玻璃钢制成,并在石英玻璃中央开一个孔径为430×180μm的长方形孔,供细胞单个流过,检测区在该孔的中心,这种流动室的光学特性良好,流速较慢,因而细胞受照时间长,可收集的细胞信号光通量大,配上广角收集透镜,可获得很高的检测灵敏度和测量精度。

流动室内充满了鞘液,鞘液的作用是将样品流环包,鞘液流是一种稳定流动,操作人员无法随意改变其流动的速度,样品流在鞘液的环包下形成流体力学聚焦,使样品流不会脱离液流的轴线方向,并且保证每个细胞通过激光照射区的时间相等,从而得到准确的细胞荧光信息,见图1-2-5。

图1-2-5 FCM的流动室和液流系统

细胞流和鞘液流的驱动一般采用加正压的方法,流速和压力的关系服从Bernoulli方程,即P=(1/2)PV(勿略高度的变化),可见只要压力恒定,就可得到恒定的鞘液流流速,从而可确保每个细胞流经激光照射区的速度不变。

从图1-2-5可以知道,真空泵产生压缩空气,通过鞘液压力调节器加在鞘液上,一恒定的压力(压力的大小由工厂设定),这样鞘液以均速运动流过流动室,在整个系统运行中流速是不变的。而改变样本的进样速率开关,可提高采样分析的速度。但是,这并不是提高样

本流的速度,而是改变了细胞间的距离,样品流变宽,细胞间距离缩短,这样单位时间内流经光照射区的细胞数就增加。

这种情况应在具体实验中引起注意,由于激光焦点处能量分布为正态分布(见图1-2-5),中心处能量最高,因此当样本速率选择高速(Hi)时,处在样品流不同位置的细胞或颗粒,受激光光照的能量不一样,从而被激发出的荧光强度也不相同,这样就会造成测量误差。当在测量分辨率要求高时(如DNA分析)应选取用低速(Low)。

2、激光光源与光束成形系统

目前台式机FCM,大多采用氩离子气体激光器。激光(light amplification by stimulated emission of radiation , Laser)是一种相干光源,它能提供单波长、高强度及稳定性高的光照,是细胞微弱荧光快速分析的理想光源,这是因为由于细胞快速流动,每个细胞经过光照区的时间仅为1微秒左右,每个细胞所携带荧光物质被激发出的荧光信号强弱,与被照射的时间和激发光的强度有关,因此细胞必须达到足够的光照强度。

激光光束在达到流动室前,先经过透镜,将其聚焦,形成几何尺寸约为22×66μm即短轴稍大于细胞直径的光斑(见图1-2-6)。这种椭圆形光斑激光能量分布属正态分布,为保证样品中细胞受到的光照强度一致,须将样本流与激光束正交且相交于激光能量分布峰值处,台式机FCM的光路调节对使用者是封闭的,即安装时由工程师调试完毕后,无需使用者作任何调节,所以使用者操作十分方便。

3、光学系统

FCM的光学系统是由若干组透镜、滤光片、小孔组成,它们分别将不同波长的荧光信号送入到不同的电子探测器(见图1-2-6)。

在FCM的光学系统中主要光学原件是滤光片(Filter),主要分成3类:长通滤片(long-pass filter, LP)、短通滤片(short-pass filtr, SP)及带通滤片(band-pass filter, BP)。

(1)长通滤片:长通滤片使特定波长以上的光通过,特定波长以下的不通过。如LP500滤片,将允许500μm以上的光通过,而500μm以下的光吸收或返回。

(2)短通滤片:与长通滤片相反,特定波长以下的光通过,特定波长以上的光吸收或返回。如SP500滤片,将允许500μm以下的光通过,而500μm以上的光吸收或返回。

(3)带通滤片:带通滤片可允许相当窄的一波长范围内光通过,一般滤片上有两个数,一个为允许通过波长的中心值,另一为允许通过光的波段范围。如BP500表示其允许通过波长范围为475μm-525μm。

图1-2-6 流式细胞仪的光学系统

4、信号检测与分析系统

当细胞携带荧光素标记物,通过激光照射区时,受激光激发,产生代表细胞内不同物质、不同波长的荧光信号,这些信号以细胞为中心,向空间360度立体角发射,产生散射光和荧光信号。

(1)散射光信号:散射光分为前向角散射(forward scatter,FSC)和侧向角散射(side scatter,SSC)

,散射光不依赖任何细胞样品的制备技术(如染色),因此被称为细胞的物理参数或称固有参数(见图1-2-7)。

①前向角散射:前向角散射与被测细胞的大小有关,确切说与细胞直径的平方密切相关,通常在FCM应用中,选取FSC作阈值,来排除样品中的各种碎片及鞘液中的小颗粒,以避免对被测细胞的干扰。

②侧向角散射:侧向角散射是指与激光束正交90o方向的散射光信号,侧向散射光对细胞膜、胞质、核膜的折射率更为敏感,可提供有关细胞内精细结构和颗粒性质的信息。

以上两种信号都是来自激光的原光束,其波长与激光的波长相同,目前采用这两个参数组合,可区分裂解红细胞处理后外周血白细胞中淋巴细胞、单核细胞和中性粒细胞三个细胞群体,或在未进行裂解红细胞处理的全血样品中找出血小板和红细胞等细胞群体。

图1-2-7 流式细胞仪的散射光图

(2)荧光信号:当激光光束与细胞正交时,一般会产生两种荧光信号。一种是细胞自身在激光照射下,发出微弱荧光信号,称为细胞自发荧光;另一种是经过特异荧光素标记细胞后,受激发照射得到的荧光信号,通过对这类荧光信号的检测和定量分析,就能了解所研究细胞参数的存在与定量(图1-2-8)。

图1-2-8 激光的作用原理

前向角散射

激光

激光

荧光染料可选用的荧光素多种多样,由于它们分子结构不同,其荧光激发谱与发射谱也各异。选取染料或单抗所标记的荧光素,必须考虑仪器所配置光源的波长。目前台式机FCM

荧光信号的线性测量与对数测量主要由电子线路来完成。当携带荧光素的细胞与激光正交时,受激发发出荧光,经过滤光片分离不同波长的光信号分别到达不同的光电倍增管(PMT),PMT将光信号转换成电信号。有些厂家不采用PMT,而采用线性放大光电转换器,其优点是降低成本提高线性度,但其最大缺点是响应速度慢,造成仪器分析细胞速度降低,最高速度不可能超过3 300个细胞/秒。如果样本流速超过此速度会导致数据损失,因此高档仪器不采用此种方法。电信号输入到放大器放大,放大器分两类:线性放大和对数放大。线性放大器,即放大器的输出与输入是线性关系,细胞DNA含量、RNA含量、总蛋白质含量等的测量一般选用线性放大测量。但在细胞膜表面抗原等的检测时,通常使用对数放大器,如果原来输出是1,当输入增大到原来的十倍时,输出为2;当输入增大到原来的100倍时,输出为 3 等。在免疫样品中,细胞膜表面抗原的分布有时要相差几十倍,甚至几万倍。如

所谓荧光信号的面积是采用对荧光光通量进行积分测量,一般对DNA含量测量时,采用面积(FL2-A),这是因为荧光脉冲的面积比荧光脉冲的高度更能准确反映DNA的含量,

样得到的测量数据G2M期细胞比率会增高,影响测量准确性。通过设”门”(gate)方法,将双联体细胞排除。其原理是双联体细胞所得到的荧光宽度信号(FL2-W)要比单个G2M细胞大,因此设”门”后才能得到真正的DNA含量分布曲线和细胞周期。不过通过荧光强度的高度峰和面积峰也可做同样分析。

③光谱重叠的校正

当细胞携带两种荧光素(如PE和FITC)受激光激发而发射出两种不同波长的荧光时,理论上可选择滤片使每种荧光仅被相应的检测器检测到,而不会检测到另一种荧光。但由于目前使用的各种荧光染料都是宽发射谱性质,虽然它们之间各自发射峰值各不相同,但发射谱范围有一定重叠。要克服这种误差的最有效方法是使用荧光补偿电路,利用标准已知样品或荧光小球,可合理设置荧光信号的补偿值。采用双激光立体光路技术,就是为了减少各种荧光间相互干扰。其原理是在光路上的光电倍增管前放上一小孔,作为空间滤波器,排除其它杂散光信号,从而确保光源程序间互不干扰。因此可以避免有第1激光(488nm)激发出的FL1、FL2、FL3和第2 激光(635nm)激发出的FL4间的补偿。当然,FL1、FL2和FL3是来自同一点光源,它们之间的补偿是不可避免的。

5、FCM测量数据的存贮、显示和分析

目前FCM数据的存贮的方式均采用列表排队(list mode)方式。因为目前FCM所采用的都是多参数指标,荧光参数标记物如是4个,采用list mode方式可大量地节约内存和磁盘容量。当一个细胞被测4 个参数,那么获取10000个细胞,所占容量为4×10000个(字或双字)。同时当只检测1个参数时(如DNA),可灵活的关闭其它3 个参数,节省3/4的空间。数据文件虽然有易于加工处理分析的优点,但缺乏直观性。数据的显示通常有一维直

方图、二维点图、等高线图、密度图等几种。

(1)单参数直方图:

细胞每一个单参数的测量数据可整理成统计分布,以分布直方图(distribution histogram)来显示。在图中,横坐标表示荧光信号或散射光信号相对强度的值。其单位是道数,横坐标可以是线性的,也可以是对数的,纵坐标一般是细胞数,见图1-2-9。

图1-2-9 DNA含量直方图和抗原表达直方图

左图较低道数处细胞峰为G1期细胞,道数为G1期细胞两倍的是G2M期细胞,二者之间是S期细胞。右图100-101(M1)为阴性细胞,而101以上(M2)为阳性细胞。

