文档库 最新最全的文档下载
当前位置:文档库 › 超纯净金属冶炼用CaO耐火材料的研究进展

超纯净金属冶炼用CaO耐火材料的研究进展

超纯净金属冶炼用CaO耐火材料的研究进展
超纯净金属冶炼用CaO耐火材料的研究进展

超纯净金属冶炼用CaO耐火材料的研究进展

□ 牛建平1,2)杨克努1)管恒荣1)胡壮麒1)

1)中国科学院金属研究所第六研究室 沈阳110016

2)沈阳大学材料工程系

摘 要 分析了使用CaO坩埚对Ni、Fe基合金精炼的机制;列举了CaO坩埚精炼在电子学、超导母合金等领域的一些成功应用的例子;总结了在先进结构材料(包括航空和航海仪器铸件、航空发动机高温合金铸件)方面的应用;展望了CaO坩埚精炼的前景。

关键词 CaO,耐火材料,精炼,合金

从热力学角度上讲,CaO是最稳定的氧化物之一,与各种熔融金属几乎不发生反应,是制造坩埚的最佳材料之一。根据出川通等人的研究,在1500℃时,一些氧化物生成自由能(负值)的绝对值大小顺序为[1]:CaO≥HfO2>ZrO2>Al2O3> MgO>TiO2>SiO2>Cr2O3,即CaO最稳定,因此,与其他材料相比,CaO在金属及合金熔炼温度下被活性合金元素还原的量要少得多。

近10年来,CaO良好的脱O、N、S及去除杂质的能力[2~4]已被越来越多的实验所证明。同时,防水化技术和烧结技术的发展已使CaO耐火材料能够达到实用水平[5]。所以,总结CaO耐火材料在超纯净金属冶炼方面的应用是十分必要的。

1 CaO对Ni、Fe基合金的精炼机制Al加入到合金液中会发生如下反应[5]:

2[Al]+3[O]=Al2O3

脱S反应发生在坩埚壁上:

2[Al]+3CaO+3[S]=3CaS+Al2O3

以上两个反应生成的Al2O3在坩埚中或壁上形成如下渣:

n Al2O3+m CaO=n Al2O3?m CaO

随着上述反应的进行,脱N反应也加速进行。除此之外,N还可以通过形成氮化物和碳氮化物而被去除。

如果合金成分中含有活性金属元素(如Ti、Zr、Hf及Re等),则在熔炼过程中会形成高熔点的杂质(如Ti2O3等)。采用普通耐火材料熔炼这些合金时,这些高熔点的氧化物将以杂质的形式存在于合金液或浇铸后的铸锭中。而采用CaO耐火材料熔炼时,由于这些氧化物可以与CaO形成渣而被去除。所以,以往不能用普通耐火材料熔炼的Ti、Cr 合金,如今利用CaO坩埚将成为可能。

2 CaO坩埚在电子材料中的应用

2.1 高密度磁记录金属及合金的精炼

高密度磁记录金属及合金含有许多高挥发性元素及稀有金属,它们的熔炼最初是采用电弧熔炼及电子束重熔两种方法,但这两种方法在合金成分控制方面都存在问题,采用CaO坩锅精炼则成功地解决了这一问题。

由于采用CaO耐火材料精炼可获得气体含量低,洁净而又均匀的合金,所以特别适合于各种磁性薄膜喷溅合金的熔炼。对于采用CaO坩埚精炼的Ni-Fe、Fe-Al-Si合金,与采用传统耐火材料熔炼的合金相比,其渗磁比率提高2~3倍;另一个较大的优点是同一批料的性能波动相当小。

2.2 超导金属及合金的精炼

用CaO坩埚精炼氧化物类超导材料(含稀土或碱土金属)时,可以很容易地把一些特别活泼的金属熔化在一起形成母合金,然后喷溅形成薄膜或棒。另一方面,用CaO精炼的母合金,由于其氧及杂质含量较低,其超导性也较好。

2.3 高可靠性打印头用特殊钢的精炼

由于采用CaO坩埚精炼的特殊钢具有低的气

牛建平:男,1962年生,副教授,博士研究生。

收稿日期:2000-11-30编辑:黄卫国

综 述耐火材料/NAIH UO CAI LIAO2001,35(5)290~292 290

 NAIH UO CAILIAO/耐火材料2001/5

体及杂质含量,因而提高了产品的疲劳寿命,可以用来制作高质量计算机用弹簧和打印头。

3 CaO坩埚在航空航海材料中的应用3.1 高纯Ni基高温合金的精炼

Ni基高温合金是制做航空发动机涡轮叶片、盘、舵等零件的材料,要求其具有优良的高温强度、耐腐蚀性、塑性、可铸性、可锻性和可焊性。同时,其中的O、N、S的含量必须十分低,因为O、N、S含量的微小增加,就会引起材料抗蠕变及抗高温疲劳等性能的极大劣化。

几十年的研究结果表明,高温合金中的微量杂质元素O、N、S对合金性能会产生重大影响,如:

(1)影响合金的蠕变、持久强度等特性。

(2)影响单晶铸件的屈服强度。

(3)O、N、S转化成Al2O3、(Ti Ta)CN、(Ti Ta)x S等,导致合金的可铸性变差。

(4)影响疲劳寿命和持久寿命。

(5)部分氮可以在MC和M6C碳化物中生成碳氮化物。在碳含量一定的情况下,增加氮含量也导致碳氮化物这样的脆性相增加,从而降低了高温合金的塑性。

(6)S能与Ti等生成M2SC化合物,这些片状化合物往往是裂纹源[3]。

(7)对于M17F合金,将S和O的质量分数从2×10-5降至1×10-5以下,材料的高温持久性能提高90%[3]。

使用CaO坩埚精炼Ni基高温合金时,CaO坩埚壁为Ni基高温合金提供了最佳的精炼条件。大量的实验数据表明,不仅O、N、S可以降低,而且几乎没有耐火材料的污染。据资料[2]介绍,采用CaO 坩埚精炼的Ni基高温合金,其O、N、S的质量分数可以降低到3×10-5以下。资料[3]介绍,采用CaO 坩埚精炼的Ni基高温合金,其S的质量分数可以降低到1×10-5以下。

3.2 熔铸Ti及Ti合金

Ti合金由于具有高的强度质量比和优良的耐海水腐蚀性,是广泛用于航空及航海仪器上的结构材料,而且也是良好的仿生及牙科材料。用CaO 熔炼的Ti合金,其杂质含量可以降低到ASTM标准规定的允许值以下。3.3 Cr及Cr合金的精炼

Cr是优良的耐腐蚀及耐氧化的元素,其熔点接近1990℃,但脆性较大,可以加入Ni、Cu及Mo 等合金元素形成Cr基耐腐蚀合金和耐热合金。与Fe、Ni合金一样,Cr及Cr合金同样可以采用CaO 坩埚进行精炼。

4 CaO坩埚在精炼金属间化合物中的应用

金属间化合物因其高强度和高硬度正在作为下一代航空材料而被研究。其中,含有大量活性金属如Al及Ti的金属间化合物,其成型及加工技术正在飞速发展。CaO坩埚精炼将与CaO精密铸造一起应用于金属间化合物。

