文档库 最新最全的文档下载
当前位置:文档库 › 铝合金熔铸工艺及常见的缺陷

铝合金熔铸工艺及常见的缺陷

铝合金熔铸工艺及常见的缺陷
铝合金熔铸工艺及常见的缺陷

铝合金熔铸工艺及常见的缺陷

一、铸造概论

在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下:

由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。

1、铝合金铸造工艺性能

铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。

(1) 流动性

流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。

影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。

实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。

(2) 收缩性

收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。

①体收缩

体收缩包括液体收缩与凝固收缩。

铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在

铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。

缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。

②线收缩

线收缩大小将直接影响铸件的质量。线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大。

对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同。应根据具体情况而定。

(3) 热裂性

铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽。裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面。

不同铝合金铸件产生裂纹的倾向也不同,这是因为铸铝合金凝固过程中开始形成完整的结晶框架的温度与凝固温度之差越大,合金收缩率就越大,产生热裂纹倾向也越大,即使同一种合金也因铸型的阻力、铸件的结构、浇注工艺等因素产生热裂纹倾向也不同。生产中常采用退让性铸型,或改进铸铝合金的浇注系统等措施,使铝铸件避免产生裂纹。通常采用热裂环法检测铝铸件热裂纹。

(4) 气密性

铸铝合金气密性是指腔体型铝铸件在高压气体或液体的作用下不渗漏程度,气密性实际上表征了铸件内部组织致密与纯净的程度。

铸铝合金的气密性与合金的性质有关,合金凝固范围越小,产生疏松倾向也越小,同时产生析出性气孔越小,则合金的气密性就越高。同一种铸铝合金的气密性好坏,还与铸造工艺有关,如降低铸铝合金浇注温度、放置冷铁以加快冷却速度以及在压力下凝固结晶等,均可使铝铸件的气密性提高。也可用浸渗法堵塞泄露空隙来提高铸件的气密性。

(5) 铸造应力

铸造应力包括热应力、相变应力及收缩应力三种。各种应力产生的原因不尽相同。

①热应力

热应力是由于铸件不同的几何形状相交处断面厚薄不均,冷却不一致引起的。在薄壁处形成压应力,导致在铸件中残留应力。

②相变应力

相变应力是由于某些铸铝合金在凝固后冷却过程中产生相变,随之带来体积尺寸变化。主要是铝铸件壁厚不均,不同部位在不同时间内发生相变所致。

③收缩应力

铝铸件收缩时受到铸型、型芯的阻碍而产生拉应力所致。这种应力是暂时的,铝铸件开箱是会自动消失。但开箱时间不当,则常常会造成热裂纹,特别是金属型浇注的铝合金往往在这种应力作用下容易产生热裂纹。

铸铝合金件中的残留应力降低了合金的力学性能,影响铸件的加工精度。铝铸件中的残留应力可通过退火处理消除。合金因导热性好,冷却过程中无相变,只要铸件结构设计合理,铝铸件的残留应力一般较小。

(6) 吸气性

铝合金易吸收气体,是铸造铝合金的主要特性。液态铝及铝合金的组分与炉料、有机物燃烧产物及铸型等所含水分发生反应而产生的氢气被铝液体吸收所致。

铝合金熔液温度越高,吸收的氢也越多;在700℃时,每100g铝中氢的溶解度为0.5~0.9,温度升高到850℃时,氢的溶解度增加2~3倍。当含碱金属杂质时,氢在铝液中的溶解度显著增加。

铸铝合金除熔炼时吸气外,在浇入铸型时也会产生吸气,进入铸型内的液态金属随温度下降,气体的溶解度下降,析出多余的气体,有一部分逸不出的气体留在铸件内形成气孔,这就是通常称的“针孔”。气体有时会与缩孔结合在一起,铝液中析出的气体留在缩孔内。若气泡受热产生的压力很大,则气孔表面光滑,孔的周围有一圈光亮层;若气泡产生的压力小,则孔内表面多皱纹,看上去如“苍蝇脚”,仔细观察又具有缩孔的特征。

铸铝合金液中含氢量越高,铸件中产生的针孔也越多。铝铸件中针孔不仅降低了铸件的气密性、耐蚀性,还降低了合金的力学性能。要获得无气孔或少气孔的铝铸件,关键在于熔炼条件。若熔炼时添加覆盖剂保护,合金的吸气量大为减少。对铝熔液作精炼处理,可有效控制铝液中的含氢量。

三、金属型铸造

1、简介及工艺流程

金属型铸造又称硬模铸造或永久型铸造,是将熔炼好的铝合金浇入金属型中获得铸件的

方法,铝合金金属型铸造大多采用金属型芯,也可采用砂芯或壳芯等方法,与压力铸造相比,铝合金金属型使用寿命长。

2、铸造优点

(1) 优点

金属型冷却速度较快,铸件组织较致密,可进行热处理强化,力学性能比砂型铸造高15%左右。

金属型铸造,铸件质量稳定,表面粗糙度优于砂型铸造,废品率低。

劳动条件好,生产率高,工人易于掌握。

(2) 缺点

金属型导热系数大,充型能力差。

金属型本身无透气性。必须采取相应措施才能有效排气。

金属型无退让性,易在凝固时产生裂纹和变形。

3、金属型铸件常见缺陷及预防

(1) 针孔

预防产生针孔的措施:

严禁使用被污染的铸造铝合金材料、沾有有机化合物及被严重氧化腐蚀的材料。

控制熔炼工艺,加强除气精炼。

控制金属型涂料厚度,过厚易产生针孔。

模具温度不宜太高,对铸件厚壁部位采用激冷措施,如镶铜块或浇水等。

采用砂型时严格控制水分,尽量用干芯。

(2) 气孔

预防气孔产生的措施:

修改不合理的浇冒口系统,使液流平稳,避免气体卷入。

模具与型芯应预先预热,后上涂料,结束后必须要烘透方可使用。

设计模具与型芯应考虑足够的排气措施。

(3)氧化夹渣

预防氧化夹渣的措施:

严格控制熔炼工艺,快速熔炼,减少氧化,除渣彻底。Al-Mg合金必须在覆盖剂下熔炼。

熔炉、工具要清洁,不得有氧化物,并应预热,涂料涂后应烘干使用。

设计的浇注系统必须有稳流、缓冲、撇渣能力。

采用倾斜浇注系统,使液流稳定,不产生二次氧化。

选用的涂料粘附力要强,浇注过程中不产生剥落而进入铸件中形成夹渣。

(4) 热裂

预防产生热裂的措施:

实际浇注系统时应避免局部过热,减少内应力。

模具及型芯斜度必须保证在2°以上,浇冒口一经凝固即可抽芯开模,必要时可用砂芯代替金属型芯。

控制涂料厚度,使铸件各部分冷却速度一致。

根据铸件厚薄情况选择适当的模温。

细化合金组织,提高热裂能力。

改进铸件结构,消除尖角及壁厚突变,减少热裂倾向。

(5) 疏松

预防产生疏松的措施:

合理冒口设置,保证其凝固,且有补缩能力。

适当调低金属型模具工作温度。

控制涂层厚度,厚壁处减薄。

调整金属型各部位冷却速度,使铸件厚壁处有较大的激冷能力。

适当降低金属浇注温度。

铝合金窗制作工艺流程

铝合金窗制作工艺技术要求 一、施工准备 铝合金窗施工前的主要工作有:查验复核窗的尺寸、样式和数量——检查铝合金型材的规格及数量——检查铝窗五金附件的规格及数量。(一〕查验复核宙的尺寸及样式 在装饰工程中,一般都采用现场进行铝窗制作及安装。查验铝窗尺寸及样式的工作,即是根据施工现场对照施工图,检查一下有否不相符合之处,有否安装问题,有否及电器、水卫、消防等设备相互妨碍的问题等。如发现问题要及时上报,及有关人员共同商讨解决方法。(二)检查铝合金型材的规格尺寸 目前,生产铝合金型材的厂家较多,虽然都是同一系列的铝合金型材,但其形状尺寸和壁厚尺寸也会出现不同程度上的误差,这些误差会在铝窗的制作和使用过程中产生不便甚至麻烦。所以,在制作铝窗前要检查铝型材的尺寸,主要是铝合金型材相互接合的尺寸。 (三)检查五金件及其他附件的规格 铝窗歹金件分推拉窗和平开窗两大类,每类又有若干系列,所以,在制作以前要检查一下五金件及所制作的铝窗是否配套。同时,还要检查一下各种附件是否配套,如各种封边毛条、橡胶边封条和碰口垫等,能否正好及铝型材衔接安装。如果及铝型材不配套,会出现过紧或过松现象。过紧,在铝宙制作时安装困难;过松,安装后会自行脱出。此外,采用各种自攻螺钉要长短适合,螺钉的长度通长为15mm左右。

三、推拉窗的制作及安装 推拉窗有带上窗及不带上窗之分。在用料规格上有55系列、70系列、190系列三种。55系列的铝型材及后两种系列在形状上有较大差别,而70系列及90系列这两种铝型材形状相同,但尺寸大小有明显差别。在这种系列中,90系列是最常用的一种。图2—11是90系列铝窗带上宙的双扇推拉窗装配图。下面以该装配图为例介绍推拉窗的制作方法。 (一)按图下料 下料是铝窗制作的第一道工序,也是最重要最关键的工序。如果下料不准,会造成尺寸误差、组装困难或无法安装。下料错误或下料误差也会造成铝材的浪费。所以,下料尺寸必然准确,其误差值应控制在2mm范围内。 下料时,用铝合金切割机切割型材,切割机的刀口位置应在划线以外,并留出划线痕迹。 1.上窗下料 窗的上窗通常是用25.4mm×902nm的扁方管做成“口”字形。“口”字形的上、下两条扁方管长度为窗框的宽度,“口”字形两边的竖扁方管长度,为上窗高度减去两个扁方管的厚度。 2.窗框下料 窗框的下料是切割两条边封铝型材和上、下滑道铝型材各一条。两条边封的长度等于全窗高减去上宙部分的高度。上、下滑道的长度等于窗框宽度减去两个边封铝型材的厚度。

铝合金压铸件所有缺陷及对策大全

铝合金压铸件所有缺陷及对策大全 一、化学成份不合格 主要合金元素或杂质含量与技术要求不符,在对试样作化学分析或光谱分析时发现。 1、配料计算不正确,元素烧损量考虑太少,配料计算有误等; 2、原材料、回炉料的成分不准确或未作分析就投入使用; 3、配料时称量不准; 4、加料中出现问题,少加或多加及遗漏料等; 5、材料保管混乱,产生混料; 6、熔炼操作未按工艺操作,温度过高或熔炼时间过长,幸免于难烧损严重; 7、化学分析不准确。 对策: 1)、对氧化烧损严重的金属,在配料中应按技术标准的上限或经验烧损值上限配料计算;配料后并经过较核; 2)、检查称重和化学分析、光谱分析是否正确; 3)、定期校准衡器,不准确的禁用; 4)、配料所需原料分开标注存放,按顺序排列使用; 5)、加强原材料保管,标识清晰,存放有序; 6)、合金液禁止过热或熔炼时间过长; 7)、使用前经炉前分析,分析不合格应立即调整成分,补加炉料或冲淡; 8)、熔炼沉渣及二级以上废料经重新精炼后掺加使用,比例不宜过高; 9)、注意废料或使用过程中,有砂粒、石灰、油漆混入。 二、气孔 铸件表面或内部出现的大或小的孔洞,形状比较规则;有分散的和比较集中的两类;在对铸件作X光透视或机械加工后可发现。 1、炉料带水气,使熔炉内水蒸气浓度增加; 2、熔炉大、中修后未烘干或烘干不透; 3、合金液过热,氧化吸气严重; 4、熔炉、浇包工具氧等未烘干; 5、脱模剂中喷涂过重或含发气量大; 6、模具排气能力差; 7、煤、煤气及油中的含水量超标。 对策: 1)、严禁把带有水气的炉料装入炉中,装炉前要在炉边烘干; 2)、炉子、坩埚及工具未烘干禁止使用; 3)、注意铝液过热问题,停机时间要把炉调至保温状态;

废铝熔炼铝锭的工艺操作规范

再生铝熔炼工艺特点? 再生铝是以回收来的废铝零件或生产铝制品过程中的边角料以及废铝线等为主要原材料,经熔炼配制生产出来的符合各类标准要求的铝锭。这种铝锭采用回收废铝,而有较低的生产成本,而且它是自然资源的再利用,具有很强的生命力,特别是在当前科技迅猛发展,人民生活质量不断改善的今天,产品更新换代频率加快,废旧产品的回收及综合利用已成为人类持续发展的重要课题,再生铝生产也就是在这样的形式下应运而生并具有极好的前景。? 由于再生铝的原材料主要是废杂铝料,废杂铝中有废铝铸件(以Al-Si合金为主)、废铝锻件(Al-Mg-Mn、Al-Cu-Mn等合金)、型材(Al-Mn、Al-Mg等合金)废电缆线(以纯铝为主)等各种各样料,有时甚至混杂入一些非铝合金的废零件(如Zn、Pb合金等),这就给再生铝的配制带来了极大的不便。如何把这种多种成分复杂的原材料配制成成分合格的再生铝锭是再生铝生产的核心问题,因此,再生铝生产流程的第一环节就是废杂铝的分选归类工序。分选得越细,归类得越准确,再生铝的化学成分控制就越容易实现。? 废铝零件往往有不少镶嵌件,这些镶嵌件都是些以钢或铜合金为主的非铝件,在熔炼过程中不及时地扒出,就会导致再生铝成分中增加一些不需要的成分(如Fe、Cu等)因此,在再生铝熔炼初期,即废杂铝刚刚熔化时就必须有一道扒镶嵌件的工序(俗称扒铁工序)。把废杂铝零件中的镶嵌件扒出,扒得越及时、 越干净,再生铝的化学成分就越容易控制。扒铁时熔液温度不宜过高,温度的升高会使镶嵌件中的Fe、Cu元素溶入铝液。?