(2)双参数数据的显示

双参数数据的显示是用于表达来自同一细胞两个参数与细胞数量的关系,常用的表达方法有二维点图(dot plot),等高线图(contour plot),二维密度图(density plot)。在二维图中,X坐标为该细胞一参数的相对含量,而Y坐标为该细胞另一参数的含量。从双参数图形中可以将各细胞亚群区分开,同时可获得细胞相关的重要信息。在左下图为FSC和SSC组成的点图,从图中可以很容易把全血样本中淋巴细胞、单核细胞及中性粒细胞区分开,从而可以分别分析各细胞亚群的统计数据。右下图是通过设‘门’分析(gating analysis)得到的FL1和FL2散点图,设‘门’可以是单参数设‘门’,也可以是双参数设‘门’,通过设”门”可以调出其它参数的相关信息,被调出的信息同样也可以是单参数和双参数。图1-2-10(左)就是通过细胞的前向角和侧向角散射光双参数点阵图,设”门”圈出标本中的淋巴细胞群体,再调出免疫荧光的散点图图1-2-10(右)。

散射光图双色标记荧光图

图1-2-10 双参数免疫荧光点阵图

(二)流式细胞仪的主要技术指标

1、荧光测量灵敏度:灵敏度的高低是衡量仪器检测微弱荧光信号的重要指标,一般以能检测到单个微球上最少标有FITC或PE荧光分子数目来表示,一般现在FCM均可达到

通常用变异系数CV(coeffeient

CV=d/m×100%(d-是分布的标准误差,m-是分布的平均值)

如果一群含量完全相等样本,用FCM来测量,理想的情况下,CV=0,用FCM测量曲线表示为图1-2-11(左),但是在整个系统测量中,会带入许多误差,其中样本含量本身的误差,样本在进入流动室时照射光的微弱变化,再加上仪器本身的误差等,实际得到的曲线为图1-2-11(右)。

图1-2-11 仪器分辨率的显示—CV值

CV值越小则曲线分布越窄越集中,测量误差就越小。一般的FCM在最佳状态时CV 值<2%。CD值的计算,除采用以上计算公式外,还可以用半高峰宽来计算。半高峰宽指在峰高一半的地方量得的峰宽,m代表峰顶部的荧光道数;它们与CV值的的关系式如下:

CV=半高峰宽/m×0.4236×100%

上述公式是建立在正态分布条件下,而实际情况所得测量数据分布常常是非对称图形,故采用半高峰宽所计算得到的CV值要明显小于前公式得到的CV值,这在实际工作中应引起注意。

3、前向角散射光检测灵敏度:前向角散射光检测灵敏度是指能够测到的最小颗粒大小,一般目前商品化的FCM可以测量到0.2-0.5μm左右。

4、FCM分析速度:分析速度以每秒可分析的细胞数来表示。当细胞流过光束的速度超过FCM仪器响应速度时,细胞产生的荧光信号就会被丢失,这段时间称为仪器的死时间(dead time)。死时间越短,我们说这台仪器处理数据越快,一般可达3 000个/s-6 000个/s,大型机已达每秒几万个细胞。

5、FCM分选指标:分选指标主要包括:分选速度、分选纯度及分选收获率。分选速度指每秒可提取所要细胞的个数,目前台式带分选的仪器,它的分选速度为300个/s,大型机的FCM最高分选速度可达每秒上万个细胞。分选纯度是指被分选出的细胞所占的百分比,一般台式机和大型机的分选纯度均可达到99%。分选收获率是指被分选出细胞与原来溶液中该细胞的百分比。通常情况下,分选纯度和收获率是互相矛盾的,纯度提高,收获率降低;反之亦然。这是由于样品在液流中并不是等距离一个接着一个有序的排着队,而是随机的。因此,一旦两个不同细胞挨得很近时,在强调纯度和收获率不同的条件下,仪器会作出取或舍的决定。因此,选择不同模式要视具体实验要求而定。图1-2-12为两种细胞分选原理示意图。

图1-2-12 细胞分选示意图

(左:通道式分选;右:电荷式分选)

(三) 流式细胞仪补偿设置

众所周知,流式细胞是通过内置的激光器发射的激光激发荧光染料,通过荧光将488nm 或其他波长的光转变为另一波长的光;并通过光电倍增管将光信号转变为电信号,并由计算机统计处理变为可读数据。

现在流式细胞上常用的荧光素有:

激发波长发射波长

FITC 488nm 525nm

PE 488nm 575nm

PE-TR 488nm 615nm

PE-Cy5.5 488nm 667nm

PE-Cy7 488nm 767nm

(以上五种荧光染料可在Coulter XL或BD Calibur或Partec,PAS,Cyflow,Cytomation,Moflo 机型上使用)

APC 633nm 660nm

APC-Cy 633nm 767nm

(以上二种染料可在装有双激光的流式胞仪上使用。如Coulter,Altra或BD Calibur或Partec Cyflow ML或Cytomation, Moflow)

以上列出了各荧光素的激发及发射波长的峰值,但实际上各荧光素的激发或发射波长是正态或偏态曲线,即有很宽的范围。如下图,为FTIC,PE的发射波长,可以看到两者的发射波长均为偏态分布,FITC受激后多数将光源转变为525nm左右的光;PE多数将其转变为575nm左右的光。故在流式细胞仪中对FITC检测525nm附近的光,对PE则检测575nm

左右的光。如果此时同时使用两种荧光染料,就会出现发射光谱相互叠加的现象。

图1-2-13 受激光照射后FITC和PE分子发射光谱互相干扰图

根据上图中FITC和PE发射波长的叠加情况,在流式细胞仪检测光信号时,PE荧光探测器便会误检由FITC发射的575左右波长的光;此时计算机会将此部分信号计入PE荧光信号中,从而引起错误。同样PE受激后也会发出小部分525nm左右的光,进入FITC荧光探测器中。此时就需要进行一系列仪器设置,人为地去除该部分干扰。

现在商业提供的荧光直标抗体上所结合的FITC、PE等荧光分子性状十分相近,其发射光的光谱分布也十分稳定。通过一系列调节,可以推算出漏入其他荧光探测器的信号占本探测器信号的百分比;一但设定该值,计算机会在其他探测器中减去根据本探测器的信号乘以百分比后的数值。如图:

图1-2-14 FITC无PE荧光检测补偿调节示意图

图1-2-15 PE无FITC荧光检测补偿调节示意图

其他荧光的补偿调节原理也同上图,如做FITC、PE、PE-Cy5三色荧光分析原则上需要调节的补偿有:FITC-%PE,PE-%FITC,PE-Cy5-%FITC,PE-Cy5-%PE,FITC-% PE-Cy5,

PE-% PE-Cy5六组补偿,即有23种组合。

由于在进行补偿之前的信号都已经过放大电路处理,所以525nm或其他波长的光信号可被转化为任何强度的电信号。同时又因为补偿电路在放大电路的后面,故补偿过程中的百分比数值将由两个部分决定:原荧光探测器的信号与漏进其他探测器的信号。补偿最终要达到的效果是:漏进其他探测器的信号-原荧光探测器的信号x N%=0。由此补偿的百分比数值将随着各灾光探测器的放大倍数(电压)变化而变化。特定电压对应于特定的补偿参数。

要确定补偿中百分比数值,需运用以上调节补偿的基本原理并结合特定的标本来实现。如现进行FITC、PE双色分析,先准备该试剂的阴性对照管:

A:IgGFITC/IgGPE,通过调节电压,使阴性群体落在FTIC及PE双阴性区。(注:在进行调补偿时,必须将原补偿全部归零)

图1-2-16 PE和FITC分子的阴性对照

阴性对照在此处的作用是调节各荧光探测器合适的放大倍数,即归零。荧光阴性对照实际为没有特异性的、与抗体蛋白亚型一致的动物免疫球蛋白。由于化学键、生物键及分子之间的吸引作用,这些蛋白会与标本中的细胞结合,在流式细胞仪上可检出一定的信号。当荧光特异性抗体与标本结合时,会产生两部分信号:非特异信号(即同阴性对照的信号),和特异性结合信号。所以我们只认为大于阴性对照的信号才是由特异结合而引起的信号并将其归入统计范围。

B: FITC

图1-2-17 未调补偿的双参数直方图

上图为未调补偿的双参数直方图。如在理想情况下(没有荧光干扰),因为检测管中只含有PE标记的IgG阴性对照(如同A管一样),所以仍将没有何任信号出现。但实际情况并不如此,在PE坐标上出现了阳性信号。这个信号就是由于FITC荧光漏入PE探测器中而引起的。此时就要取一合适百分比与FITC信号相乘后去抵消PE中的信号。(此时电压已通过阴性对照设定,绝对不可变动!)

通过调节补偿参数如下图:

图1-2-18 A管FITC荧光信号补偿的调节

打个比方,通过A管已将FITC、PE的荧光信号设为零;此时检测FITC标记抗体与PE 阴性对照,FITC信号假设为1000,漏入PE的信号为200。在补偿调节1号位时,补偿数字为5%,通过计算得出PE信号:200-1000x5%=150;此时1号位的补偿不足。同理2号位的补为15%,此时PE信号为:200-1000x15%=50;补偿仍显不足。3号位的补偿为20%,PE信号为:200-1000x20%=0,补偿调节良好。4号位补偿为30%,PE信号为:200-1000x30%=-10,此时补偿调节过头,PE的信号会比原来的本底还低。补偿调节不足或过头都会造成不准确的结果,所以要避免以上两种情况的出现。

当将FITC漏入PE的信号恰好全部减除时,即PE信号与原来本底相同时,此时的补偿便是正确的;即FITC单阳性细胞的PE的平均荧光强度与双阴性细胞PE荧光强度一致。

图1-2-19 FITC/PE双阴和FITC单阳荧光示意图

对于FITC阳性细胞,通过调节补偿需将PE中的信号恢复至与其本底一至。由上图可知,调节荧光补偿首先要知道双阴性细胞的情况;即通过A管调节电压确定阴性范围。其次,在检测FITC标记管中,必须存在阳性细胞和阴性细胞;只有这样才能有本底参照将PE