Ti-Al二元系有Ti3Al、TiAl及TiAl3化合物,特别是TiAl,因其强度已超过Ni基合金,正在作为轻质高强的耐热合金而被关注。对于形状记忆合金Ni Ti,原来采用石墨坩埚精炼,但存在C、O污染及成分、品质不均的问题。采用CaO坩埚后,其C、O含量降低,其耐腐蚀性及疲劳寿命提高。Ni3Al 是Ni基高温合金的主要强化组员,由于其晶界上存在杂质而使其塑性降低。

5 CaO耐火材料的防水化问题

延缓CaO水化速度的办法一般有两种[5]:一是高温煅烧或电熔,二是加入适当的添加剂。常用的添加剂有BaO、MgO、Al2O3、Fe2O3、ZnO等,最好采用复合添加剂,加入量为0.2%~0.5%。若添加剂量过少,则很难制得组织结构均匀、致密的材料,不能取得满意的抗水化效果;但添加量过多时,添加剂在加热过程中会与MgO、CaO反应生成大量的低熔点化合物,影响材料的高温性能。特别是作为耐火材料使用时,会损害其抗炉渣侵蚀性。

6 结束语

CaO耐火材料具有很好的热力学稳定性,在先进金属及合金的熔炼方面具有极大的优越性和巨大的发展潜力。尽管在某些方面(如抗水化)还存在一些问题,但随着抗水化措施及烧结技术的不断发展,有理由相信,CaO耐火材料会在新金属材料的发展中发挥越来越大的作用。

2001/5耐火材料/NAIH UO CAILIAO291

 

参考文献

1 出川通,音谷登平.用氧化钙耐火材料精炼Ni基超合金.铁と钢,1987,73(14):1691~1697

2 出川通,等.在CaO坩埚中加Al及Al合金引起Fe液的脱S行为.铁と钢,1987,73(14):1684~1690

3 刘奎,等.硫、氧对M17F高温合金组织和高温持久性能的影响. 金属学报,1995,3(增刊):370~373

4 孙长杰,等.氧化钙坩埚在高纯净化合金研究中的应用.金属学报,1998,7:731~734

5 刘彦海.石灰质耐火材料的生产和应用.耐火材料,1998,32

(3):149~150

Research development of CaO refractories for refining ultrapure metal/Niu Jianping,Y ang Kenu,G uan Hen2 grong,et al//Naihuo Cailiao.-2001,35(5):290

The refining mechanis m of CaO crucible to refine Ni2and Fe2bas e d alloys is analyze d.Some examples of CaO crucible s ucces sfully us e d for refining in the fields of electronics,s up erconducting motheralloy,etc are enu2 merate d.The application of CaO crucible refining in a dvance d s tructure materials(including aviation and navi2 gation cas t,high temp erature alloy cas t for aviation engine)is s ummerize d.The prosp ect of CaO crucible re2 fining is forecas t.

Key words:CaO,Refractories,Refining,Alloy

Author’s address:The Sixth Dep artment of Metal Ins titute,Chines e Aca demy of Sciences,Shenyang110016, China

?市场动态?

日本ZrO2需求剧增

由于日本的电子、催化剂及精细陶瓷行业的强劲发展,使其对ZrO2的需求在2000年增加12%,由1999年的8610 t增加到2000年的9670t,并且这种增加2001年仍在继续。

2000年日本消耗的湿法过程生产的ZrO2(主要用于电子、玻璃、传感器、精细陶瓷、催化剂)量为4120t,较1999年的3380t增加了22%;消耗的干法过程生产的ZrO2(主要用于耐火材料、磨料及陶瓷釉料)量增长很少,由1999年的4280t增加到2000年的4420t。ZrO2的进口量2000年增加了19%,达到1130t。

耐火材料仍然是消耗ZrO2量最大的行业,消耗量占45.8%,其次是催化剂行业(15.5%)和电子行业(10.6%)。原料方面,锆英砂和锆盐的进口也在增加,锆盐进口量增加了69%,而全世界供求紧张的斜锆石的进口量减少,由1999年的6200t减少到2000年的4300t。

(柴俊兰)

Tosoh公司将扩大ZrO2的生产量

T os oh公司主要生产化学制品、石油化工制品和其他特殊制品,它的分公司分布全球13个国家,年产值达35亿美元。T os oh公司于1983年开始生产高强度的ZrO2粉,1988年年产量为200t,当时是世界上最大的生产基地,1996年年产量达370t,到去年8月,年产量进一步增长至620t。T os oh公司最近又计划将ZrO2粉的年产量增加一倍,届时它的年产量将达到1300t。目前,T os oh公司占有世界上60%的ZrO2市场。公司希望最近的扩产能满足市场日益增长的需求,同时能保持住它在此行业的龙头地位。(李光辉)

英国耐火材料市场又遭创伤

Baker耐火材料公司的Worksop厂将要关闭英国国内钢铁生产的衰退,钢铁消耗量的减少,及客户对耐火材料需求量的减少和较高的原材料成本,导致Baker 耐火材料公司陷于困境。2001年10月底,英国Baker耐火材料公司将关闭位于Worksop的Steetley耐火砖和不定形耐火厂。

2001年7月,年产量10.5万t的Worksop工厂已处于关闭局面。其中,年产量为10万t的耐火砖和定型产品,及0.5万t的不定形产品将重新安置到L hoist集团在德国的工厂及欧洲的其他地方。

Baker耐火材料公司是一个以美国为基地的白云石和耐火材料公司。该公司生产的耐火材料用白云石每年大约20万t,耐火砖和定型产品的年产量为22万t,不定形产品为25万t。

1993年,Baker公司从Redland PLC公司获得了Steet2 ley耐火材料有限公司的经营权。

2000年10月,Baker耐火材料公司与Wulfrath Refrac2 tory Gmbh公司合并,该公司属于比利时的L hoist集团,主要生产石灰和煅烧白云石。

(任敬文)

292

 NAIH UO CAILIAO/耐火材料2001/5

出钢制度

温度制度 1 转炉炼钢的温度制度包括哪些内容,它对冶炼有什么影响? 温度制度主要是指炼钢过程温度控制和终点温度控制。 吹炼任何钢种,对其出钢温度都有要求。如果出钢温度过低,水口容易结瘤,钢包易粘钢甚至出现要回炉处理的事故。若出钢温度过高,不仅会增加钢中夹杂物和气体含量,影响钢的质量,而且还会增加铁的烧损,降低合金元素吸收率,降低炉衬和钢包内衬寿命,造成连铸坯(或钢锭)多种缺陷甚至浇注漏钢。沸腾钢出钢温度过高时,还会引起浇注前期模内不沸腾,后期大翻,导致坚壳带过薄等缺陷。因此,控制好终点温度是顶吹转炉吹炼工艺的重要环节之一。控制好炼钢过程温度是确保终点温度达到目标值的关键。 2 吹炼过程中熔池热量的来源与支出各有哪些方面? 氧气顶吹转炉炼钢的热量来源是铁水的物理热和化学热。铁水的物理热是指铁水带入的热量,与铁水温度有直接关系;铁水的化学热就是铁水中各元素氧化、成渣过程所放出的热量,它与铁水的化学成分有关。 从表4—7可以清楚地分析热量的来源、热量的支出及热量损失等方面情况及其各占的比例。

表4-7 热量平衡表 从热量的来源看,铁水的物理热和化学热大约各占一半,因此铁水的温度与化学成分直接关系转炉炼钢热量的来源,所以对转炉用铁水的温度和化学成分必须有一定的要求。 从热量支出来看,钢水的物理热约占70%,这是一项主要的支出,熔渣带走的热量大约占10%,炉气物理热也约占10%,金属铁珠及喷溅带走热、炉衬及冷却水带走热、烟尘物理热,生白云石及矿石分解热,还有其他热损失总共约占10%。 3 什么叫转炉的热效率,如何提高热效率?