各地收集来的废杂铝料由于各种原因其表面不免有污垢,有些还严重锈蚀,这些污垢和锈蚀表面在熔化时会进入熔池中形成渣相及氧化夹杂,严重损坏再生铝的冶金质量。清除这些渣相及氧化夹杂也是再生铝熔炼工艺中重要的工序之一。采用多级净化,即先进行一次粗净化,调整成分后进行二级稀土精变,再吹惰性气体进一步强化精炼效果,可有效的去除铝熔液中的夹杂。? 废铝料表面的油污及吸附的水分,使铝熔液中含有大量气体,不有效的去除这些气体就使冶金质量大大下降,强化再生铝生产中的除气环节以降低再生铝的含气量是获得高质量再生铝的重要措施。? 再生铝原材料组成? 1、废杂铝来源? 目前我国再生铝厂利用的废杂铝主要来源于两方面,一是从国外进口的废杂铝,二是国内产生的废杂铝。? 进口废杂铝? 最近几年国内大量从国外进口废杂铝。就进口废杂铝的成分而言,除少数分 类清晰外大多数是混杂的。一般可以分为以下几大类:? ①单一品种的废铝? 此类废铝一般都是某一类废零部件,如内燃机的活塞,汽车减速机壳、汽车轮毂、汽车前后保险栓。铝门窗等。这些废铝在进口时已经分类清晰,品种单一,且都是批量进口,因此是优质的再生铝原料。?

铝合金门窗生产工艺流程

铝合金门窗生产工艺流程 作业前的准备:熟悉门窗分格图,查阅门窗工艺单 生产工艺流程 1、平开门、窗工艺流程 框扇断料→框扇铣口→铣锁孔槽→钻五金孔→切玻璃压条→装框、扇密封胶条→装玻璃压条→扇玻组合→装五金配件→检验→包装→入库 2、推拉门、窗工艺流程 框扇断料→框扇铣口→铣排水孔→铣锁孔槽→装毛条→钻五金孔→切玻璃 压条→装密封毛条→装玻璃压条→装滑轮→框、扇组合→检验→包装→入库 一、框料断料 1、量具校核:核对双头锯床标尺与钢卷尺的误差;如果用两台双头锯分别对同一樘 窗的外框型材进行切割,必须对两台双头锯进行校核,直到两台锯床标尺与钢卷尺尺 寸统一为准。 2、断料尺寸的精确度控制:同一批次相同尺寸的断料;第一支料复核两次,确认尺 寸无误后,才能开始断料。并在同一尺寸批量断料中工件尺寸进行抽查,核对断料 是否有误差。 3、针对 45 度组角的外框断料。断第一支料时,应用万能角度尺检查角度误差值不 大于 10um 。 二、框料工艺孔槽铣削 1、平开外框。外框中柱需要铣缺,铣榫。铣缺、铣榫时,先用同型号废铝或者断一 条短料试样,确认中柱铣缺、铣榫后与外框角缝严密咬合。 2、推拉外框。铣推拉框下滑时,先用料头放样,直到下滑料头铣缺与边框完全咬合 后,才能用新料铣缺。下滑滑轮茎条铣缺作为排水孔时,其长度不超过20mm. 两端头长度应一致。1800mm 铣两个排水孔,超过1800mm 铣三个排水孔。铣缺后的上 下滑,应严格配对,避免铣错、铣反。铣孔铣缺时,型材不能有划伤和划痕。 三、扇料工艺孔槽铣削 1、推拉门、窗扇;勾光企铣口,勾光、企上下口应铣方正,左右余量一致。滑轮调 节孔应正确,孔距型材边缘左右应一致。推拉门锁孔高度:扇高2300mm 以内,锁孔位置离地垂直距离950-1150mm; 推拉窗铣锁高度:离地垂直距离1500-1600mm ;相邻门窗的门窗锁孔高度必须一致。 2、平开门、窗;铣平开门锁孔高度:离地面垂直距离950-1150mm; 铣平开窗锁孔高度,离地面垂直距离1500-1600mm; 平开窗锁孔离型材边必须一致,误差不得超过

6063铝合金熔炼生产工艺手册

6063铝合金熔炼生产工艺手册 本文由全球铝业网 (https://www.wendangku.net/doc/7312516974.html,) 编辑,转载请注明出处,十分感谢! 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0.35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和 Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示:在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si 越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在 500℃时为1.05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1.73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。 2.杂质元素的影响

铝型材生产过程

铝合金按所含主要元素成分可分为: 1、工业纯铝1XXX系(1350工业纯铝) 2、AL-Cu合金2XXX系(2024AL-Cu合金) 3、AL-Mn合金3XXX系 4、AL-Si合金4XXX系 5、AL-Mg合金5XXX系 6、AL-Mg-Si合金6XXX系 7、AL-Zn-Mg-Cu合金7XXX系 8、AL-Li合金8XXX系 6063化学主要成分: 硅Si:0.20-0.6%;铁Fe:0.35%;铜Cu:0.10%;锰Mn:0.10%;镁Mg:0.45-0.9%;铬Cr:0.10%;锌Zn:0.10%;钛Ti:0.10%;铝Al:余量 该合金特点:挤压性能好易挤压,中等强度,关键是具有良好的氧化性能,给铝门窗型材一个好的装饰面。 6061合金主要成分: Mg:0.8-1.2%,Si:0.4-0.8%,Fe:0.7%,Cu:0.15-0.4%,Mn:0.15%,Cr:0.04-0.35%,Zn:0.25%,Ti:0.15%,Al:余量。