的信号降至与本底一至而不会过多或过少地调节补偿。

同理,如检测C管:FITC阴性对照/PE标记抗体,可将PE漏入FITC中荧光去除。但前提条件是在C管中要存在FITC/PE双阴性细胞和PE单阳性细胞。

图1-2-20 FITC/PE双阴和PE单阳荧光示意图

在流式细胞上,当PE单阳性细胞的FITC平均荧光强度与双阴性细胞的FITC平均荧光强度一致时,补偿便调节完毕。

在做多色分析时,必须做荧光之间的补偿。方法如上,先准备各种标记的荧光阴性对照,调节确定合适的放大电压。逐管加入各种荧光标记的特异性抗体与其他荧光的对照,然后调节特异性荧光对每个荧光的补偿。

在日常工作中,我们可以用CD4/CD8,或CD3/CD4/CD8多色抗体来调节荧光补偿。现将其原理及方法解释如下。

在人外周血中,存在有T、B、NK等白细胞。当加入CD3-PE-Cy5/CD4-FITC/CD8-PE 三色荧光抗体时,会出现以下几种情况:

CD3-/CD4-/CD8-细胞群:如B细胞

CD3+/CD4-/CD8-细胞群:如NK细胞

CD3+/CD4+/CD8-细胞群:如辅助型T细胞

CD3+/CD4-/CD8+细胞群:如杀伤型T细胞

由此可知,无论对于哪一个荧光参数都存在阴性细胞群及单阳性细胞群;这就满足了调节补偿的基本要求。已知不存在CD3-/CD4+和CD3-/CD8+阳性细胞,又已知PE-Cy5对于PE和FITC的干扰很小,所以不用考虑CD3-PE-Cy5荧光对CD4-FITC、CD8-PE荧光的干扰(不会有假阳性存在)。补偿调节如下:

图1-2-21 CD3-PE-CY5、CD4-FITC和CD8-PE荧光相互干扰的补偿

在许多实验中,会用到某一标记物进行设”门”情况。此时最终观察的单参数结果而非双参数,所以往往会忽略其中补偿的问题。在这种情况下调节补偿的方法又略有不同,只要清楚地理解补偿的形成及调节原理,便能解决问题。详细的方法见有关章节涉及设”门”的实验方案。

第二章流式细胞术样品制备及分析技术

第1节样本单细胞悬液的制备方法

一、新鲜实体组织样本的制备

FCM对单细胞快速进行各种参数分析必须基于单细胞基础上,根据各种组织成分的特点,可选择不同的分散细胞方法,以期达到单细胞产额高、损伤少的目的。尽管标本制备已形成了标准化的程序,但实际操作中总会出现这样或那样的问题。在实体组织分散为单个细胞过程中,解离的方法可能瞬间地或持久地影响细胞的性质、形态、结构、功能等。所以,在对各种不同组织进行分散选择方法时,应尽量减少对细胞的这种影响。现在已有专门的样本制备仪(见图2-1-1),但有些标本仍需要人工进行细胞分散。目前常用的分散组织细胞的方法有如下3种。

图2-1-1 流式细胞术自动细胞分离器(BD,Medmachine)

(一) 酶消化法

1、作用原理:

对实体组织分散的作用原理主要有3方面:①可以破坏组织间的胶原纤维、弹性纤维等;②可以水解组织间的粘多糖等物质;③可以水解组织细胞间的紧密联结装置的蛋白质物质。酶消化法是实体瘤、培养细胞分散为单细胞的主要方法之一。常用的酶类试剂有:蛋白酶类——胃蛋白酶、木瓜蛋白酶、链酶蛋白酶和中性蛋白酶等,都能解离组织中的细胞。胰蛋白酶能水解脂键和肽键;胶原酶能降解几种分子类型的胶原;溶菌酶能水解糖蛋白和肽的糖苷键;弹性蛋白酶能消化连接组织的糖蛋白和弹性蛋白的纤维。不同酶对细胞内和细胞间不同组分有特异作用,可根据分散组织类型来确定使用的酶类。

2、注意事项:

①酶需要溶解于适当的溶液中,而这些溶液不致于造成酶效价降低;②要注意酶的使用浓度和消化时间;③要注意酶活性的pH值。如胃蛋白酶在碱性环境中失去活性,胰蛋白酶在中性溶剂中活性不佳等;④要随时注意影响酶活性的其它因素,如酶的生产批号等。

3、方法学程序

(1)将适合于酶消化的组织置于离心管中;

(2)将选好的酶溶液1-2ml加入盛有被消化组织的试管中;

(3)一般消化20-30 min(恒温37℃或室温),消化期间要间断振荡或吹打;

(4)终止消化,收集细胞悬液,以300目尼龙网过滤,除去细胞团块,以低速离心除去细胞碎片;

(5)将制备好的单细胞悬液进行进一步荧光染色后上机检测,或保存备用。

(二)机械法

机械法分散实体组织,用手术剪刀剪碎组织、用锋利的解剖刀剁碎组织或用匀浆器制成组织匀浆,再用细注射针头抽吸细胞或用300目尼龙网滤出单细胞悬液;采用搓网法也能获得大量细胞。机械法易造成细胞碎片和细胞团块,所以机械法常与其它方法配合使用。1、剪碎法:

(1)将组织块放入平皿中,加入少量生理盐水;

(2)用剪刀将组织剪至匀浆状;

(3)加入10ml生理盐水;

(4)用吸管吸取组织匀浆,先以100目尼龙网过滤到试管中;

(5)离心沉淀1000 rpm,3-5min,再用生理盐水洗3遍,每次以低速(500-800 rpm)短时离心沉淀去除细胞碎片;

(6)以300目尼龙网滤去细胞团块;

(7)细胞用固定液固定或低温保存备用。

2、网搓法

(1)将100目,300目尼龙网扎在小烧杯上;

(2)把剪碎的的组织放在网上,以眼科镊子轻轻搓组织块,边搓边加生理盐水冲洗,直到将组织搓完;

(3)收集细胞悬液,500-800 rpm离心沉淀2min;

(4)固定细胞或低温保存备用。

3、研磨法

(1)先将组织剪成1-2 mm3大小组织块;

(2)放入组织研磨器中加入1-2 ml生理盐水;

(3)转动研棒,研至匀浆;

(4)加入10ml生理盐水,冲洗研磨器;

(5)收集细胞悬液,并经300目尼龙网过滤,离心沉淀500-800 rpm,1-2 min,再以生理盐水洗3 遍,离心沉淀;

(6)固定或低温保存细胞悬液,备用。

(三)化学处理法

1、作用原理

化学处理法是将组织细胞间起粘着作用的钙镁离子置换出来,从而使细胞分散开来。

2、试剂的配制

(1) 0.2%EDTA配制:称EDTA 0.2g,加入Hankˊs液100ml,封装高压消毒。置0℃-4℃保存;

(2)胰酶加EDTA配制:胰酶0.25g 加PBS(pH7.0)200ml,浓度0.125%,EDTA 0.2g 加PBS(pH7.0)100ml,浓度0.2%。各取40ml混合,分装置冰箱保存,用时过滤即可使用。

3、实验方法

(1)将组织切成薄片,置入试管中;

(2)首先加入EDTA液5ml,室温下0.5h,离心弃之;

(3)再加入胰酶-EDTA液5ml。在37℃恒温水浴振荡器内30min;

(4)用300目尼龙网过滤,离心沉淀1000 rpm,5min。再以生理盐水洗2-3次;

(5)细胞固定或低温保存备用。

以上几种分散细胞的方法都是目前对实体组织解聚的常用的方法。实验证明,用化学试剂方法处理组织导致细胞成活率低,细胞产额低,细胞碎片和细胞聚集的量不稳定;化学试剂可单独使用,也可与其它方法结合使用;机械法常常造成严重的细胞损伤,单细胞产量低;酶学法、化学法对实体组织的分散解聚较理想,但对所测化学成分有不良影响。所以要根据实验目的去选择合适的单细胞悬液制备方法,才能获得理想的样本和更好的FCM检测结果。

(四)注意事项

1、新鲜组织标本应及时进行处理保存,以免组织在室温下放置时间过长,产生中心组织

坏死以及细胞自溶,影响FCM测定结果;

2、根据实验目的选择最隹的固定方法,以免由于固定剂的原因,造成FCM检测结果的

不稳定;

3、酶学法要注意条件的选择和影响因素,要注意酶的溶剂,消化时间、pH值、浓度等方

面对酶消化法的影响。

4、需注意不同组织,选择相应的方法;如富于细胞的组织——淋巴肉瘤、视神经母细胞

瘤、脑瘤、未分化瘤、髓样癌以及一些软组织肉瘤等,就不一定采用酶学法或化学法;

往往用单纯的机械法就可以获得大量高质量的单分散细胞;

5、在使用酶学方法时,要重视酶的选用,如含有大量结缔组织的肿瘤——食管癌、乳腺

癌、皮肤癌等,选用胶原酶较好,因为胶原酶具有在Ca2+、Mg2+存在或在血清状态下不发生活性降低的特性。

二、组织活检、内窥镜取材标本单细胞悬殊液的制备

正常组织、瘤组织和淋巴结等活检组织以及内窥镜(胃镜、食管镜等)取材标本,由于材料较少,制备起来比较麻烦。但其制备方法与实体组织基本相似。

1、取材后立即放入盛少许PBS液青霉素小瓶中;

2、另取一只小烧杯,杯口用300目尼龙网盖住并用线绳固定好,并用PBS液湿润;取新

鲜组织标本置尼龙网上;因标本量较少,尤其是内窥镜取材只少要取3块以上;

3、在操作前,先将剪刀用PBS液浸润一下,然后开始剪碎组织;

4、先剪几下,视基本无组织块存在时,用原来装标本的青霉素小瓶中的PBS液,冲洗细

胞均浆并过滤于小烧杯中;如果这时仍有可见组织块,再用剪刀剪碎,再加适量该PBS 液冲洗,直至网上无组织块为止。这样可尽量多的收集细胞;

5、细胞加固定液或低温保存,备用。

三、石蜡包埋组织样本的制备

石蜡包埋组织单细胞分散方法的建立,扩大了流式细胞术的应用范围。对大量临床随访资料通过病理包埋组织的流式细胞术分析,可以重新得到深入研究和利用。现将常用的石蜡包埋组织制备单细胞方法介绍如下。