转炉炼钢的热效率是有效热占总热量的百分比,其中有效热指钢水物理热及矿石分解热。 总热效率=(有效热/总热量)×100% (4-13) 从表4—7看出,真正有效热占整个热量来源的70%左右,在热量的利用上还有一定潜力。其中,熔渣带走的热量大约占10%,它与渣量的多少有关。因此在保证去除P、S的条件下,宜用最小的渣量。渣量过大不仅增加渣料的消耗,也增加热量的损失,为此最好应用铁水预处理技术,实现少渣操作;同时在吹炼过程中还要尽量减少和避免喷溅;缩短冶炼周期,减少炉与炉的间隔时间等,都是减少热损失,提高转炉热效率的措施。热效率提高以后,可以多加废钢,或多加冷却剂铁矿石,以< 8 什么是终点控制,终点的标志是什么? 终点控制主要是指终点温度和成分的控制。对转炉终点的精确控制不仅要保证终点碳、温度的精确命中,确保S、P成分达到出钢要求,而且要求控制尽可能低的钢水氧含量[O]。 转炉兑入铁水后,通过供氧、造渣等操作,经过一系列物理化学反应,而达到该钢种所要求的成分和温度的时刻,称为“终点”。到达终点的具体标志如下。 (1)钢中碳含量达到所炼钢种要求的控制范围; (2)钢中P、S含量低于规定下限要求的一定范围; (3)出钢温度保证能顺利进行精炼和浇注;

灰熔融炉用耐火材料及使用.pdf

第 29 卷第 2 期 工业炉 Vol. 29 No. 2 2007 年 3 月 Industrial Furnace M ar. 2007 灰熔融炉用耐火材料及使用 吕春江, 赵俊国, 王文武, 刘春霞, 刘国华 ( 中钢集团洛阳耐火材料研究院, 河南洛阳 471039) 摘 要: 对垃圾焚烧灰渣熔融炉的种类及其主要耐火材料进行介绍, 从炉内气氛、熔融灰种类、不同使用部位等方 面叙述了不同灰熔融炉用耐火材料的耐侵蚀性能, 同时从机理上对熔融温度、熔渣冲刷等工作条件的影响进行了分析, 指出了灰熔融炉对耐火材料品质的一般要求及今后需要解决的问题。 关键词: 垃圾焚烧灰渣熔融炉; 耐火材料 ; 耐侵蚀性能 中图分类号: TF065 1+ 1 文献标识码: B 文章编号: 1001- 6988( 2007) 02 0044 04 Refractories for Ash Melting Furnace of Incinerator and Their Application LV Chun jiang, ZHAO Jun guo, WANG Wen wu, LIU Chun xia, LIU Guo hua ( Luoyang Institute of Ref ractories Research, Sinosteel Corporation, Luoyang 471039, China) Abstract: The type of ash melting furnaces and its main refractories are introduced. The erosion resistance of refractories for ash melting furnace of incinerator is described from different atmosphere, type of ash and using ar eas. The influence of operating conditions, such as melting temperture, the movement of slag etc is analyzed from the erosion mechanism. In the end, the general properties of refractories for ash melting furnace and some problems are pointed out. Key words: ash melting furnace of incinerator; refractories; erosion resistance 用传统垃圾焚烧技术处理城市生活垃圾后产生 的炉渣和烟尘量一般分别为原垃圾重量的 10% ~ 20% 和 1%~ 5%, 如果再加上烟气净化处理及焚烧 过程中加入的各种药剂形成的总灰渣量占原垃圾量 的35% ~ 45% [ 1] 。又由于焚烧温度不是很高, 在这 些灰渣中会含有一定量未燃尽可燃物、重金属和二 恶英类等物质, 如果对它们处理不当会对土壤、地下 水以及大气等造成严重污染。目前对这些灰渣进行 熔融固化的方法是世界上普遍采用的一种比较安全 的方法。熔融技术的主要优点: 对焚烧灰渣进一步 减容; 解决重金属的二次污染问题; 控制二恶英的形 成; 实现资源的再利用。然而由于其能耗大、成本 高、系统结构复杂、规模庞大, 技术实现有一定难度。 我国在这方面的研究与应用相对其他发达国家而言 还有一定的差距, 因此有必要加强这方面的探索。 收稿日期: 2006- 11- 27 作者简介: 吕春江( 1979 ) , 男, 硕士研究生, 从事碳化硅耐火材 料的研究和应用工作.

钢水流动性差分析研究与改进

钢水流动性差的原因分析及改进 原因: LF炉精炼钢水粘的主要原因是由于精炼过程中或钢水浇注过程中钢水中铝氧化,由于钢水中存在大量尖锐、带刺状且熔点较高的A12O3夹杂,容易在浇注过程中粘附到水口内壁上,从而逐渐堵塞水口,造成钢水流动性变差,即钢水粘现象。生产实际中大多采用钙处理控制铝脱氧产物在炼钢连铸温度下呈液态,促进铝夹杂物上浮。铝夹杂物组成随着钙含量增加按以下顺序变化: A12O3一CaO?6A12O3一CaO?A12O3一CaO?A12O3—12CaO?7A12O3—3CaO?A12O3—CaO 当夹杂物成分位于CaO?A12O3,12CaO?7A12O3和3CaO?A12O3的低熔点区域时,在浇铸温度下,钙铝酸盐类夹杂物在钢水中以液相存在。 另一方面,钙的加入量过多,形成高熔点的CaS(熔点为2450℃),此时同样会恶化钢水的浇铸性能。生产含铝钢时随着钢中铝含量的增加,氧的活度降低,有利于硫化物的形成;随着钢中硫含量的增加,有利于形成高熔点的CaS;钢水温度降低时,氧的活度降低,也有利于CaS的形成,影响钢水流动性。 具体地说,LF 精炼钢水流动性差的主要原因是在精炼或浇注过程中钢水中的[Al]氧化,生成大量尖锐、带刺状且熔点较高的Al2O3夹杂,在浇注过程中粘附到水口内壁上,堵塞水口,造成钢水流动性变差。在生产实际中,常规做法是采用钙处理的方式,使铝脱 氧产物呈液态,促进铝夹杂物上浮。铝夹杂物组成随着钙含量增加呈以下变化形态: Al2O3—CaO·6Al2O3—CaO·2Al2O3—CaO·Al2O3—12CaO·7Al2O3—3CaO·Al2O3—CaO。 当夹杂物成分位于CaO·Al2O3、12CaO·7Al2O3和3CaO·Al2O3的低熔点区域时,在适当的浇铸温度下,钙铝酸盐类夹杂物在钢水中以液相存在。若钙的加入量过多,易形成高熔点CaS(熔点为2 450 ℃),会恶化钢水的流动性。生产含铝精炼钢种时,随着[Al]含量的增加,氧的活度呈降低趋势,有利于硫化物的形成;随着硫含量的增加,易形成高熔点的CaS。钢水温度降低时,氧的活度降低也有利于CaS的形成,从而影响钢水的流动性。 采取措施: 总:严格控制好钢水成分。如Al、Ti、Si等易氧化元素,在保证产品性能的前提下,应尽可能减少其含量;尽量提高Mn/Si、Mn/S比;炼钢脱氧尽量采用复合脱氧剂。(2)严格做好保护浇注,防止钢水二次氧化。(3)控制合适的钢