工业铝型材的简单分类与用途 1、6063,6063A,6463A,6060工业用铝合金型材。除广泛用作建筑门窗和幕墙结构与装饰材料外,还大量用作室内家具、卫生间、散热器、升降梯扶手型材及一般工业用管材和棒材。 2、6061,6068铝合金工业型材。主要用作冷藏箱、集装箱底板、卡车车架部件、船舶上层结构件、轨道车辆结构件、大型货车结构及其他机械用结构件。 3、6106铝合金工业型材。广泛用于各种要求耐腐蚀的管、线材和棒材。 4、6106,6101B铝合金工业型材。专用于生产高强度电母线,各种导电体材料。 5、6005铝合金工业型材。主要用作梯子、电视天线、电视发射架等。 6、6005A铝合金工业型材。用于生产要求强度高、断面复杂的高速列车、地铁列车、轻轨列车、双层列车、豪华大巴等现代交通运输工业的关键材料,用于大型车辆的整体外形结构件、重要受力部件和大型装饰部件。 7、6351T6铝合金工业型材。多用于公路交通设施挤压结构件和要求强度高的输气、输油、输水管道等。 8、其他铝合金工业型材。如2024.7075等高强铝合金型材、棒材,也正在开发,并拟新建立式淬火炉和大型拉矫机等,以适应大批量生产。

铝合金铸造常见缺陷与对策

铝铸件常见缺陷及整改办法 铝铸件常见缺陷及整改办法 1、欠铸(浇不足、轮廓不清、边角残缺): 形成原因: (1)铝液流动性不强,液中含气量高,氧化皮较多。 (2)浇铸系统不良原因。内浇口截面太小。 (3)排气条件不良原因。排气不畅,涂料过多,模温过高导致型腔内气压高使气体不易排出。 防止办法: (1)提高铝液流动性,尤其是精炼和扒渣。适当提高浇温和模温。提高浇铸速度。改进铸件结构,调整厚度余量,设辅助筋通道等。 (2)增大内浇口截面积。 (3)改善排气条件,增设液流槽和排气线,深凹型腔处开设排气塞。使涂料薄而均匀,并待干燥后再合模。 2、裂纹: 特征:毛坯被破坏或断开,形成细长裂缝,呈不规则线状,有穿透和不穿透二种,在外力作用下呈发展趋势。冷、热裂的区别:冷裂缝处金属未被氧化,热裂缝处被氧化。 形成原因: (1)铸件结构欠合理,收缩受阻铸造圆角太小。 (2)顶出装置发生偏斜,受力不匀。

(3)模温过低或过高,严重拉伤而开裂。 (4)合金中有害元素超标,伸长率下降。 防止方法: (1)改进铸件结构,减小壁厚差,增大圆角和圆弧R,设置工艺筋使截面变化平缓。 (2)修正模具。 (3)调整模温到工作温度,去除倒斜度和不平整现象,避免拉裂。 (4)控制好铝涂成份,成其是有害元素成份。 3、冷隔: 特征:液流对接或搭接处有痕迹,其交接边缘圆滑,在外力作用下有继续发展趋势。 形成原因: (1)液流流动性差。 (2)液流分股填充融合不良或流程太长。 (3)填充温充太低或排气不良。 (4)充型压力不足。 防止方法: (1)适当提高铝液温度和模具温度,检查调整合金成份。(2)使充填充分,合理布置溢流槽。 (3)提高浇铸速度,改善排气。 (4)增大充型压力。

铝合金的熔炼、铸锭与固溶处理

铝合金的熔炼、铸锭与固溶处理

————————————————————————————————作者:————————————————————————————————日期: ?

铝合金的熔炼、铸锭与固溶处理 一、实验目的: 掌握铝合金熔炼的基本原理,并应用在熔炼的实践中。熔炼是使金属合金化的一种方法,它是采用加热的方式改变金属物态,使基体金属和合金组元按要求的配比熔制成成分均匀的熔体,并使其满足内部纯洁度、铸造温度和其他特定条件的一种工艺过程。熔体的质量对铝材的加工性能和最终使用性能产生决定性的影响,如果熔体质量先天不足,将给制品的使用带来潜在的危险。因此,熔炼又是对加工制品的质量起支配作用的一道关键工序。而铸造是一种使液态金属冷凝成型的方法,它是将符合铸造的液态金属通过一系列浇注工具浇入到具有一定形状的铸模(结晶器)中,使液态金属在重力场或外力场(如电磁力、离心力、振动惯性力、压力等)的作用下充满铸模型腔,冷却并凝固成具有铸模型腔形状的铸锭或铸件的工艺过程。铝合金的铸锭法有很多,根据铸锭相对铸模(结晶器)的位置和运动特征,可将铝合金的铸锭方法分类如下: 二、实验内容: 铝铜合金熔炼基本工艺流程

三、实验要求 严格控制熔化工艺参数和规程 1. 熔炼温度 ?熔炼温度愈高,合金化程度愈完全,但熔体氧化、吸氢倾向愈大,铸锭形成粗晶组织和裂纹的倾向性愈大。通常,铝合金的熔炼温度都控制在合金液相线温度以上50~100℃的范围内。从图1的Al-Cu相图可知,Al-5%Cu的液相线温度大致为660~670℃,因此,它的熔炼温度应定在710(720)℃~760(770)℃之间。浇注温度为730℃左右。

常规铝及铝合金电镀的工艺流程

常规铝及铝合金电镀的工艺流程 一.前言 铝及铝合金表面电镀各种金属后,可明显提高其表面的物理或化学性能,以铝及铝合金做导体时,在其表面电镀银可提高表面或电接触部位的电导率;为使铝容易焊,在其表面电镀铜,镍或锡;为提高其耐磨性,在其表面电镀厚硌。在装饰性方面,实际上大多是电镀硌。 铝及铝合金表面电镀,很早以前就有尝试并已用于实际生产。但铝及铝合金与镀层之间存在氧化物,铝及铝合金与金属镀层的热膨胀系数不同,镀层有针孔和残存电镀液等因素,造成镀层结合力不良,长时间使用会剥落甚至在镀后立即剥落,在表面处理领域,铝及铝合金的电镀工艺还处于探索阶段,长久以来无实质性突破,至今没有形成完善,成熟的工艺。镀层结合力不牢是铝及铝合金的电镀质量和产品合格率仍是行业瓶颈。 二.传统铝及铝合金电镀 铝及铝合金在电解液中电解可形成镀层,但镀层结合力不牢,易剥离。因此,可先将铝在含有锌氧化合物的水溶液中沉积镀层再进行电镀,这一方法既为锌置换法或沉积法。也可先在铝及铝合金表面处理通过阳极氧化电源得到一层很薄的多孔氧化膜.在进行电镀。 2.1常规铝及铝合金电镀的工艺流程 铝及铝合金电镀工艺流程有镀前处理,电镀,镀后处理3部分组成。镀前处理是关系到电镀产品质量优劣的最关键工序,其主要的是除去铝及铝合金表面的油脂,自然形成氧化膜及其他污物。 常规的一般工艺流程为:脱脂-水洗-减蚀-水洗-酸洗-水洗-活化-水洗-一次浸锌-水洗-退锌-水洗-二次浸锌-水洗-中性镀镍-水洗-后续电镀。 也有采用波的阳极氧化膜取代浸锌工艺后在进行后续电镀。 2.2传统前处理工艺中存在的不足 1.工艺流程长,工序多。 2.工艺复杂,操作范围窄,各工艺参数必须严格控制。 3.工艺适用范围不广,不同牌号的铝合金前处理工艺不能雷同,必须根据铝合金的牌号调整前处理工艺。 4.在严格控制前处理工艺的前提下,电镀产品的合格率很低,普通装饰性电镀的合格率为85%~90%,功能性电镀的合格率为60%~70%。 5.各工序溶液的适用寿命短,处理周期短。 由于铝及铝合金传统前处理同意普遍存在以上不足,因此,必须对其进行改良。 三.改良通用型铝及铝合金电镀前处理工艺 脱脂碱蚀二合一-水洗-酸洗-水洗-去灰-水洗-碱性活化-浸锌-水洗-中性镀镍-水洗-后续电镀。