1、实验方法:

(1)把石蜡包埋组织切成40-50um厚的组织片3-5片,或用乳钵研成0.5mm直径大小颗粒状,放入10ml的试管中;

(2)加入二甲苯5-8ml, 在室温下脱蜡1-2 天,视石蜡脱净与否,更换1-2 次二甲苯,石蜡脱净后,弃去二甲苯;

(3)水化:依次加入100%、95%、70%、50%梯度乙醇5ml,每步为10 min,去乙醇,加入蒸馏水3-5 ml,10 min 后弃之;

(4)消化:加入2 ml 0.5% 胰蛋白酶(pH 1.5-2.0)消化液,置37℃恒温水浴中消化30 min,在消化期间,每隔10min 用振荡器振荡1次;

(5)消化30 min 后,立即加生理盐水终止消化;

(6)经300目尼龙网过滤,未消化好的组织可做第2次消化;

(7)收集细胞悬液,离心沉淀1500 rpm ,再以生理盐水漂洗1-2 次,离心沉淀500-800 rpm 去碎片;

(8)保存细胞备用。

2、注意事项

(1)一定将石蜡从组织中脱干净,一般脱蜡第1遍应在12小时左右,第2遍为30min左右。检测是否将石蜡已脱净的方法:是弃去二甲苯,加入无水乙醇,如果无絮状物浮起,即可视为蜡已脱净;反,则蜡尚未脱净;

(2) 消化时间不可过长,以免造成已释放出的细胞核被消化;

(3) 切片不可过薄或过厚,过薄细胞碎片过多,影响分析结果;过厚造成脱蜡不理想。(4)消化后的组织应先用眼科剪刀剪碎,然后再加胃蛋白酶消化,30min,37℃,然后用尖吸管吹打成悬液状;

(5)消化后的组织悬液经过过滤后可能细胞数很少,这样就要将组织片放在300目尼龙网上,用底部圆滑的试管磨碎,再用PBS液冲洗一下;如此反复,就能得到较多的单细胞悬液。

四、外周血单个核细胞样本的制备

血液是天然的单个细胞分散的细胞悬液,血细胞在生理状态下呈分散的游离状态。它是流式细胞分析的理想样品。血液中的主要细胞成分为白细胞、红细胞和血小板;而其中白细胞主要成分又分为淋巴细胞、单核细胞和粒细胞。但在血细胞中一般检测单个核细胞较为多见。

1、外周血细胞样本制备方法的选择

一般检测细胞大分子成分——DNA、RNA、蛋白质含量、基因表达蛋白等,多采用淋巴细胞分离液分离法制备单个核细胞悬液。这样可以从血液中分离出单个核细胞——淋巴细胞、单核细胞、幼稚血细胞和肿瘤细胞等。外周血免疫细胞、细胞因子、某些基因蛋白、细胞表面标志检测可采用溶红细胞法。

2、单个核细胞样品制备程序

(1)取外周血2ml,肝素抗凝,用生理盐水将血稀释成4 ml ,混匀;

(2)将稀释后血液沿试管壁徐徐加入4ml淋巴细胞分离液到液面之上,勿用力过大,以免造成血液与分离液混合,保持清晰的分层状态;

(3)离心2000rpm,30min,室温18-20℃,离心后可见试管内的血液清楚的分为4 层,上层为血浆层,中层为分离液层(单个核细胞所处于血浆层和分离液层中间),底层为红细胞层,红细胞层上为粒细胞层;

(4)用吸管将上层与中层之间的淋巴细胞层吸出收集到另1 试管中,用生理盐水洗2 遍,每次均以1500 rpm ,10 min ,弃上清后即得到高纯度的单个核细胞悬液;

(5) 用适当的固定液固定或置低温冰箱保存待用。

五、骨髓细胞单细胞悬液的制备

1、制备方法

(1)无菌抽取骨髓液0.5 ml;

(2)将骨髓标本滴入1000u/ml肝素抗凝的1 ml PBS液中;

(3)再加入PBS液稀释至10ml;

(4)用吸管吸取5 ml 稀释骨髓液徐徐加入盛有4 ml 的人类淋巴细胞分离液液面之上;(5)在以上条件下,骨髓有核细胞分层在PBS-人类淋巴细胞分离液之间形成的界面上;(6)吸取有核细胞层,加入到10 ml PBS液中,混匀;

(7)以1000 rpm 离心 5 min ,弃上清;收集骨髓细胞,加固定液或置低温冰箱备用。

2、注意事项

(1)抽骨髓液时,先将注射器针头、针筒、针栓用肝素浸润,抽取时力量适中;

(2)在吸取淋巴细胞层时尽量少吸分离液,量应掌握在300 ul 左右,这样有利于洗去多余的分层液;

(3) 溶红细胞的方法:以等量的蒸馏水加入到沉淀中,轻轻摇动片刻,见粉红色出现,立即加入大量生理盐水,混匀,离心,去除上清即可。

六、培养细胞的单细胞悬液的制备

1、培养细胞的特征

一般细胞培养分为悬浮培养和贴壁培养,由于细胞的增殖,都有可能形成大小不等的细胞团块或连接成片。如果两个或多个细胞粘连在一块或细胞碎片过多都将影响FCM结果,进而导致实验失败。所以,制备合格的培养细胞单细胞悬液十分重要。

2、培养细胞样品的制备程序:

(1)将培养细胞用0.04%乙二胺四乙酸二钠盐(EDTA2Na)或0.29%胰酶消化3-7min,(根据室温情况而定),至光镜下见到贴壁细胞间出现筛状间隙为止),弃去消化液,加PBS液;

(2)用吸管将细胞从瓶壁上轻轻吹打下来,并移入离心管中;

(3)短时低速离心,即800-1000 rpm,5 min;

(4)弃上清,加pH 7.4的PBS液5-8ml,低速短时离心,800-1000prm,3-5 min ;重复2- 3次,以去除细胞悬液中的细胞碎片;

(5)加少许PBS液,将沉淀细胞轻轻吹打均匀。加固定液或低温保存待用。

七、脱落细胞样品单细胞悬液的制备

在临床工作中,可以收集到大量自然脱落细胞,这些细胞标本经过简单处理,便可成为较好的单细胞悬液,提供流式细胞术分析。主要包括脱落细胞、胸腹水细胞、尿液、内镜刷检细胞等。

流式细胞仪技术参数

一、流式细胞仪技术参数 1 工作条件: 1.1 电源要求: 220V (±10%)、50-60HZ 1.2 环境温度:16-30℃ 1.3 湿度:20-80% 2 用途:免疫分析、淋巴细胞亚群分析;细胞周期分析、凋亡分析;感染分析、肿瘤细胞分析;多重细胞因子分析等。 3 技术规格和参数 3.1 激发系统: 3.1.1 激发光源:405nm紫色固态激光器、488nm蓝色固态激光器和640nm红色固态激光器,固定光路,空间立体激发。 3.1.2 激光塑形:自动的多棱镜塑形系统,光斑大小:9x65um椭圆形光斑 3.1.3 流动室规格:180x430μm 3.2 荧光收集和检测 3.2.1 光胶耦合物镜,数值孔径1.2,大面积收集发射荧光。 3.2.2 每一激发激光对应一个独立检测单元,光胶耦合物镜自动分开汇集每一激光激发的发射荧光进入相对应检测单元,避免光谱交叉。 *3.2.3 配备1个独立八角型全反射检测系统、2个独立三角型全反射检测系统 3.2.4 光学检测系统内部采用全反射检测光路系统,荧光信号到达检测器只经过一个长通滤光片,信号能量损失最小。 3.2.5 检测系统依次优先检测易衰减的长波长信号,保证弱信号灵敏度。 *3.2.6 共计12个信号检测器,包括10个光电倍增和和2个散射光探测器。

3.2.7 荧光通道组合:405nm紫色激光器对应3个检测通道,滤光片包括450/50nm、 525/50nm、 605/40 nm;488nm蓝色激光器对应4个检测通道滤光片包括530/30nm、 575/25nm、695/40nm、780/60 nm; 640nm 红色激光器对应3个检测通道,检测滤光片包括:670/30nm、712/21nm、780/60 nm。通道之间最低光谱交叉,滤光片带有智能芯片,直接插拔,自动识别。 *3.2.8 荧光检测灵敏: FITC<100MESF,PE<50MESF(提供英文原版参数);CFDA检测结果FITC<5MESF,PE<5MESF(提供检测报告)。 *3.3 样本分析速率:>32,000个细胞/秒(提供英文原版参数)。 3.4 变异系数:全峰宽CV<3% *3.5 采用正压上样系统,非注射泵或蠕动泵。样本残留量<0.2%。 3.6 最小样本量:≤30ul 3.7 检测颗粒大小:0.5-50μm 3.8 数字信号处理:18bit动态范围,符合IEEE 32bit浮点分辨率。3.9 脉冲处理系统:能同时分析脉冲信号峰值、脉冲积分(面积)及脉冲宽度,可区分多倍体细胞、粘连细胞。 3.10 可溶性蛋白分析:具备多重可溶性蛋白分析功能,包括:细胞因子、炎症因子、趋化因子等;可达单管数十重分析,包括:多重定量及动力学分析。 *3.11 液流车:独立液流车,避免振动影响仪器主机光路和液流;自动控制所有压力、鞘液、清洗液等,大体积液体储备保证长时间、稳定工作;鞘液桶20L,废液桶10L,清洗液桶5L,关机液桶5L。开关机自动清洗液路,正常状态鞘液消耗<1.10 L/h,待机状态鞘液消耗<1 mL/h。 3.12 配置淋巴细胞亚群自动分析软件,无需手动设置,实现淋巴细胞亚群分型的全自动化。 3.13 主软件:Windows系统,原版专业化流式数据收集及处理软件, 可按用户需求设置条件进行数据分析和报告。

【基础科学】BD FACSCALIBUR流式细胞仪操作手册(共27页)