耐火材料的发展历程

一、耐火材料的起源 古代、中世纪、文艺复兴时代的耐火材料,工业革命前后高炉、焦炉、热风炉用耐火材料,近代后期新型耐火材料及其制造工艺,现代耐火材料制造技术及主要技术进步,以及对未来耐火材料发展的展望,耐火材料与高温技术相伴出现,大致起源于青铜器时代中期。 耐火材料的三大发展阶段 东汉时期(公元25~220)已用粘土质耐火材料做烧瓷器的窑材和匣钵。 20世纪初,耐火材料向高纯、高致密和超高温制品方向发展,同时发展了完全不需烧成、能耗小的不定形耐火材料和高耐火纤维(用于1600℃以上的工业窑炉)。前者如氧化铝质耐火混凝土,常用于大型化工厂合成氨生产装置的二段转化炉内壁,效果良好。 50年代以来,原子能技术、空间技术、新能源开发技术等的迅速发展,要求使用耐高温、抗腐蚀、耐热震、耐冲刷等具有综合优良性能的特种耐火材料 二、耐火材料在中国的发展 20世纪初,耐火材料向高纯、高致密和超高温制品方向发展,同时出现了完全不需烧成、能耗小的不定形耐火材料和耐火纤维。现代,随着原子能技术、空间技术、新能源技术的发展,具有耐高温、抗腐蚀、抗热振、耐耐火材料冲刷等综合优良性能的耐火材料得到了

应用。在中国有许多工厂生产耐火材料产品。中国有丰富的资源,也正因为这方面的原因,各大外国投资商也来到国内一展身手,展露头角。 在中国的东北部,是耐火材料供应商极其丰茂的地区,导致其他国外投资商对其的出口低价格产生了质疑,从而在2003年由欧盟提出对中国耐火材料新产品的反倾销,限制了产品对欧盟的出口。2006年中国为保护原材料资源的大量流失,对部分行业进行了减免出品退税,以此极大地限制产品的出口。但这并不能在很大程度上限制一些国外的品牌销售,因为它们拥有几十甚至上百年的销售生产经验,并极大地占有了市场,也创立了它们在各大洲的品牌效应。 三、发展具有综合技术水平的耐火材料产业 综合技术水平的耐火材料产业,不仅指生产出的耐火材料产品具备质量好、环保、轻质等优质特点,同时也指生产耐火材料的匹配设备具有寿命长、性能好、产量高等优质特点。综合技术水平的评定因素,涉及耐火产品和生产设备等一整套工艺流程,以及高水平的产品研发、监督管理人员等因素,这些因素综合评估的结果决定了耐火材料产业的综合技术水平。 此外,耐火材料整体承包企业还必须对钢铁企业要拥有一定的耐火材料新产品开发和质量改进的自主权,方可以根据钢企高温设备不同部位对耐火材料侵蚀损坏的差异,依靠企业技术优势对不同部

定型耐火材料的生产工艺流程图

定型耐火材料工艺流程 定型耐火材料的生产工艺流程图 活化煅烧 死烧

检验包装 一.原料的煅烧 原料的煅烧具有极为重要的必要性,原料的煅烧分为活化煅烧和死烧,活化煅烧是使原料全部或部分组分得到活化,变为活性状态的煅烧,通过加入添加剂得以实现,死烧则是使原料全部达到完全烧结,无论哪种煅烧都能够使生料变成熟料,熟料配料的好处如下: (1)熟料配料能够保证制品烧成后的尺寸准确性,以及制品的体积稳定性。 (2)熟料配料有利于改善制品的矿物组成及显微组织结构,从而保证制品具有良好的使用性能; (3)熟料配料有利于缩短制品的烧成周期,提高生产效率和烧成合格率。二.原料的挑选分级 原料的挑选分级能够保证优质品的质量,避免劣质原料被用来生产优质品;此外,这道工序还能保证优质原料被有价值的利用,避免优质原料被用来生产低等级的制品。 一般挑选分级的对象有耐火黏土、高铝矾土、菱镁矿等,根据熟料的外观颜色、有无显而易见的杂质、比重、致密度等情况进行人工拣选。 三.原料的破粉碎 破粉碎在耐火材料的生产流程中是一道极为重要的生产工序,它决定了产品质量的好坏,因此它有着极为重要的意义: (1)各种原料只有破粉碎到一定细度才能充分均匀混合,从而保证制品组织结构的均匀性; (2)通过破粉碎将各种原料的加工成适当粒度,以保证制品的成型密度; (3)只有将原料粉碎到一定细度,才能提高原料的反应活性,促进高温下的固相反应,形成预期的矿物组成和显微组织结构,以及降低烧成温 度。 根据破碎的不同要求,可以选择不同类型的破碎机,常用的破碎机有颚式破碎机和圆锥破碎机。

配料不仅仅是调配化学组成的过程,还是调配颗粒组成的过程,因此在配料过程中颗粒级配的设计师极为重要的,合理的颗粒级配可以达到最紧密堆积,保证坯体的成型密度,减小坯体的烧成收缩,从而保证制品的质量和性能。 以取得最紧密堆积为目的,耐火材料的颗粒组成,一般采用下述公式: y i =[a +(1?a )(d i D )n ]?100 y i ——粒径为d i 的颗粒应配入的数量(%); a ——系数,取决于物料性质及细粉含量等因素,一般情况下,a=0-0.4; n ——指数,与颗粒分布特性及细粉的比例有关,一般地n=0.5-0.9; D ——最大(临界)颗粒尺寸(mm )。 理想的堆积是粗颗粒构成骨架,中颗粒填充于大颗粒构成的空隙中,细粉则填充于中间颗粒构成的空隙中,在实际生产中,通常采取三组分颗粒配料,有时候也会采取四组分颗粒配料,不同的产品因为成型和烧成的不同,会选取不同的配比。 五. 混练 混练是使各种物料分布均匀化,并促进颗粒接触和塑化的操作过程,耐火材料的混练过程,由于颗粒粒度相差较大及成型的需要,实际上不是一个单纯的混合过程,而是伴有一定程度的碾压、排气过程。混练的最终目的是使混合料的任意单位体积内具有相同的化学组成和颗粒组成。 达到较好混练质量所需要的混练时 间,主要与物料的流动性、外加剂的种 类、混练机的结构性能等因素有关,对 应于某一种坯料及混练设备,都有一个 最佳的混练时间,超过该时间就会造成 “过混合”,如右图所示,而且最佳混练 时间有时相差较大,例如黏土砖需要 4-10min ,而镁砖需要20-25min 。