压铸常见缺陷原因和改善方法

压铸常见缺陷原因及其改善方法 1).冷紋: 原因:熔汤前端的温度太低,相叠时有痕迹. 改善方法: 1.检查壁厚是否太薄(設計或制造) ,较薄的区域应直接充填. 2.检查形狀是否不易充填;距离太远、封閉区域(如鳍片(fin) 、凸起) 、被阻挡区域、圆角太小等均不易充填.並注意是否有肋点或冷点. 3.缩短充填时间.缩短充填时间的方法:… 4.改变充填模式. 5.提高模温的方法:… 6.提高熔汤温度. 7.检查合金成分. 8.加大逃气道可能有用. 9.加真空裝置可能有用. 2).裂痕: 原因:1.收缩应力. 2.頂出或整缘时受力裂开. 改善方式: 1.加大圆角. 2.检查是否有热点. 3.增压时间改变(冷室机). 4.增加或缩短合模时间. 5.增加拔模角. 6.增加頂出銷. 7.检查模具是否有錯位、变形. 8.检查合金成分. 3).气孔: 原因:1.空气夾杂在熔汤中. 2.气体的来源:熔解时、在料管中、在模具中、离型剂. 改善方法: 1.适当的慢速. 2.检查流道转弯是否圆滑,截面积是否渐減. 3.检查逃气道面积是否够大,是否有被阻塞,位置是否位於最后充填的地方.

4.检查离型剂是否噴太多,模温是否太低. 5.使用真空. 4).空蚀: 原因:因压力突然減小,使熔汤中的气体忽然膨胀,冲击模具,造成模具損伤.改善方法: 流道截面积勿急遽变化. 5).缩孔: 原因:当金属由液态凝固为固态时所占的空间变小,若无金属补充便会形成缩孔.通常发生在较慢凝固处. 改善方法: 1.增加压力. 2.改变模具温度.局部冷却、噴离型剂、降低模温、.有时只是改变缩孔位置,而非消缩孔. 6).脫皮: 原因:1.充填模式不良,造成熔汤重叠. 2.模具变形,造成熔汤重叠. 3.夾杂氧化层. 改善方法: 1.提早切換为高速. 2.缩短充填时间. 3.改变充填模式,浇口位置,浇口速度. 4.检查模具強度是否足夠. 5.检查銷模裝置是否良好. 6.检查是否夾杂氧化层. 7).波紋: 原因:第一层熔汤在表面急遽冷却,第二层熔汤流過未能将第一层熔解,却又有足夠的融合,造成組织不同. 改善方法: 1.改善充填模式. 2.缩短充填时间.

铝合金门窗工艺流程和方案

铝合金门窗工艺流程和方案 第一章生产工艺流程 第1节平开门窗工艺流程 锯切主型材→开V型口→铣排水孔→形钢下料→装型钢→焊接→清角→手动铣槽→钻五金孔→切玻璃压条→装密封条→装玻璃压条→装五金配件→检验→包装→入库 第2节推拉门窗工艺流程 锯切型材→铣排水孔→切型钢→装型钢→装毛条→焊接→清角→手动铣槽→钻五金孔→切玻璃压条→装密封条→装玻璃压条→切防风条→防风条钻孔→防风条铣槽→防风条装毛条→装防风条→装缓冲块→装滚轮→框扇组合→装密封桥→装月牙锁→检验→包装→入库 第二章工艺制定、完善 铝合金门窗组装工艺多,每一道工序对产品性能都有影响,根据产品性能要求,我们对每一道工序的工艺条件及对产品性能影响进行对比,不断调整工艺,确定最佳工艺参数,使产品达到标准要求。 工艺的制定。以下是几个主要工序的工艺流程情况。 第1节型材下料 我公司使用的是HYSJ02—3500塑铝型材双角锯。工作气压0.4—0.6MPa,耗气量100L/min,采用无级调速,工作长度450—3500mm,使用此锯下料,尺寸公差控制在±0.5mm以内。 在使用双角锯下料前,首先根据图纸及下料单确定下料尺寸。在批量生产时,应先下一樘,检验合格后,再投入成批生产。生产时应不断抽检构件尺寸,以保证产品批量的合格率。 第2节铣水槽 我公司使用的是HYDX—01塑铝型材多功能铣床。工作气压0.4—0.6MPa,耗气量45L/min,铣刀规格Ф4mm*100mm、Ф4mm*75mm,铣头转速2800转/ min。在铣水槽前一定要清楚漏水孔的数目、位置,弄清之后,先将要铣的型材放在托米架上正确位置,然后开始铣切,另外,在铣水槽时一定要注意水槽位置。在铣平开窗固定窗时,一定要根据窗型是内平开,还是外平开,以及具体的安装方法来确定水槽方向。每班应及时进行屑渣清理和导轴润滑。 第3节开V型口 V型切割锯用于铝合金型材90°V形槽的下料,适用于料宽120 mm,长度1800 mm。我公司使用的是HYVJ—01—65V型锯,工作气压0.4—0.6MPa,耗气量80L/min,切割深度ma*70,锯片规格300*30,锯片转速2800r/ min,进刀速度:无级调速。首先应根据V口深度来调整升降台紧定手柄,再摇动至所需位置,夹紧手柄,同样根据V口位置来确定水平定位尺寸。 第4节焊接 这是一道很重要的工作。我厂使用的是HYSH(2+2)—130—3500型铝合金门窗四角焊机。通过焊接,我们根据型材的特点,了解到影响焊接强度的主要因素是熔接温度,夹紧压力,加热时间,保压时间。焊温过高,影响焊后表面,型材易分解产生有毒气体;过低,易出现虚焊。夹紧力必须达到一定的压力值,使型材断面充分贴合,否则影响焊缝熔结强度。通过反处长试验,我们确定了最佳加热时间,保压时间。保压时间根据前三个因素而定,达到合适的时间即可。不同的工艺条件下,按标准测试其焊角强度,选择