BD FACSCalibur流式细胞仪 FACS101 Handbook 本课程介绍「表面抗原流式分析」有关之基础工作原理。如希望进一步了解流式细胞技术应用,请至本公司网站订阅FACSinformation电子报。 如需要本课程手册,欢迎至本公司网站下载。 如需要免疫荧光染色方法,请至本公司网站下载。 一、BD FACSCalibur基本结构 1.1仪器本体: 1. 电源开关:在BD FACSCalibur仪器右侧下方,先启动仪器本体,再打开计算机。 2. 光学系统:BD FACSCalibur 基本配有一支波长488 nm 的氩离子雷射 以BD FACSCalibur 基本型为例 ?FSC Diode 只收488 nm波长散射光 ?SSC PMT 只收488 nm波长散射光 ?FL1 PMT 荧光光谱峰值落在绿色范围(波长515-545 nm) ?FL2 PMT 荧光光谱峰值落在橙红色范围(波长564-606 nm) ?FL3 PMT 荧光光谱峰值落在深红色范围(波长 >650 nm)

3. 仪器面板: 仪器前方面板的右下方有三个流速控制键、及三个功能控制键。 流速控制: LO:样品流速:12 μl /min MED:样品流速:35 μl /min HI: 样品流速:60 μl /min 功能控制: ?RUN:此时上样管加压,使细胞悬液从进样针进入流动室。(正常显示绿色;黄色时表示仪器不正常,请检查是否失压。) ?STANDBY:无样品或暖机时之正常位置,此时鞘液停止流动,雷射功率自动降低。 ?PRIME:去除流动室中的气泡,流动室施以反向压力,将液流从流动室冲入样品管,持续一定时间后,以鞘液回注满流动室。PRIME 结束,仪器 恢复STANDBY状态。 4. 储液箱抽屉: 在主机左下方之储液箱抽屉。可向前拉开,内含鞘流液筒、废液筒、鞘液过滤器Sheath Filter,及空气滤网 Air filter。请注意气路减压阀VENT TOGGLE之位置。

流式细胞仪论文:流式细胞仪的使用与维护

流式细胞仪论文:流式细胞仪的使用与维护摘要:介绍了流式细胞仪的结构、工作原理及软件的主要功能,在仪器的维护保养方面进行了详细地叙述。结合笔者工作实际,介绍了用流式细胞仪对鸡外周血淋巴细胞亚群分析结果。 关键词:流式细胞仪;流动室;细胞分选系统;淋巴细胞 use and maintenance of flow cytometry wang shujing, hao jianmin, bi jianjie, chang zhongle, cui yanshun shandong agricultural university, tai'an, 271018, china abstract: this article describes the structure of flow cytometry, how it works and the main functionality of the software, in the area of maintenance of the instrument are described in detail. in conjunction with our own actual work, the author analyzed the results by flow cytometric peripheral blood lymphocyte subsets in chicken. key words: flow cytometry; mobile office; cell sorting system; lymphocyte

easycyte mini guava流式细胞仪,适用于各种流式细胞学检测分析,如动物、昆虫、酵母、原代培养、转化细胞、悬浮和贴壁细胞以及荧光微球等。采用固态蓝色或绿色激光,四色、三色或两色荧光检测,前向散射检测,可选配侧向散射;有自冲洗系统,保证流动通路畅通。easycyte mini guava 流式细胞仪采用微毛细管流动技术,无需鞘液,特别适合于 传染性危险生物样品的分析,山东农业大学动物疫病防治重点实验室主要用于细胞绝对计数,cd4/cd8细胞计数,免疫细胞分析,细胞标记蛋白表达检测如gfp等。结合笔者多年使用该仪器的工作经验,对流式细胞仪的工作原理、使用与维护介绍如下: 1流式细胞仪的主要构造和工作原理 流式细胞术(flow cytometry,fcm)是20世纪70年代发展起来的高科技,它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体,同时具有分析和分选细胞的功能。它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞浆抗原、细胞内dna和rna含量等,可对群体细胞在单细胞水平上进行分析,在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析;能够分类收集(分选)某一亚群细胞,在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。

BD流式细胞仪原理与典型故障分析

Instrumentation and Equipments 仪器与设备, 2018, 6(3), 95-98 Published Online September 2018 in Hans. https://www.wendangku.net/doc/7a6218780.html,/journal/iae https://https://www.wendangku.net/doc/7a6218780.html,/10.12677/iae.2018.63015 BD Flow Cytometer Principle and Typical Malfunction Analysis Xiusheng Qiu*, Caihui Zeng, Liting Zhang The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong Received: Aug. 23rd, 2018; accepted: Sep. 11th, 2018; published: Sep. 18th, 2018 Abstract Flow cytometry is a device for automatic cell analysis and cell separation. In this paper, the prin-ciple of BD flow cytometry is introduced, and the common faults of flow cytometry are described. After analysis, the troubleshooting process is described in detail. Flow cytometry instrument equipment failure can be divided into liquid road faults, hardware failure, software failure, and all three cases. Only by accumulating in use can we fast judge the fault, and quickly solve the problem. Keywords Flow Cytometer, Principle, Malfunction Analysis BD流式细胞仪原理与典型故障分析 丘秀生*,曾彩辉,张丽婷 中山大学附属第三医院,广东广州 收稿日期:2018年8月23日;录用日期:2018年9月11日;发布日期:2018年9月18日 摘要 流式细胞仪是对细胞进行自动分析和分选的装置,已经渐渐成为生物科学重要的分析仪器。本文介绍了BD流式细胞仪的原理,并对流式细胞仪常见的典型故障做了阐述,进行分析后,并对故障的排除过程进行了详细的阐述。流式细胞仪维中设备故障可分为液路故障、硬件故障、软件故障和三者兼具的情况,只有在使用过程中不断积累,才能快速判断故障,并迅速的排除。 *通讯作者。

流式细胞术原理及功能介绍

流式细胞术详解 一. 流式细胞术概述 流式细胞术(Flow Cytometry, FCM)是七十年代发展起来的高科学技术 ,它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体, 同时具有分析和分选细胞功能。它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞浆抗原、细胞内DNA、RNA含量等,可对群体细胞在单细胞水平上进行分析, 在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析; 能够分类收集(分选)某一亚群细胞,分选纯度>95%。在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。 国内使用的流式细胞仪主要由美国的两个厂家生产:BECKMAN- COULTER公司和Becton-Dickinson公司(简称B-D公司)。流式细胞仪主要有两型:临床型(又称小型机、台式机)和综合型(又称大型机、分析型)。BECKMAN-COULTER公司最新产品为EPICS ALTRA和EPICS XL/XL-MCL, B- D公司最新产品为FACS Vantage和FACS Calibur。EPICS XL/XL-MCL和FACS Calibur是临床型;EPICS ALTRA和 FACS Vantage是综合型,除具备检测分析功能外,还具有细胞分选功能 ,多用于科学研究。 二.流式细胞仪主要技术指标 1.流式细胞仪的分析速度: 一般流式细胞仪每秒检测1000~ 5000个细胞,大型机可达每秒上万个细胞。 2.流式细胞仪的荧光检测灵敏度:一般能测出单个细胞上<600个荧光分子,两个细胞间的荧光差>5%即可区分。 3.前向角散射(FSC)光检测灵敏度:前向角散射(FSC)反映被测细胞的大小,一般流式细胞仪能够测量到0.2μm~0.5μm。 4.流式细胞仪的分辨率:通常用变异系数CV值来表示,,一般流式细胞仪能够达到<2.0%,这也是测量标本前用荧光微球调整仪器时要求必须达到的。 5.流式细胞仪的分选速度:一般流式细胞仪分选速度>1000个/秒,分选细胞纯度可达99%以上。 三.流式细胞仪主要构造和工作原理 流动室及液流驱动系统 流式细胞仪主要由以下五部分构成:①流动室及液流驱动系统②激光光源及光束形成系统③光学系统④信 号检测与存储、显示、分析系统⑤细胞分选系统。 流动室(Flow Cell或Flow Chamber)是流式细胞仪的核心部件,流动室由石英玻璃制成,单细胞悬液在细胞流动室里被鞘流液包绕通过流动室内的一定孔径的孔,检测区在该孔的中心,细胞在此与激光垂直相交,在鞘流液约束下细胞成单行排列依次通过激光检测区。流动室里的鞘液流是一种稳定流动,控制鞘液流的装置是在流体力学理论的指导下由一系列压力系统、压力感受器组成,只要调整好鞘液压力和标本管压力, 鞘液流包绕样品流并使样品流保持在液流的轴线方向,能够保证每个细胞通过激光照射区的时间相等,从而使激光激发的荧光信息准确无误。见图12.1流动室示意图。流动室孔径有60μm、100μm、150μm 、250μm等多种,供研究者选择。小型仪器一般固定装置了一定孔径的流动室。 图12.1流动室示意图(采自Coulter Training Guide) 四. 流式细胞仪主要构造和工作原理 激光光源及光束形成系统

流式细胞仪操作规程

FACSCalibur流式细胞仪操作规程 一、编号:YQ0606 二、标题:FACSCalibur流式细胞仪操作规程 三、关键词:流式细胞仪操作规程 四、目的:保证流式细胞仪的安全及有效操作 五、背景知识:流式细胞术(Flow CytoMeter,FCM)是一种在功能水平上对单细胞或其他生物粒子进行定量分析和分选的检测手段,它可高速分析上万个细胞,并能同时从一个细胞中测得多个参数,与传统荧光镜检查相比,具有速度快、精度高、准确性好等优点,成为当代最先进的细胞定量分析技术。 六、原理 待测细胞染色后制成单细胞悬液,用一定压力将待测样品压入流动室,不含细胞的磷酸缓冲液在高压下从鞘液管喷出,鞘液管入口方向与待测样品流成一定角度,这样鞘液就能够包绕着样品高速流动,组成一个圆形的流束,待测细胞在鞘液的包被下单行排列,依次通过检测区域。 流式细胞仪通常以激光作为发光源。经过聚焦整形后的光束,垂直照射在样品流上,被荧光染色的细胞在激光束的照射下,产生散射光和激发荧光。这两种信号同时被前向光电二极管和90°方向的光电倍增管接收。光散射信号在前向小角度进行检测,这种信号基本上反映了细胞体积的大小;荧光信号的接受方向与激光束垂直,经过一系列双色性反射镜和带通滤光片的分离,形成多个不同波长的荧光信号。 这些荧光信号的强度代表了所测细胞膜表面抗原的强度或其核内物质的浓度,经光电倍增管接收后可转换为电信号,再通过A/D转换器,将连续的电信号转换为可被计算机识别的数字信号。计算机把所测量到的各种信号进行计算机处理,将分析结果显示在计算机屏幕上,液可以打印出来,还可以数据文件的形式存储在硬盘上以备日后的查询或进一步分析。 检测数据的显示视测量参数的不同由多种形式可供选择。单参数数据以直方图的形式表达,其X轴为测量强度,Y轴为细胞数目。一般来说,流式细胞仪坐标轴的分辨率有512或1024通道数,这视其模数转换器的分辨率而定。对于双