垃圾焚烧炉应该怎样配置耐火材料

垃圾焚烧炉应该怎样配置耐火材料摘要:本文首先介绍了垃圾焚烧炉的分类情况,其次对垃圾焚烧炉的寿命影响因素进行了解析,并探讨了垃圾焚烧炉的耐火材料选用标准,提出了相应的意见和建议,旨在为垃圾焚烧炉耐火材料的科学应用提供良好的参考。 1、前言 城市垃圾与工业废物不但占据大量的空间,同时也会对地球环境产生严重的污染与危害,城市垃圾、废旧物的解决问题成为限制人类发展的主要问题。垃圾焚烧炉作为其中目前应用最为广泛的技术,其具有减容量大、成本低、无害化程度高等问题,同时可以实现能量的回收,是目前绝大多数国家选择使用的垃圾处理技术。 2、垃圾焚烧炉分类 选择耐火材料需要根据垃圾焚烧炉的类型进行判断。目前,常见的垃圾焚烧炉可以划分为炉排型焚烧炉、流化床焚烧炉、间歇式焚烧炉、回转焚烧炉等等。 1.jpg 机械炉排焚烧炉是较早发展的垃圾焚烧炉型式,经过长期的发展,技术日臻完善,运行可靠性高,是目前垃圾焚烧炉市场上的主导产品,其数量占全世界垃圾焚烧市场总量的80%以上。该类炉型的最大优势在于技术成熟,运行稳定、可靠,适应性广,绝大部分固体垃圾不需要任何预处理可直

接进炉燃烧。 流化床焚烧炉借助于空气输送装置以及鼓风机装置来进行循环处理,内部焚烧充分,受热均匀。该垃圾焚烧炉的特征在于热容量较高,同时热值较低的垃圾也可以使用,不过存在日处理量较小的问题。 2.jpg 间歇焚烧炉一般划分为大炉、小炉分别运作,小炉类型的焚烧炉主要用于解决一次性投入的垃圾,日处理量较低。大炉则主要用于大规模地处理,解决各种不同类型的使用需求。间歇式焚烧炉的特征在于成本合理、稳定性强,但是容易出现气体波动大、热量利用不足的问题。 间歇式焚烧炉的特征在于成本合理、稳定性强,但是容易出现气体波动大、热量利用不足的问题。 回转式垃圾焚烧炉主要用于处理工业垃圾,该垃圾焚烧炉内部装有二次燃烧气体的引入装置,内部焚烧温度较高,能够解决塑料、燃油以及污泥等工业垃圾的处理工作。 间歇式焚烧炉的特征在于成本合理、稳定性强,但是容易出现气体波动大、热量利用不足的问题。回转式垃圾焚烧炉主要用于处理工业垃圾,该垃圾焚烧炉内部装有二次燃烧气体的引入装置,内部焚烧温度较高,能够解决塑料、燃油以及污泥等工业垃圾的处理工作。 3、影响垃圾焚烧炉耐火材料的选择因素

滑动水口用耐火材料滑板

滑动水口用耐火材料滑板 滑动水口用耐火材料:水口座砖;上、下滑板;上水口;下水口;水口用引流砂。今天就先给大家分享一下滑板的种类及工作原理。 滑动水口装置是由耐火材料制成的上、下滑板和机械驱动结构组成的,安装在钢包底部的外边。上滑板是固定的,下滑板是可移动的。按照滑板动作方式可分为三类:1〕直线往复式;2〕直线推进式;3〕回转式。通过驱动拉杆,使滑板直线往复滑动,当上、下滑板砖上铸孔错开时,上水口孔内填入引流砂,钢包即可装钢;当铸孔重合时,引流砂自动流出,即可浇注,并可以通过铸孔部分重合的程度来控制浇注速度。 一、滑板

滑板是决定滑动水口功能的关键部件,起钢水流量的控制调节作用。由于滑板反复接触高温钢水(特别是铸孔部位),蚀损严重,使用条件苛刻。要求滑板具有高强度、耐侵蚀、抗剥落等良好性能,在浇注过程中保证滑板间不能漏钢水,滑板必须具备以下性能: (1)滑动面平整度≤0.05mm; (2)机械强度高; (3)耐钢水和熔渣的侵蚀能力强; (4)抗氧化性能优良; (5)良好的热震稳定性。 钢包滑动水口的密封保护主要是在上水口与上滑板,下滑板与下水口相连接处。浇注过程中,一般每浇一炉或两炉钢水后,必须更换下滑板和下水口,并重新组装。密封保护采用纤维质或胶泥质的密封垫,以保证钢水的高洁净度和铸坯内部质量的均匀性。 二、烧成滑板 在烧成铝碳滑板中,不仅有机结合剂在烧成中碳化结焦,在砖中形成碳结合,而且加入物,如金属硅,在<1300℃还原烧成时,能与碳素化合生成SiC,而在砖体内形成陶瓷结合。所以,烧成铝碳滑板中存在着陶瓷结合和碳结合的双重结合系统。它使滑板强度明显提高,而且就是在使用中碳素燃尽之后,由于其为陶瓷结合系统也能保持足够的残存强度。滑板烧成之后,一般要进行浸油。浸油中一般采用立式或卧式真空-加压油浸装置。滑板预热后放入油浸罐内,并抽真空至真空度650mmHg柱以上,引入加热了的焦油或沥青,并对油加压至8~16kgf/cm2或更高的压力,使焦油或沥青被吸入滑板的开口气孔中。滑板中的铸孔可以是成型时就制成,也可以先成型为无孔的整体板,以后再钻孔得到。多数人认为钻孔对提高滑板质量有利。另外,在滑板周围用薄铁皮包扎打箍被认为是保证滑板安全使用的重要措施,它可以预防滑板在使用中的碎裂,并由于这种金属箍是包扎得十分紧的,因此其有限制材料内裂纹扩展,特别是裂纹张开的作用。 三、高性能滑板 是一种工艺比较简单、成本较低、使用效果良好的不烧铝碳滑板。该种滑板的配料与烧成滑板类似,采用板刚玉、莫来石、刚玉、鳞片石墨、碳化硅和硅粉等原料,加入酚醛树脂作结合剂,经混练、成型、热处理及机械加工后即为成品。相对于烧成铝碳滑板来讲,不烧滑板在制造中不用烧成、油浸和干馏热处理,简化了生产工艺,但强度偏低、气孔率也稍高。使用实践证明,不烧滑板在中型转炉、电炉的钢包上使用效果良好,有的甚至超过烧成油浸滑板。 四、滑板的安装使用方法