铝合金重力铸造常见的缺陷和防止办法

铝合金重力铸造常见的缺陷和防止办法 一、缩孔:这种缺陷常发生在铸件的肥厚部分,或者厚薄交接处。有时铸件表面发白,实际上就是缩松。 产生的原因:1、结晶过程中铸件补缩不够;2、引入合金液的位置不对;3、金属型各部位的温度不恰当,不符合顺序凝固的原则;4、涂料不当或涂料脱落;5、浇注温度过高;6、浇注速度太快;7、铸件冷却太慢;8、铸件毛边太大。 防止办法:1、在铸件厚大部位设置冒口,冒口的大小、高度要适宜,达到最后凝固,提高冒口的补缩作用;2、沿铸件四周均匀分布内浇道,或从冒口根部开设补充浇道进行补充浇注;3、调整金属型各部分的温度规范,便于铸件顺序凝固;4、按铸件工作部分和浇冒口部位不同要求选用不同的涂料成分及涂料厚度,脱料要均匀补上;5、适当降低浇注温度;6、减慢浇注速度;7、在容易产生缩松的部位,嵌上铜冷铁或通气塞,以加速冷却。 二、冷隔:这种缺陷一般产生在较大的水平表面的薄壁铸件上,以及合金最后汇流处。铸件出型后经过震砂,进行外观检查即可发现。 产生的原因:1、模具温度过低;2、铝液温度过低;3、模具排气不良; 4、浇注系统设计不良,内浇口数量少、截面过小; 5、浇注速度太慢或浇注中断; 6、铸件设计壁厚太薄或缺少适当的圆角。 防止办法:1、适当提高模具温度;2、适当提高铝液浇注温度; 3、气体不易排出的部位上设置通气槽或排气塞,保持排气良好; 4、适当增加内浇口数量和内浇口的截面; 5、适当提高浇注速度,避免铝液浇注中断; 6、按铸件设计工艺性要求设计合理的最小壁厚和铸造圆角。 三、气孔:气孔往往产生在铸件的上部且经常发生在铸件凸出部分的表面。铸件内部隐蔽的气孔,必须通过X光透视,以及在铸件进行加工时发现。 产生的原因:1、浇注速度太快,卷入空气;2、模具排气气不良;3、铝液流动过快;4、熔化温度过高;5、合金除气不良;6、浇注温度过高;7、砂芯不干、排气不良或发气量太大。 防止办法:1、平稳地浇注金属液;2、于金属型气体不易排除的部位增设排气槽或排气塞,并经常清理;3、浇注时浇包尽量靠近浇口杯;4、严格控制铝液温度防止超温; 5、铝液正确地进行除气; 6、泥芯应烘干,排气孔应畅通,泥芯返潮后应补烘,特大的泥芯中间应挖空; 7、金属型涂料后应等涂料干燥后才能浇注。 裂纹:裂纹多数出现在铸件的内夹角处,厚薄断面过渡的部位;合金液引入铸件的部位和发生铸造应力最大的部位可用着色检查、气密性试验、、X光检查发现。铝铸件上冷裂纹,在清理砂芯后进行外观检查便可发现 产生的原因:1、铸件上有尖角,厚薄相差悬殊;2、模具局部过热或浇注温度过高;3、冷铁安放不正确;4、铸件补缩不良; 防止办法:1、改进设计,清除铸件尖角,尽量使铸件壁厚均匀过渡并倒圆角;2、正确地选择浇口,浇道的位置,控制浇注温度、涂料厚度,正确放置冷铁,增大冒口补缩能力; 3、在模具冒口部位上涂石棉保温涂料。

铝合金挤压型材几种常见缺陷解析

挤压铝型材表面颗粒状毛刺的形成原因与对策 在铝型材的挤压生产中,型材表面不同程度的存在一些小颗粒吸附在型材表面上,这种的缺陷,仅有轻微手感,不仔细观察或手摸较难发现。但它严重影响氧化、电泳涂漆及喷涂型材的表面美观,降低了生产效率和成品率,更是高档装饰型材的致命缺陷。因此,对其形成机理进行分析,同时在挤压生产实践中不断地观察分析,总结其成因,及时采取措施,是减少或杜绝这种缺陷的出现的有效手段。 一、颗粒吸附成因分析 1、挤压型材表面出现的颗粒状毛刺分为四种: 1)空气尘埃吸附,燃煤铝棒加热炉产生的灰尘、铝屑、油污及水份凝结成颗粒附着在热的型材表面。 2)铝棒中的杂质,如:精炼不充分遗留的金属夹杂物和非金属夹杂物。 3)时效炉内的灰尘附着。 4)铝棒中的缺陷及成分中的β相AlFeSi在高温下析出,使金属塑性降低,抗拉强度降低,产生颗粒状毛刺。 “吸附颗粒”的形成 2、原因 1)铝棒质量的影响 由于高温铸造,铸造速度快,冷却强度大,造成合金中的β相AlFeSi不能及时转变为球状α相AlFeSi,由于β相AlFeSi在合金中呈现针状组织,硬度高、塑性差,抗拉强度很低,在高温挤压时不仅会诱发挤压裂纹,而且会产生颗粒状毛刺,这种毛刺不易清理,手感强烈,颗粒附近常伴随有蝌蚪状拖尾,在金相显微镜下观察,呈现灰褐色,成分中富含铁元素。 铝棒中的杂质影响,铝棒在熔铸过程中,精炼不充分,泥土、精炼剂、覆盖剂以及粉末涂料和氧化膜夹杂等混入棒中,这些物质在挤压过程中,使金属的塑性和抗拉强度显著降低,极易产生颗粒状毛刺。 棒的组织缺陷常见的有疏松、晶粒粗大、偏析、光亮晶粒等,所有这些铸棒缺陷有一个共同点,就是与铸棒基体焊合不好,造成了基体流动的不连续性,在挤压过程中,夹渣极易从基体中分离出来,通过模具的工作带时,粘附在入口端,形成粘铝,并不断被流动的金属拉出,极易产生颗粒状毛刺。 2)模具的影响 在挤压生产中,模具是在高温高压的状态下工作的,受压力和温度的影响,模具产生弹性变形。模具工作带由开始平行于挤压方向,受到压力后,工作带变形成为喇叭状,只有工作带的刃口部分接触型材形成的粘铝,类似于车刀的刀屑瘤。在粘铝的形成过程中,不断有颗粒被型材带出,粘附在型材表面上,造成了"吸附颗粒"。随着粘铝的不断增大,模具产生瞬间回弹,就会形成咬痕缺陷。若粘铝堆积较多,不能被型材拉出,模具瞬间回弹时粘铝不脱落,就会形成型材的表面粗糙、亮条、型材撕裂、堵模等问题。模具的粘铝现象见图1。我们现在使用的挤压模具基本是平面模,在铸棒不剥皮的情况下,铸棒表面及内在的杂质堆积在模具内金属流动的死区,随着挤压铸棒的推进及挤压根数的增多,死区的杂质也在不断的变化,有一部分被正常流动的金属带出,堆积在工作带变形后的空间内。 有的被型材拉脱,形成了颗粒状毛刺。因此,模具是造成颗粒状毛刺的关键因素。