BD FACSCalibur流式细胞仪操作手册

B D F A C S C a l i b u r流式细胞仪 FACS101Handbook 本课程介绍「表面抗原流式分析」有关之基础工作原理。如希望进一步了解流式细胞技术应用,请至本公司网站订阅FACSinformation电子报。 如需要本课程手册,欢迎至本公司网站下载。 如需要免疫荧光染色方法,请至本公司网站下载。 一、BDFACSCalibur基本结构 1.1仪器本体: 1.电源开关:在BDFACSCalibur仪器右侧下方,先启动仪器本体,再打开计算机。 2.光学系统:BDFACSCalibur基本配有一支波长488nm的氩离子雷射 以BDFACSCalibur基本型为例 ?FSCDiode只收488nm波长散射光 ?SSCPMT只收488nm波长散射光 ?FL1PMT荧光光谱峰值落在绿色范围(波长515-545nm) ?FL2PMT荧光光谱峰值落在橙红色范围(波长564-606nm) ?FL3PMT荧光光谱峰值落在深红色范围(波长>650nm) 3.仪器面板: 仪器前方面板的右下方有三个流速控制键、及三个功能控制键。 流速控制: LO:样品流速:12?l/min MED:样品流速:35?l/min HI:样品流速:60?l/min

功能控制: ?RUN:此时上样管加压,使细胞悬液从进样针进入流动室。(正常显示绿色;黄色时表示仪器不正常,请检查是否失压。) ?STANDBY:无样品或暖机时之正常位置,此时鞘液停止流动,雷射功率自动降低。 ?PRIME:去除流动室中的气泡,流动室施以反向压力,将液流从流动室冲入样品管,持续一定时间后,以鞘液回注满流动室。PRIME结束,仪器恢 复STANDBY状态。 4.储液箱抽屉: 在主机左下方之储液箱抽屉。可向前拉开,内含鞘流液筒、废液筒、鞘液过滤器SheathFilter,及空气滤网Airfilter。请注意气路减压阀VENTTOGGLE之位置。 ?鞘液筒:位于抽屉左侧,容积4升。装八分满鞘液筒,仪器可以运行大约3小时。筒上装有液面感应器,鞘液用完时,仪器软件上会有显示。鞘液筒盖 上有金属环扣,保证鞘液筒密闭。 ?废液筒:位于抽屉右侧,容积4升。筒上装有液面感应器,废液盛满时,仪器软件上会有显示。注意废液可能有潜在的生物传染性。 ?鞘液过滤器:0.22?m过滤器,去除鞘液中的杂质,保证进入流动室的鞘液是干净的。 ?气路减压阀:沿箭头方向移动阀门开关,鞘液筒减压,气压恢复正常。在鞘液筒添加鞘液时,需要减压。 ?空气过滤网:用于过滤冷却雷射的空气。 5.上样品区: 上样品区是样本管的上样位置。它包括三个部分,一个是进样针 SampleInjectionTube,将样本输入流动室,还有就是支撑架 TubeSupportArm、和液滴存留系统DropletContainmentSystem。 ?进样针:是一根不锈钢管,将细胞从样本针中吸入流动室。进样管外有一套管,是液滴保留系统的一部分。 ?支撑架:用于支撑样本管、并负责启动液滴存留系统。支撑架有三个位置:位于样本管之下的中位,样本管左侧或右侧。 液滴存留系统:系统由支撑架、真空帮浦和外套管组 成。当支撑架位于左侧或右侧位置时,真空帮浦就会启 动,将液体从外管吸入废液筒内。上样时,须注意将支 撑架位于中位,以避免过多样品被抽吸到废液筒内(当 支撑架位于中位,真空帮浦停止工作)。更换样品时, 让仪器保持RUN的模式,使得进样针可以反冲;切换到 STANDBY模式前,确保液路已冲洗彻底以免碎片沈积到 流动室中。

性控冻精使用技术手册

第一部分性控技术和性控冻精的概况 一、性控技术的概念和在畜牧业生产中的重要意义 性别控制:通过人为的干预使雌性动物繁殖出人们所期望的性别后代的一种繁殖新技术。奶牛XY精子分离技术是指将公牛的精液根据精子自身X染色体和Y染色体的DNA含量不同,把这两种类型的精子通过物理方法、计算机技术等进行有效的分离,将X精子分装冷冻后,用于牛的人工授精,使母牛怀孕的技术,母牛率可以达到90%以上;根据精子自身X、Y染色体中DNA含量的不同而有效分离的冻精就叫性控冻精。从经济效益来讲,该技术的应用将直接为奶农带来更多的获得良种母牛机会,增加了奶农的收入。 其重要意义在于: 1、产母犊效益提高良种母犊出生数量,使良种奶牛的繁育数量呈几何速度增长,加速牛群改良和更新,迅速达到良种化规模养殖,增加规模效益。 2、充分利用现有优质种公牛和高产奶牛的遗传潜力母牛一生能产6~7胎,平均可以留下3头母牛,采用性控冻精使高产奶牛一生可以产6~7头优质母牛。 3、提高生产性能加速低产奶牛的改良步伐,迅速扩大良种奶牛群,产奶性能得到快速提升,产奶效益不断增加。 以上三点都说明在使用性控冻精后可以显著的提高奶牛养殖的经济效益,同时与胚胎工程技术的结合可以使奶牛的品种改良一步到位。 二、性控冻精在我国应用的重要性和在国内的应用及效果 由于我国奶牛的品种质量较差,平均单产达不到 3500公斤/头,远低于世界平均单产5500公斤/头的水平,更达不到以色列、美国等奶业发达国家奶牛单产的一半。因此从我国实际情况分析,全国各地对良种牛的需求量非常大。奶牛是单胎动物,自然状态下,一头母牛一年只能繁殖一胎,终生平均也只能提供3头左右的母牛后代。由于奶牛自然繁殖率低,繁殖速度慢,年增长速度仅为15%,使得国内现有高产、良种奶牛扩繁速度受到很大限制;若从国外大批引进良种奶牛不但成本高,而且受到国外牛源和国家检疫的限制;因此,高产纯种奶牛的缺乏成为目前我国奶业快速发展的主要瓶颈。奶牛XY精子分离技术是目前最先进、最经济的良种繁育技术,X精子分离纯度已达到90%以上,分离后受胎率和常规冻精相当;这样意味着如果得到一头良种母牛犊,采用传统的冻精配种,则需要4剂精液,花费二年的时间;而采用性控冻精,只需要2剂,花费一年的时间。XY精子分离技术不论从繁育的成本还是从良种扩繁速度上考虑,都是畜牧业良种繁殖改良技术上的一场革命。 该产品已经在全国22个省市进行了广泛的推广和使用,以可信的质量和受胎率、母牛率在同类产品中最好(下表为部分抽样统计结果)得到了各级政府部门和养殖户(场)的称赞和认可。

最详细的流式细胞仪实验方法

流式细胞仪实验方法 一、实验准备 1.标本制备: 2.最小化非特异性结合: 二、凋亡 1.凋亡的检测方法:网站和其它 2.PI染色法 3.Annexin V 法 4.TUNNEL法 三、细胞因子 1.激活的细胞因子 2.CBA 四、血小板 1.活化 2.活化检测 3.网织血小板 五、红细胞 1.网织红细胞 2.PNH 3.胎儿红细胞 六、肿瘤学 1.DNA 细胞周期 2.蛋白 3.多药耐药 4.微小残留白血病

第一部分标本处理 一、流式细胞术常规检测时的样品制备 (一)直接免疫荧光标记法 取一定量细胞(约1X106细胞/ml),在每一管中分别加入50μl的HAB,并充分混匀,于室温中静置1分钟以上(),再直接加入连接有荧光素的抗体进行免疫标记反应(如做双标或多标染色,可把几种标记有不同荧光素的抗体同时加入),。孵育20-60分钟后,用PBS(pH7.2—7.4)洗1-2次,加入缓冲液重悬,上机检测。本方法操作简便,结果准确,易于分析,适用于同一细胞群多参数同时测定。虽然直标抗体试剂成本较高,但减少了间接标记法中较强的非特异荧光的干扰,因此更适用于临床标本的检测。 (二)间接免疫荧光标记法 取一定量的细胞悬液(约1X106细胞/ml),先加入特异的第一抗体,待反应完全后洗去未结合抗体,再加入荧光标记的第二抗体,生成抗原—抗体—抗抗体复合物,以FCM检测其上标记的荧光素被激发后发出的荧光。本方法费用较低,二抗应用广泛,多用于科研标本的检测。但由于二抗一般为多克隆抗体,特异性较差,非特异性荧光背景较强,易影响实验结果。所以标本制备时应加入阴性或阳性对照。另外,由于间标法步骤较多,增加了细胞的丢失,不适用测定细胞数较少的标本。 二、最小化非特异性结合的方法 1.荧光标记的抗体的浓度应该合适,如果浓度过高,背景会因为非特异性的相互作用的增加而增加。 2.在使用第一抗体之前,将样品与过量的蛋白一起培育,如小牛血清蛋白(BSA),脱脂干奶酪,或来自于同一寄主的正常血清来作为标记的第二抗体。这个步骤通过阻断第一抗体和细胞表面或胞内结构的非特异性的交互作用来降低背景。 3.在使用第一抗体之后,将样品与5%至10%的来自于同一寄主的正常血清和作为标记的第二抗体一起培育。这个步骤会减少不必要的第二抗体与第一抗体、细胞表面或胞内结构之间的交互作用。 通过用来自于同样的样品的血清稀释标记过的抗体可以略过此步骤。此步骤适用于很多方面,但有时候它也会导致已标记的第二抗体和正常血清中的免疫球蛋白的免疫复合体的形成。这种复合体会优先与一些细胞结构进行结合,或者它们最终会导致期望得到的抗体活性的丢失。 4.使用F(ab’)2片段会使背景决定于第一或第二抗体与FC受体的全分子结合。大多数的第二抗体的F(ab’)2片段容易利用。而第一抗体的F(ab’)2片段一般是不能利用或很难制作。因此,在NaN3存在的条件下,将新鲜组织或