垃圾焚烧炉用耐火材料的使用现状及发展趋势

摘要:简要地介绍了垃圾焚烧炉的结构、特征和使用技术,阐述了焚烧炉用耐火材料的种类、性能及其使用效果,并指出焚烧炉用耐火材料今后的发展方向。 关键词:垃圾焚烧炉;耐火材料;现状与发展 随着世界人口的不断增加和经济的高速发展,城市垃圾和工业废物的数量急剧增多。垃圾的存在不仅占用大量的空间,而且对地球环境造成严重污染,危害人类和动植物的环境。因而城市垃圾和产业废弃物的处理是一个亟待解决的问题。 目前,世界各国为实现“综合的垃圾经济”所做的努力越来越多,这一概念的主要内容是避免产生垃圾和重新利用垃圾。西方一些国家对垃圾处理所做的努力取得了显著成绩,研究开发了各种处理垃圾的方法:生物处理、热处理以及生物处理和热处理相结合。比较研究各种垃圾处理的方法后表明,目前还没有哪一种技术能够代替焚烧法,该法具有减容量大、处理及时、无害化程度高且可以回收热能等一系列优点而倍受关注,已成为发达国家处理垃圾的主要方式。 为适应环保产业的日益发展,满足焚烧炉的需要,世界各国开发使用了各种优质耐火材料,并取得了显著的使用效果,因而继续研究开发性能优异的耐火材料已成为当务之举。 1垃圾焚烧炉的类型和特点 常见的焚烧炉有:间歇式焚烧炉、炉箅式焚烧炉、CAO焚烧系统、流化床式焚烧炉、回转炉式焚烧炉等。图1是垃圾焚烧设备的流程图。 图1垃圾焚烧设备流程图 1.平台; 2.垃圾装入门; 3.垃圾坑; 4.垃圾吊车; 5.垃圾料斗; 6.焚烧炉; 7.锅炉; 8.反应塔; 9.除尘装置;10.抽风机;11.烟囱;12.强制鼓风机;13.蒸汽式空气预热器;14.运灰机; 15.磁选机;16.灰坑;17.灰吊车;18.金属运送机;19.金属坑;20.除尘粉尘运送机;21.反应塔下粉尘运送机;22.集中粉尘运送机;23.飞灰处理装置;24.飞灰坑;25.防止白烟用鼓风机;26.蒸汽式空气加热器;27.垃圾污水槽;28.垃圾水中间槽;29.高压蒸汽储汽器; 30.蒸汽汽轮机;31.中央控制室;32.控制传感器室;33.受电变电室;34.锅炉副机室;35.闸门操作室 间歇式焚烧炉 间歇式焚烧炉一般分为小型炉和大型炉,目前使用的焚烧炉多半是小型炉,一次性投入垃圾,焚烧结束后,再次投入垃圾,日处理垃圾量在25t以下,一般按规定的时间出灰。炉下部设有炉箅、气体冷却、废气排出和送风装置;若是大型炉,常设有垃圾投入和排灰装置。无论是大型炉还是小型炉,其特点为:结构简单,建设费用少、使用时间长;但气体量和气体温度波动大,热量有效利用差,灰份残渣多等。 炉箅式焚烧炉 炉箅式焚烧炉也称炉排式焚烧炉,是一种连续式焚烧炉,因其优良的使用性能而逐渐取代了间歇式焚烧炉。目前城市垃圾焚烧炉大多数为这种焚烧炉(约占70%),其日处理量为80-200t,大型炉为300-600t。炉箅式焚烧炉底部设有多段炉算,炉箅上堆放用料斗供给的垃圾,在移动炉箅的同时,在其下部吹入燃烧空气,进行干燥、燃烧。炉箅式焚烧炉的特点是:炉身高大,造价较高;只有一个燃烧室,对进入炉内的垃圾不必分选、破碎;固体垃圾在炉内停留约1-3h,气体停留约几秒种;垃圾的表层温度为800℃,烟气温度为800-1000℃;要求炉排耐高温、耐腐蚀、机械性能好。 为减少焚烧炉产生的有害气体(如二恶英、NO、NO2、CO等),日本钢管公司采用NKK技术开发了双回流炉箅式焚烧炉,使来自副烟道的还原性气体与主烟道的燃烧气体进行再燃烧,从而抑制NOx气体的发生,促进燃气的完全燃烧,减少二恶英的发生。

炼钢名词解释

001,化学亲和力 指元素于元素之间结合能力的强弱。 002,冲击面积 氧气流股与平静金属液面接触时的面积。 003,炉容比 转炉有效容积与公称容量的比值。 004,均衡炉衬 根据炉衬各部位的损失机理及侵蚀情况,在不同部位使用不同材质的耐火砖,砌筑不同厚度的炉衬。 005,喷孔夹角 喷孔几何中心线与喷头轴线之间的夹角。 006,石灰活性 是指石灰与熔渣的反应能力,它是衡量石灰在渣中溶解速度的指标。 007,碳氧浓度积 即在一定温度和压力下,钢液中碳与氧的质量百分浓度之积是一个常数,而与反应物和生成物的浓度无关。 008,转炉的热效率 转炉炼钢的热效率是有效热占总热量的百分比,其中有效热指钢水物理热及矿石分解热。 009,留渣操作 留渣操作就是将上炉终渣的一部分留给下炉使用。终点熔渣的碱度高,温度高,并且有一定(Tfe)含量,留到下一炉,有利于初期渣尽早形成,并且能够提高前期去除P、S的效率,有利于保护炉衬,节约石灰用量。 010,终点控制 主要是指终点温度和成分的控制。对转炉终点控制不仅要保证重点碳、温度的精确命中,确保P、S成分达到出钢要求,而且要求控制尽可能低的钢水氧含量。

011,拉瓦尔型喷头 拉瓦型喷头是收缩-扩张型喷孔,出口氧压低于进口氧压之比小于0.528,形成超音速射流。气体在喉口处速度等于音速,在出口处达到超音速。 012,定量装入制度,有何特点 定量装入是在整个炉役期间,每炉的装入量保持不变;这种装入制度的优点是:发挥了设备的最大潜力,生产组织、操作稳定,有利于实现过程自动控制。但炉投前期熔池深、后期熔池变浅,只适合大、中型转炉。国内外大型转炉已广泛采用定量装入制度。 013,溅渣护炉 利用MgO含量达到饱和或过饱和的炼钢终点渣,通过高压氮气的吹溅,使其在炉衬表面形成高熔点的熔渣层,并与炉衬很好的粘结附着,称为溅渣护炉。 014,复合吹炼强搅拌 在顶、底复合吹氧工艺中,供气强度(标态)波动在0.20~2.0m3/(t.min);底部供气组件通常使用套管式喷嘴,中心管供氧,环管供天然气、或液化石油气、或油做冷却剂,此工艺属于复合吹炼强搅拌。 015,“后吹”,有何弊病 一次拉碳未达到控制的目标值需要进行补吹,补吹也称为后吹。因此,后吹是对未命中目标进行处理的手段。后吹会给转炉冶炼造成如下严重危害。(1)钢水碳含量降低,钢中氧含量升高,从而钢中夹杂物增多,降低了钢水纯净度,影响钢的质量。(2)渣中TFe增高、降低炉衬寿命。(3)增加了金属铁的氧化,降低钢水收得率,使钢铁料消耗增加。(4)延长了吹炼时间,降低转炉生产率。(5)增加了铁合金和增碳剂消耗量,氧气利用率降低,成本增加。 016,转炉日历利用系数? 转炉在日历时间内每公称吨每日所生产的合格钢产量。 转炉日历利用系数(吨/公称吨·日)=合格钢产量(吨)/(转炉公称吨×日历日数)