铝合金熔炼工艺流程和操作工艺

铝合金熔炼工艺流程和操作工艺(一) 装料 熔炼时,装入炉料的顺序和方法不仅关系到熔炼的时间、金属的烧损、热能消耗,还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还应考虑到最快的熔化速度,最少的烧损以及准确的化学成分控制。 装料时,先装小块或薄片废料,铝锭和大块料装在中间,最后装中间合金。熔点易氧化的中间合金装在中下层。所装入的炉料应当在熔池中均匀分布,防止偏重。 小块或薄板料装在熔池下层,这样可减少烧损,同时还可以保护炉体免受大块料的直接冲击而损坏。中间合金有的熔点高,如AL-NI和AL-MN合金的熔点为750-800℃,装在上层,由于炉内上部温度高容易熔化,也有充分的时间扩散;使中间合金分布均匀,则有利于熔体的成分控制。 炉料装平,各处熔化速度相差不多这样可以防止偏重时造成的局部金属过热。 炉料应进量一次入炉,二次或多次加料会增加非金属夹杂物及含气量。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉料除上述的装料要求外,在装料前必须向熔池内撒20-30kg粉状熔剂,在装炉过程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可以减少损耗。 3、电炉装料时,应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易引起短路。 熔化 炉料装完后即可升温。熔化是从固态转变为液态的过程。这一过程的好坏,对产品质量有决定性的影响。 A、覆盖 熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易侵入,造成内部金属的进一步氧化。并且已熔化的液体或液流要向炉底流动,当液滴或液流进入底部汇集起来时,其表面的氧化膜就会混入熔体中。所以为了防止金属进一步氧化和减少进入熔体的氧化膜,在炉料软化下塌时,应适当向金属表面撒上一层粉状熔剂覆盖,其用量见表。这样也可以减少熔化过程中的金属吸气。 覆盖剂种类及用量 炉型及制品电气熔炼煤气炉熔炼 覆盖剂用量普通制品特殊制品普通制品特殊制品 (占投量) /% 0.4-0.5 0.5-0.6 1-2 2-4 覆盖剂种类粉状熔剂 Kcl:Nacl按1:1混合 B、加铜、加锌 当炉料熔化一部分后,即可向液体中均匀加入锌锭或铜板,以熔池中的熔体刚好能淹没住锌锭和铜板为宜。 这时应强调的是,铜板的熔点为1083℃,在铝合金熔炼温度范围内,铜是溶解在铝合金熔体中。因此,铜板如果加得过早,熔体未能将其盖住,这样将增加铜板的烧损;反之如果加得过晚,铜板来不及溶解和扩散,将延长熔化时间,影响合金的化学成分控制。 电炉熔炼时,应尽量避免更换电阻丝带,以防脏物落入熔体中,污染金属。 C、搅动熔体 熔化过程中应注意防止熔体过热,特别是天然气炉(或煤气炉)熔炼时炉膛温度高达1200℃,在这样高的温度下容易产生局部过热。为此当炉料熔化之后,应适当搅动熔体,以使熔池里各处温度均匀一致,同时也利于加速熔化.

铝合金门窗制作、安装工艺流程

第一章铝合金门窗制作工艺 一、工艺流程 1、平开门窗工艺流程 锯切主型材→开V型口→铣排水孔→形钢下料→装型钢→焊接→清角→手动铣槽→钻五金孔→切玻璃压条→装密封条→装玻璃压条→装五金配件→检验→包装→入库 2、推拉门窗工艺流程 锯切型材→铣排水孔→切型钢→装型钢→装毛条→焊接→清角→手动铣槽→钻五金孔→切玻璃压条→装密封条→装玻璃压条→切防风条→防风条钻孔→防风条铣槽→防风条装毛条→装防风条→装缓冲块→装滚轮→框扇组合→装密封桥→装月牙锁→检验→包装→入库 二、铝合金门窗工艺制作控制要点 铝合金门窗组装工艺多,每一道工序对产品性能都有影响,根据产品性能要求,我们对每一道工序的工艺条件及对产品性能影响进行对比,不断调整工艺,确定最佳工艺参数,使产品达到标准要求工艺的制定。以下是几个主要工序的工艺流程情况。 1、型材下料 使用LJZ2F-500X5000塑铝型材双角锯。输入电压:380v/50HZ 功率:4.4KW 电机转速2800r/min工作气压:0.5-0.8MPa 耗气量:100L/min 锯切长度:最小:450mm 最大:5000mm 锯切角度:45°、90°;进刀速度:无级调速,使用此锯下料,尺寸公差控制在±0.5mm以内。 在使用双角锯下料前,首先根据图纸及下料单确定下料尺寸。在批量生产时,应先下一樘,检验合格后,再投入成批生产。生产时应不断抽检构件尺寸,以保证产品批量的合格率。 2、铣水槽