流式细胞仪的简要介绍与注意事项

流式细胞仪的简要介绍与注意事项(流式细胞仪,注意事项) 2014-07-07 00:26:14来源:https://www.wendangku.net/doc/7a6218780.html,评论:0我要评论 [流式细胞仪的简要介绍与注意事项(流式细胞仪,注意事项)] 一、流式细胞仪的检测范围1.流式细胞仪可以检测细胞结构,包括:细胞大小、细胞粒度、细胞表面面积、核浆比例、DNA含量与细胞周期、R NA 含量、蛋白质含量。2.流式细胞仪可以检测细胞功能,包括:细胞表面/ 胞浆/ 核的特异性抗原、细胞活性、细胞内细胞因子、酶活性、激素结合位点和细胞受体。[关键词:流式细胞仪注意事项]… ??一、流式细胞仪的检测范围 1.流式细胞仪可以检测细胞结构,包括:细胞大小、细胞粒度、细胞表面面积、核浆比例、DNA含量与细胞周期、R NA 含量、蛋白质含量。 2.流式细胞仪可以检测细胞功能,包括:细胞表面/ 胞浆/ 核的特异性抗原、细胞活性、细胞内细胞因子、酶活性、激素结合位点和细胞受体。 二、流式细胞仪的临床应用 1.流式细胞术在肿瘤学中的应用:流式细胞术可以检测肿瘤细胞增殖周期、检测肿瘤细胞表面标记、癌基因表达产物、进行多药耐药性分析、检测凋亡; 2.流式细胞术在血液学中的应用:检测白血病和淋巴瘤细胞、活化血小板、造血干细胞(CD34+)计数、白血病与淋巴瘤的免疫分型、网织红细胞计数、细胞移植的交叉配型和免疫状态监测; 3.流式细胞术在免疫学中的应用:可以进行淋巴细胞及其亚群分析、淋巴细胞免疫分型、检测细胞因子。 三、流式细胞仪的科研应用 主要有细胞动力学功能研究、环境微生物分析、流式细胞术与分子生物学研究。 四、流式细胞术常规检测时的样品制备 (一) 直接免疫荧光标记法 取一定量细胞(约1×106细胞/ml),直接加入连接有荧光素的抗体进行免疫标记反应(如做双标或多标染色,可把几种标记有不同荧光素的抗体同时加入),孵育20~60分钟后,用PBS(pH7.2 ~7.4)洗1~2次,加入缓冲液重悬,上机检测。本方法操作简便,结果准确,易于分析,适用于同一细胞群多参数同时测定。虽然直标抗体试剂成本较高,但减少了间接标记法中较强的非特异荧光的干扰,因此更适用于临床标本的检测。 (二) 间接免疫荧光标记法 取一定量的细胞悬液(约1X106细胞/ml),先加入特异的第一抗体,待反应完全后洗去未结合抗体,再加入荧光标记的第二抗体,生成抗原-抗体-抗抗体复合物,以FCM检测其上标记的荧光素被激发后发出的荧光。本方法费用较低,二抗应用广泛,多用于科研标本的检测。但由于二抗一般为多克隆抗体,特异性较差,非特异性荧光背景较强,易影响实验结果。所以标本制备时应加入阴性或阳性对照。另外,由于间标法步骤较多,增加了细胞的丢失,不适用测定细胞数较少的标本。 五、质量控制和注意事项 流式细胞仪并非是完全自动化的仪器,准确的实验结果还需要准确的人工技术配合,所以标本制备需要规范,仪器本身亦需要质量控制。

流式细胞仪使用方法

流式细胞仪的使用方法及相关资料 仪器名称:流式细胞仪 生产厂家:美国贝克曼库尔特有限公司 使用方法: 一.开机程序 1.检查稳压器电源,打开电源,稳定5分钟。 2.打开储液箱,倒掉废液, 并在废液桶中加入400ml漂白水原液。打开压力阀,取出鞘液桶,将鞘液桶加至4/5满(一般可用三蒸水,做分选必须用PBS或FACSFlow),合上压力阀。确实盖紧桶盖,检查所有管路是否妥善安置。 3.将FACSCalibur开关打开,此时仪器功能控制钮的显示应是STANDBY,预热5-10分钟。排出过滤器内的气泡。 4.如果需要打印,打开打印机电源。 5.打开电脑,等待屏幕显示出标准的苹果标志。 6.执行仪器PRIME功能一次,以排除Flow cell中的气泡。 7.分析样品时,先用FACAFlow 或PBS进行HIGH RUN约2分钟。 做过分选后,每次开机后需冲洗管道:向分选装置上装上两个50ml离心管,不接通浓缩系统,摁下右下角白色按钮开始冲洗。待自动停止后接通浓缩装置,同上法冲洗一次。 二.预设获取模式文件(Acquisition Template Files) 1.从苹果标志中选择CELLQuest见一个新视窗,可利用此视窗编辑一个获取模式文件。 2.选取屏幕左列绘图工具中的Dot plot,绘出一个或多个Dot Plots(点图)。从Dot Plot对话框中选取Acquisition作为图形资料来源,并确定适当的x轴和y轴参数。 3.选取屏幕左列绘图工具中的Histogram,同上法可绘出Histogram(直方图)。4.将此视窗命名后储存于FACStation G3\BD Applications \CELLQuest Folder \EXP文件夹中,下次进行相同实验时可直接调用。 本计算机中已设定两个模式文件:ACQ和EXP,储存于FACStation G3\BD Applications \CELLQuest \EXP文件夹中,ACQ用于细胞DNA检测,EXP用于细胞表面标志分析。 三.用CELLQuest进行仪器的设定和调整 1.从苹果画面中选取CELLQuest,进入CELLQuest后在File指令栏中打开合适的获取模式文件。 2.从屏幕上方Acquire指令栏中,选取Connect to Cytometer(快捷键:+B)进行电脑和仪器的连机。将出现的Acquisiton Control对话框移至合适位置。3.从Cytometer指令栏中,开启Detectors/Amps、Threshold、Compensation、Status 等四个对话框,并将它们移至屏幕右方,以便获取数据时随时调整获取条件。也可以用+1,2,3,4获得此四个对话框。 4.在Detectors/Amps对话框中,先为每个参数选择适当的倍增模式(amplifier mode):线性模式Lin或对数模式Log。一般进行细胞表面抗原分析如分析外周

8. Attune NxT流式细胞仪标准操作规程

Attune NxT流式细胞仪标准操作规程 一、启动Attune NxT流式细胞仪 1、依次打开电脑主机电源、显示器及仪器电源。电脑用户名为INSTR-ADMIN, 密码为INSTR-ADMIN(全部大写)。 2、双击Attune软件图标,用户名为admin,密码为password1(全部小写)。 3、检查仪器内四个液体容器,清空“waste”桶中的废液,确认“Focusing fluid”、 “Wash solution”和“Shutdown solution”三个桶中的液体量是否满足实验要求(液面较高)。 4、点击startup,等待机器启动,整个过程大约需要3分钟。仪器指示灯显示为 绿色,软件左下角出现绿色对勾即为启动完成。 5、点击performance test,在2mL鞘液中滴入3滴performance tracking beads, 混匀后上机,点击Run Performance test。Performance test每天运行1次。这个过程大约耗时3分钟。 二、检测样品 1、点击new experiment新建一个实验,选择tube或plate实验,输入实验名称, 采用默认的Workspace和仪器设置参数,输入Tube Groups和Tube Samples 的数量,点击OK。 2、双击软件右侧Experiment下的Compensation,在弹出的对话框中选择相应的 荧光通道,点击OK。 3、双击UC后上样,点击Run,并调节电压,电压调好后点击Record,依次将 每个单染色的样本上样,并点击Record记录其荧光信号。 4、荧光补偿调好之后双击sample,上样后点击Run即可得到样本的荧光信号。 根据需要建立散点图并建门。 三、关闭Attune NxT流式细胞仪 1、确认”wash solution”和”shutdown solution”桶中液面高度至少在桶高的一半以 上,清空“waste”桶。 2、点击shutdown,选择Quick、Standard或Full,样品管内加入3ml 10% bleach 液,点击next启动关机程序,此时请勿关闭软件或者终止shutdown过程,关

流式细胞仪分析技术及应用题库1-2-10

流式细胞仪分析技术及应用题库1-2-10

问题: [单选,A2型题,A1A2型题]关于液流系统的鞘液,下述哪项是不正确的(). A.鞘液是辅助样本作正常检测的基质液 B.鞘液是用来与样本作对比的 C.鞘液是包裹在样本流周围 D.使样本保持处于喷嘴中心位置,保证检测精确性 E.防止样本流细胞靠近喷孔而形成堵塞 鞘液是辅助样本作正常检测的基质液,其主要作用是包裹在样本流周围,使样本保持处于喷嘴中心位置,保证检测精确,同时又防止样本流细胞靠近喷孔而形成堵塞。

问题: [单选,A2型题,A1A2型题]分选速度与细胞悬液中分选细胞的下述哪项直接相关(). A.细胞含量 B.细胞性质 C.细胞大小 D.有否胞膜 E.单核或多核 分选速度与细胞悬液中分选细胞的细胞含量直接相关。一般分析速度为5000~10000;分选速度掌握在1000以下。