滑板的研究现状和趋势

滑板的研究现状和趋势 张珂 中钢集团洛阳耐火材料研究院有限公司 摘要 滑板作为滑动水口系统中的关键部件,使用条件极为苛刻,其性能的好坏直接影响到连铸过程中对钢水的控制以及连铸坯的质量。如何提高滑板的性能和使用寿命成为一个研究热点。文章总结了近年来有关滑板的研究工作,从材质和使用两方面对研究现状加以总结,并对研究的趋势作了展望。 关键词 滑板材质使用趋势 前言 滑动水口是炼钢连铸设备的重要部件,性能的好坏将直接影响到连铸过程钢水的控制,连铸坯的质量以及对钢水的污染等。随着连铸技术的推广,人们对滑动水口在可靠性和长寿化方面提出了更高的要求。 滑板是滑动水口系统中极为关键的构件,滑板的使用条件十分特殊,具体有:(1)需长时间与高温钢水接触;(2)在满足不同浇铸工艺要求的条件下,需反复经受钢水的化学侵蚀和物理冲刷;(3)需承受高温钢水剧烈的热冲击与开闭时滑板间的机械磨损等。因此,要求滑板必须具有高的强度与较好的抗热冲击性、抗侵蚀性、抗磨损性等,而且对滑板表面的平整度、平行度及尺寸等均有严格的技术要求。 关于滑板技术的研究较多,主要的研究热点有滑板的材质、滑板的热机械性能、低成本滑板生产工艺技术、滑板的形状结构、滑板的修补技术与滑板滑道面的润滑等。本文将从滑板的材质和滑板的使用两方面对现有的研究情况作一概括,探讨提高滑板性能和使用寿命的一些思路。 1滑板的材质 1.1高铝质滑板 最初开发的滑板是以烧结氧化铝和合成莫来石为主要原料,粘土作结合剂,

经高压成型,高温烧成,形成以刚玉、莫来石为主晶相的高铝质滑板。高铝质滑板首先采用合成原料,具有一定的抗侵蚀性和抗热冲击性。 这种滑板一般通过浸渍沥青,提高致密度,提高砖内残碳含量来提高抗渣侵蚀能力。同类型的还有在此基础上开发的刚玉—氧化铬质滑板,通过加入氧化铬可以提高抗侵蚀性。高铝质滑板制作工艺简单,成本低,具有一定的抗热震性和强度,可满足一般钢种的浇铸,但是使用寿命较短,一般只能用一次。另外高铝质滑板在浸渍沥青后,由于焙烧温度低,使用中有冒烟污染作业环境等缺点,现在已经不再对此类滑板进行研究。 1.2 Al2O3-(ZrO2-)C系列滑板 铝炭质滑板是70年代末期开发的产品,以烧结氧化铝和合成莫来石为主要原料,在基质部分添加炭素组分和防氧化剂(如金属铝、金属硅、SiC、B4C等),用沥青或酚醛树脂作为结合剂,混炼成型,在还原气氛下烧成,形成炭结合的耐火材料。铝炭质滑板分为不烧铝炭质滑板和烧成铝炭质滑板,烧成铝炭质滑板的热态强度和耐磨损性均高于不烧铝炭质滑板。 铝炭质滑板因组织致密,气孔微细,且含有一定数量的残碳,钢液和渣液难以润湿,故抗侵蚀性优良。但其缺点是在使用过程中,由于炭被氧化,导致滑板结构疏松,损毁加剧;其次,由于组织致密,抗热冲击性有所下降,多次连续使用中的开裂和滑动面磨损是制约其寿命提高的关键。 八十年代后期,为进一步提高滑板的使用寿命,又在烧成铝炭质滑板的基础上,研制开发了铝锆炭质滑板。这种材质滑板采用了低膨胀率的A1203-SiO2-ZrO2系原料,制成以斜锆石、莫来石、刚玉等为主晶相,以炭结合为特征的耐火材料。控制ZrO2加入量,利用ZrO2在升温和冷却时发生晶型转变(升温时,从1170℃开始,发生晶型转变(m-ZrO2→c-ZrO2),伴随体积收缩;冷却时,晶型转变(c-ZrO2→m-ZrO2)始于1000~850℃之间,伴随体积膨胀,体积变化量为 3.25%),伴有体积变化的特点,使材料内产生微裂纹,吸收引起裂纹扩展的应力,从而大大改善了材料的抗热震性能。ZrO2还具有优良的抗渣侵蚀性,使其较前两种滑板耐侵蚀性明显提高。此外采用板状刚玉做原料,由于其晶体内含有较多分布均匀的微气孔,这种结构提高了材料的抗热冲击性,从而也使滑板的抗开裂性能得到改善。

合金钢

合金钢 一、合金钢的分类 合金钢是在碳素钢的基础上,为改善钢的性能,在冶炼时有目的地加入一种或数种合金元素的钢。 1、按用途不同,合金钢可分为:低合金高强度结构钢、合 金结构钢、合金工具钢、特殊性能钢 2、按合金元素总含量的不同,合金钢可分为:低合金钢(合 金元素总质量分数低于5%)、中合金钢(金元素总质量 分数为5%--10%)、高合金钢(金元素总质量分数大于 10%) 二、合金钢的牌号及用途 1、低合金高强度结构钢 牌号:由Q、屈服强度、质量等级符号组成。例句:Q390A,表示:屈服强度为390MPa的A级低合金高强度结构钢 用途:制造桥梁、车辆、船舶、锅炉、高压容器、输油管、大型钢结构。 2、合金结构钢 牌号:采用两位数字+元素符号(或汉字)+数字表示。 例如:40Cr ,表示平均含碳量为0.4%、铬含量小于1.5%的合金结构钢;60SiMn,表示平均含碳量为0.6%、硅含量约为0.2%、锰含量小于1.5%的合金结构钢。 用途:制造各种工程结构和机械零件。

3、合金工具钢 牌号:①、含碳量小于1%时,用一位数字表示碳含量的千分数。例如:9SiCr,表示平均含碳量为0.9%、硅含量小于 1.5%、铬含量小于1.5%的合金工具钢。 ②、含碳量大于1%时,在钢牌号前不用数字表示碳含量。例如:Cr12MoV,表示平均含碳量大于1%、铬含量约为12%、钼含量小于1.5%、钒含量小于1.5%的合金工具钢。 用途:制造各种金属切削刀具。 4、特殊性能钢 ①不锈钢 牌号: A、含碳量大于0.1%时,用一位数字表示含碳量的千分数。例如:2Cr13,表示:含碳量为0.2%、铬含量为13%的不锈钢。 B、含碳量为0.03%--0.10%时,牌号前加0,例如:0Cr18Ni9。 C、含碳量小于0.03%时,牌号前加00,例如:00Cr30Mo2。用途:制造各种耐腐蚀零件。 ②专用钢 牌号:钢前加汉语拼音字母。例如:GCr15,表示用于制造滚动轴承的铬轴承钢 用途:轴承钢主要用于制造滚动轴承的滚动体(滚珠、滚柱、滚针)和内、外套圈等。

耐火滑板砖

1 前言 自70年代以来,滑动水口已成为钢铁工业快速发展的重要工艺技术革新之一[1]。现在国内外绝大多数钢包、中间包都装上了滑动水口系统。滑板砖是滑动水口的关键组成部分,是直接控制钢水、决定滑动水口功能的部件。滑板的制造工艺与以前的耐火材料不同,它具有钢水注入功能和流量调整功能,砖的制造除了混练、成型、烧成、检查这些工序以外,还有滑动面的机械加工,安装加工及外部整体调整工序。[2]。在使用过程中,由于需要长时期承受高温钢液的化学侵蚀和物理冲刷,激烈和瞬变的热冲击和机械 磨损作用,使用条件极为苛刻;同时,为实现自由开闭钢流,滑动面平整度及其板型尺寸均需严格要求。因此滑板必须具有高强度、耐磨损、耐渣蚀和热震稳定性好等特性。 2 现有滑板的性能 目前国内广泛使用的滑板材质主要是铝碳质和铝碳锆质;在日本和欧 洲还有镁碳质、尖晶石碳质、氧化锆质等。表1是5种材质滑板的成分的理化性能。 表1 铝碳质、铝碳锆质、镁碳质、尖晶石碳质、氧化锆质滑板的理化性 能 2.1 铝碳质滑板 铝碳质滑板是70年代末期开发的产品,以烧结氧化铝和合成莫来石为主要原料,在基质部分添加碳组份和防氧化剂(如金属铝、金属硅、SiC、B C、 4 Mg-B等),加入结合剂煤沥青或酚醛树脂混练成型;在还原气氛下烧成,形成碳结合的耐火材料[3]。这种材质的滑板因其组织致密,气孔微细,且含有一定数量的残碳,钢液和渣液难以浸渍,故耐侵蚀性良好,但其缺点正是由于