使用HYDX—01塑铝型材多功能铣床。工作气压0.4—0.6MPa,耗气量45L/min,铣刀规格Ф4mm*100mm、Ф4mm*75mm,铣头转速2800转/ min。在铣水槽前一定要清楚漏水孔的数目、位置,弄清之后,先将要铣的型材放在托米架上正确位置,然后开始铣切,另外,在铣水槽时一定要注意水槽位置。在铣平开窗固定窗时,一定要根据窗型是内平开,还是外平开,以及具体的安装方法来确定水槽方向。每班应及时进行屑渣清理和导轴润滑。 3、开V型口 V型切割锯用于铝合金型材90°V形槽的下料,适用于料宽120 mm,长度1800 mm。我公司使用的是铝塑门窗V型锯床VJ02-65,工作电压:380v/50HZ 功率:1.6KW 电机转速:2800r/min 气压:0.4-0.6MPa 耗气量:25L/min切削型材高度:120 切削型材宽度:125 切削V槽深度:0-65mm。首先应根据V口深度来调整升降台紧定手柄,再摇动至所需位置,夹紧手柄,同样根据V口位置来确定水平定位尺寸。 4、焊接 这是一道很重要的工作,使用卧式多功能四角塑焊机(SHP4B-H,可焊框架尺寸350*650-2600*3300;可焊型材高度20-120;可焊型材宽度120;工作电压220伏、50HZ),通过焊接,根据型材的特点,了解到影响焊接强度的主要因素是熔接温度,夹紧压力,加热时间,保压时间。焊温过高,影响焊后表面,型材易分解产生有毒气体;过低,易出现虚焊。夹紧力必须达到一定的压力值,使型材断面充分贴合,否则影响焊缝熔结强度。通过反处长试验,确定最佳加热时间,保压时间。保压时间根据前三个因素而定,达到合适的时间即可。不同的工艺条件下,按标准测试其焊角强度,选择最佳工艺条件。这样,确定焊接的工艺参数:焊接温度240—251℃,夹紧力0.5—0.6 MPa,加热时间20—30S,保压时间30—40S,这种参数下测试焊角强度最佳。在焊接中还应及时检查边框垂直度、对角尺寸误差等,如有不妥,应及时调整焊机。 5、角强度实验机 用检测铝合金力学性能及测量门窗隅部位的断裂强度,以便更好的控制焊接质量。 6、清角缝 在清角采用铝门窗角码自动切割锯LJJA-500、铝门窗组角机LMB-120等,并配备专用空压机,以提高工效及角缝清理质量。 7、玻璃压条切割锯 使用SYJ03-1800玻璃压条锯(工作电压:380v/50HZ;功率:1-6KW;电机转速:2800r/min;工作气压:0.5-0.8MPa;耗气量:80L/min;加工长度:320-1800mm)。在切割玻璃压条时,

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺 规范与流程 Revised by Chen Zhen in 2021

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝合金铸件》、JISH 5202-1999《铝合金铸件》、ASTM B 108-03a《铝合金金属型铸件》、GB/T 15115-1994《压铸铝合金》、JISH 5302-2006《铝合金压铸件》、ASTM B 85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T 1196-2002《重熔用铝锭》

铝硅合金锭:GB/T 8734-2000《铸造铝硅合金锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间合金:YS/T 282-2000《铝中间合金锭》 铝锰中间合金:YS/T 282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T 8733-2000《铸造铝合金锭》、JISH 2117-1984《铸件用再生铝合金锭》、ASTM B 197-03《铸造铝合金锭》、JISH 2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。

铝合金门窗生产工艺流程

铝 合 金 门 窗 生 产 工 艺 流 程 铝合金门窗生产工艺流程

标注*为关键工序下料(关键工序)

一、工序流程: *为关键工序 二、操作方法 1、领料后仔细确认下料加工单和优化单材料与实物一致。 2、确认下料方式(900或450或异型) 3、检查设备运行是否正常。 4、确认型材放置方向是否正确。 5、根据不同的型材调整锯片的进给速度和冷却剂的喷射量。 6、450下料时应仔细测量料高,测料高采用游标卡尺,至少3点,以平均值为准。 7、下料时须严格执行首检制,确认无误后方可成批下料(由工艺员、质检员、班长认可并做好首检记录),并且在下料过程中进行抽检。8、主操手和副操手应互检,每次调整尺寸或角度,副操手应复合尺寸和角度,防止批量尺寸或角度出现错误。 9、角码要根据不同的型材试装后,方可成批下料。

10、工件的数量应以生产部下发的下料单或班长经书面形式提供的数量为准,确保数量无误(生产部或班长签字为准)。 11、尺寸:框料0——+0.5;扇料-0.5——0.。 12、下完料后待设备停止运行后及时清除腔内的铝屑,要按照不同的规格,标明尺寸/数量,分类码放整齐,不同规格不能混放,转到下道工序时要办好交接记录。 13、需交接班时,应有记录,并作好交接手续。由于交接不当而出现的问题由交接双方负同责。 三、基本要求 1、人员要求:经过机械设备操作规程的培训,考核合格,熟悉本职工作的所有程序。 2、使用设备:双头切割锯 单头切割锯 角码切割锯 设备必须处于完好状态。 3、车间环境要求:地面干净,操作平台上无铝屑。 4、技术要求:严格依照制定的技术文件操作。 5、操作方法:严格依据工艺流程、设备操作规程以及生产操作流程。 6、检验器具:角度尺(0-3200)、盒尺(0-7.5m)、游标卡尺(0-150mm) 加工工序:

铝合金熔炼工艺及注意事项

1、炉料处理 所有炉料入炉前均需要预热,以去除表面附的水分,缩短熔炼时间。 2、坩埚及熔炼工具的准备 (1)新坩埚使用前应清理干净及仔细检查有无穿透性缺陷,确认没有任何缺陷才能投入使用,预热至暗红色(500—600度)保温2小时以上,以烧除附着在坩埚内壁的水分及可燃物质,待冷却到300度以下时,仔细清理坩埚内壁,在温度不低于200度时,喷刷涂料,烘干烘透后才能使用。 (2)压勺、搅拌勺、浇包等熔炼工具使用前必须除尽残余金属及氧化皮等污物,经过200-300度预热后涂刷防护涂料,涂刷后烘干待用。 3、熔炼温度的控制 合金液快速升至较高的温度(705度左右),进行合理的搅拌,以促进所有合金元素的溶解,确认所有元素全部溶解后,进行精炼除气,扒除浮渣后将至浇注温度。(因铝溶液的温度难以用肉眼来判断的,所以必须用测温仪表控制温度,测温仪表应定期校准和维修;热电偶套管应周期的用金属刷刷干净,涂以防护性涂料,以保证测温结果的准确性及延长使用寿命。 4、熔炼时间的控制 为了减少铝溶液的氧化、吸气,应尽量缩短铝溶液在炉内的停留时间,快速熔炼。为加速熔炼过程,应首先加入中等块度、熔点较低的回炉料,以便在坩埚底部尽快形成熔池,然后再加出铝锭,使之能徐徐浸入逐渐扩大熔池,加速熔化;在炉料主要部分熔化后,再加入熔点较高、数量不多的合金元素,升温、搅拌以加速熔化,最后降温,压入易氧化的合金元素。 5、精炼处理

精炼处理温度:690—730度 精炼剂(充分预热)加入量铝液重的0.15—0.2%,用钟罩压入 处理时间为3—5分钟后静止5—10分钟,扒除浮渣进行浇注,浇注温度为700—740度。

相关文档
相关文档 最新文档