问题: [单选,A4型题,A3A4型题]流式细胞术是一种对单细胞或其他生物粒子膜表面以及内部的化学成分,进行定量分析和分选的检测技术,它可以高速分析上万个细胞,并能从一个细胞中测得多个参数,是目前最先进的细胞定量分析技术。流式细胞仪的主要组成不包括(). A.A.液流系统 B.光路系统 C.抗原抗体系统 D.信号测量 E.细胞分选 (天津11选5 https://www.wendangku.net/doc/7a6218780.html,)

问题: [单选,A4型题,A3A4型题]流式细胞术是一种对单细胞或其他生物粒子膜表面以及内部的化学成分,进行定量分析和分选的检测技术,它可以高速分析上万个细胞,并能从一个细胞中测得多个参数,是目前最先进的细胞定量分析技术。流式细胞仪的技术特点不包括(). A.A.采用鞘流原理 B.以激光作激发光源 C.使用散射光检测 D.检测荧光信号 E.采用电阻抗及化学染色原理

双激光流式细胞仪参数

双激光流式细胞仪参数 一、设备名称、技术参数及功能要求: 1.设备名称 分析型流式细胞仪 2.设备数量:1套 整套设备应包括:液流系统、光学系统、电子系统、数据采集系统,电脑工作站以及分析软件。 3.设备功能 能够进行细胞周期、细胞凋亡、细胞浓度、细胞绝对计数、免疫分型、药物筛选、抗体测定、细胞活性鉴定等细胞全方位分析。 4.工作条件 4.1 电源:220V, 50Hz交流电 4.2 环境温度:5- 50℃ 4.3 相对湿度:30 % -90 % 4.4 运行:可连续运行。 5.主要技术和性能规格要求 5.1技术指标 5.1.1激光光源:双激光,488nm蓝色固态激光器,640nm红色固 态激光器,同时根据用户需要可以定制375nm、405nm、561nm、730nm 激光器。 5.1.3液流系统:采用流体动力学聚焦技术。

5.1.4液流动力系统:微处理器精确控制的双蠕动泵驱动系统 5.1.5荧光检测通道:FL1:533/30nm;FL2:585/40nm;FL3:>670nm;FL4:675/25nm 5.1.6荧光检测系统,光路稳定,即使搬运也无需调整光路 *5.1.7数据数字采集:不用调电压即可实现一个图上6个数量级的数据动态范围同时显示。信号处理系统:24-bit,并且具有1600万道的数值化数据解析度。 5.1.8样本分析速度:≥10,000事件/秒。 *5.1.9流动室直径:≥200um 5.1.10荧光分辨率:<3% CV 5.1.11荧光线性:2±0.05% (CEN) *5.1.12检测器必须为光电倍增管(PMT) 5.1.13散射光分辨率:可成功分辩人外周血中的粒、单、淋细胞5.1.14单个样本事件收集数:≥100万事件/孔。 *5.1.15细胞流速调节模式,共4种速度模式:低速(14μl/min);中速(35μl/min);快速(66μl/min);用户自定义,样品流速设定:10-100μl/min,可在此范围内自由选择。 5.1.16推荐鞘液:经0.2um过滤器过滤的纯水,无需专门鞘液。 5.1.17光路调校:固定免调校光路设计。 5.1.18管路自动清洗功能:具有,维护方便。 5.1.19试剂与耗材:完全开放,使用通用试剂和耗材,可以使用各种类型的管子,至少能用12x75mm、5ml、2ml、1.5ml、0.5m和PCR

自己总结:流式细胞仪的原理和用途

流式细胞仪(Flow Cytometry) 1 流式细胞仪的概念及其发展历史 1.1 流式细胞仪的基本概念流式细胞仪(flow cytonletry,FCM)是对高速直线流动的细胞或生物微粒进行快速定量测定和分析的仪器,主要包括样品的液流技术、细胞的计数和分选技术,计算机对数据的采集和分析技术等。流式细胞仪以流式细胞术为理论基础,是流体力学、激光技术、电子工程学、分子免疫学、细胞荧光化学和计算机等学科知识综合运用的结晶。流式细胞术是一种自动分析和分选细胞或亚细胞的技术。其特点是:测量速度快、被测群体大、可进行多参数测量,即对同一个细胞做有关物理、生物化学特性的多参数测量,且在统计学上有效。 1.2 流式细胞仪的发展简史最早的流式细胞仪雏形诞生于1934年,Moldavan提出使悬浮的单个血红细胞流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置测量的设想。1953年Crosland-Taylor根据牛顿流体在圆形管中流动规律设计了流动室。其后又经过Coulter、Parker & Horst、Kamentsky、Gohde、Fulwyler、Herzenberg等人的不断改进,设计了光电检测设备和细胞分选装置、完成了计算机与流式细胞仪的物理连接及多参数数据的记录和分析、开创了细胞的免疫荧光染色及检测技术、推广流式细胞仪在临床上的应用。近20年来,随着流式细胞仪及其检测技术的日臻完善,人们越来越致力于样品制备、细胞标记、软件开发等方面的工作,以扩大FCM的应用领域和使用效果。 宋平根的《流式细胞术的原理和应用》是迄今为止对流式细胞仪及其技术阐述的最为详尽和透彻的中文著作。这本书非常详细地介绍了流式细胞术的历史、结构、原理、技术指标等,例举了其在医学和生物工程中的应用,非常适合从事此方面专业研究的人。由于这本书是13年前出版的,所以基本上没有涉及植物流式细胞仪检测技术。此外对于只需要对流式细胞仪有些基本认识的人士来说,这本书太复杂太深奥。谢小梅主要介绍了流式细胞仪在生物工程中的应用。杨蕊概括了流式细胞仪的工作原理,简单提及了流式细胞仪的应用。本文在分析这三篇论著或文章的优缺点后,用比较通俗的语言介绍了掌握流式细胞仪检测技术必须了解的一些原理,并对目前市场上的主流型号进行了客观的性能概括。 2 流式细胞仪的工作原理和技术指标 2.1 流式细胞仪工作原理除电源外,流式细胞仪主要由四部分组成:流动室和液流系统:激光源和光学系统;光电管和检测系统;计算机和分析系统,其中流动室是仪器的核心部件。这四大部件共同完成了信号的产生、转换和传输的任务。 流动室和液流系统

BD_FACSCalibur流式细胞仪操作手册

BD FACSCalibur流式细胞仪 一、BD FACSCalibur基本结构 1.1仪器本体: 1. 电源开关:在BD FACSCalibur仪器右侧下方,先启动仪器本体,再打开计算机。 2. 光学系统:BD FACSCalibur 基本配有一支波长488 nm 的氩离子雷射 以BD FACSCalibur 基本型为例 FSC Diode 只收488 nm波长散射光 SSC PMT 只收488 nm波长散射光 FL1 PMT 荧光光谱峰值落在绿色范围(波长515-545 nm) FL2 PMT 荧光光谱峰值落在橙红色范围(波长564-606 nm) FL3 PMT 荧光光谱峰值落在深红色范围(波长 >650 nm)

3. 仪器面板: 仪器前方面板的右下方有三个流速控制键、及三个功能控制键。 流速控制: LO:样品流速:12 μl /min MED:样品流速:35 μl /min HI: 样品流速:60 μl /min 功能控制: ?RUN:此时上样管加压,使细胞悬液从进样针进入流动室。(正常显示绿色;黄色时表示仪器不正常,请检查是否失压。) ?STANDBY:无样品或暖机时之正常位置,此时鞘液停止流动,雷射功率自动降低。 ?PRIME:去除流动室中的气泡,流动室施以反向压力,将液流从流动室冲入样品管,持续一定时间后,以鞘液回注满流动室。PRIME 结束,仪器 恢复STANDBY状态。 4. 储液箱抽屉: 在主机左下方之储液箱抽屉。可向前拉开,内含鞘流液筒、废液筒、鞘液过滤器Sheath Filter,及空气滤网 Air filter。请注意气路减压阀VENT TOGGLE之位置。

流式细胞仪上机培训手册

流式细胞仪上机操作培训手册 一、样本处理 以PBMC表面抗原的流式检测步骤为例 1)取样。取新鲜提取或冻存后复苏的PBMC; 2)编号。根据实验设计,标记好流式管,如每份PBMC设两管: a)1号管:相应同型对照; b)2号管:CD3,CD4,CD8,CD56四标管; 3)加样。用移液器取100ul细胞/管(约1×106个细胞/管),分别加到已经标记 好的流式管底部; 4)洗涤。加入1ml PBS/管,涡旋1600rpm/min,离心6min; 5)染色。弃上清,加入100 μl PBS/管涡旋混匀细胞,并根据实验设计,向各流 式管中加入相应的荧光素标记抗体,混匀,室温避光孵育30min(操作尽量保持在避光条件下进行。) 6)洗涤。加入1ml PBS/管,涡旋1600rpm/min,离心6min; 7)重悬。弃上清,加入0.5ml PBS/管,混匀,上机检测(可选择BD FACSCanto II或BD Accuri C6)。 (注:若不能及时上机,应加入4%多聚甲醛固定,并于4℃避光保存。)8)试验结果分析。(注:实验过程中如果进行多色标记,需要调节荧光补偿)。参考值:

二、上机检测 BD FACSCanto II简要操作流程启动流式细胞仪 1 打开流式细胞仪电源 2 启动计算机,打开软件登录 3 确保软件连接到流式细胞仪 必要时,点击Cytometer > connect 检查液体水平 1 启动流式细胞仪后,检查液体水平 低液面水平或者废液桶满都用红色指示。

2 如果液流车未自动开启,选择Cytometer > Fluidics Startup。 3 当液流启动完成后,点击OK关闭对话框。 检查气泡 1 在检查完液体水平后,开启流动室门,检查流动室中是否有气泡。 2 如果没有看到气泡,进行第5步。如果看到气泡,点击Cytometer > Cleaning

相关文档
相关文档 最新文档