组织致密,耐热冲击性则有所下降,不能多次连续使用,其次,在使用过程中,由于碳易被氧化,导致结构疏松,降低了耐侵蚀性。 2.2 铝碳锆质滑板 铝碳锆质滑板[4~8]是在烧成铝碳质滑板的基础上研制开发的。这种材 质滑板采用了低膨胀率的Al 2O 3 -SiO 2 -ZrO 2 系原料,制成以斜锆石、莫来石、 刚玉等为主晶相,以碳结合为特征的耐火材料。首先引入锆莫来石做骨料,利用锆莫来石中的氧化锆在约1000℃时发生晶型转变,伴有体积收缩的特点,晶粒内产生显微裂纹,大大改善了材料的耐热冲击性能。其次ZrO 2 具有优良的抗侵蚀性,其耐侵蚀性较铝碳质滑板明显提高,成为现今大型钢铁企业滑板使用中的主流。 2.3 镁碳质滑板 在方镁石滑板基础上发展的MgO-C质滑板[9,10,11,12],克服了方镁石滑板抗热震性差的缺点。在浇钢温度高、时间长以及钢水中氧和钙含量高的条件下,镁碳质滑板也都获得了满意的使用结果。 2.4 尖晶石碳质滑板 尖晶石碳质滑板采用了镁铝尖晶石原料,制成以镁铝尖晶石为主晶相,以陶瓷和碳复合结合为特征的耐火材料。镁铝尖晶石材料的热膨胀系数和弹性模量均比氧化镁小,抗热冲击能力比氧化镁强。但尖晶石材料与钢中钙发生缓慢的化学反应,生成低熔点物,影响其使用寿命[10]。现在,通过对制造过程中原材料的改进,并对泥料的粒度分布及烧成温度加以改进和控制,镁尖晶石滑板的耐侵蚀性均有很大提高,使用寿命也明显增加。 2.5 氧化锆质滑板 氧化锆质材料具有良好的耐蚀性(CaO-ZrO 2 系液相线温度均在2000℃以上)和耐剥落性(比较低的热膨胀系数)。氧化镁部分稳定的氧化锆质滑板,可以在较苛刻的浇铸条件下使用,寿命最高可达10次[13,14,15]。采用热压成型的氧化锆质滑板具有高温强度高、显气孔率低、气孔径小等特点。在中间包上使用,更具有耐钢和渣的侵蚀性能[15]。 3 滑板的侵蚀机理 滑板用耐火材料因其结构、用途、使用条件等不同,显示出了不同的损坏形式。 (1)中间包用滑板与熔渣不发生相互作用; (2)中间包内钢水温度比钢包内钢水温度低40~80℃; (3)中间包用滑动水口装置的耐火材料预先加热到800℃左右,铸钢时,使用一次的温差是从开始的700~800℃至铸钢温度(1520~1560℃);而钢包滑动水口装置的耐火材料在铸钢开始前仅为100℃左右,每次使用时,一个周期的温差则是从100~400℃至今1600~1670℃。 这些因素都会引起钢包用滑板和中间包用滑板蚀损的形式和程度的不同,中间包用滑板受热震影响小,其损毁的主要原因是钢流造成的磨损或由于固定节流开闭时所引起的堵塞。 另外,滑板还由于浇铸的钢种不同和浇铸方法(模铸或连铸)不同,蚀损情况和蚀损程度也各不相同。表2、表3分别为宝钢一炼钢钢包和中间包用

耐火材料厂实习报告

实习报告 实习单位山东耐火材料有限公司 实习时间 学院 专业 班级 学生 学号 指导教师

摘要 本文叙述了本人在厂实习的经历及体会,学习理解耐火材料的实际生产流程,分析和掌握耐火材料生产过程中存在的问题以及如何改善和优化耐火材料的性能,同时了解工厂的管理体制及其经营的基本规律,并通过撰写实习报告,学会综合应用所学知识,提高应用专业知识的能力。为了更多地了解社会,为以后步入社火打下基础,在实践中接收教育,锻炼解决生产中实际问题的能力,通过在相关部门的实习,进一步理解了耐火材料的工艺过程,这对我的人生有很大的帮助。 关键词:耐火材料工艺工程

目录 摘要 .......................................................................................................................... - 1 - 前言 ............................................................................................................................ - 3 - 一、实习目的 .................................................................................................................. - 4 - 二、实习内容 .................................................................................................................. - 4 - 1.实习单位简介 ............................................................................................................... - 4 - 2.实习内容 .................................................................................................................... - 5 - 2.1 耐火材料的发展 ................................................................................................... - 5 - 2.2 耐火材料的种类 ................................................................................................... - 6 - 2.3 耐火材料产品 ....................................................................................................... - 7 - 2.4工艺流程 ................................................................................................................ - 9 - 2.5 主要设备及原理 ................................................................................................. - 10 - 三、实习总结与体会 .................................................................................................... - 14 -

耐火材料的生产工艺

2010级化学班孟享洁2010061415 耐火材料的制备 耐火材料是一种耐火度不低于1580℃,有较好的抗热冲击和化学侵蚀的能力、导热系数低和膨胀系数低的无机非金属材料。其主要是以铝矾土、硅石、菱镁矿、白云石等天然矿石为原料经加工后制造而成的。其应用是用作高温窑、炉等热工设备的结构材料,以及工业用高温容器和部件的材料,并能承受相应的物理化学变化及机械作用。主要是广泛用于冶金、化工、石油、机械制造、硅酸盐、动力等工业领域,在冶金工业中用量最大,占总产量的50%~60%。耐火材料的发展在国民工业生产的应用中有着举足轻重的地位。中国耐火材料的发展历史悠久,具有了较为完整的生产工艺,其当代的发展已经是能独立研发各种性能较为优越的耐火材料,但依然存在各种缺点和不足。其制备流程图如下所示: 耐火材料制备原理: 1.耐火原料的加工 原料的加工主要包括原料的精选提纯.均化或合成;原料的干燥和煅烧;原料的破粉碎和分级。 原料的精选提纯和均化为了提高原料的纯度,一般需经拣选或冲洗,剔除杂质,有的还需要采用适当选矿方法进行精选提纯。有的原料中成分不均,需要均化。 原料的煅烧:为了保证原料的高温体积稳定性。化学稳定性和高强度,多数天然原料和合成原料,需经高温煅烧制成熟料或熔融成熔块。烧结温度T约为其熔点的0.7~0.9倍。 原料的破粉碎和分级:原料的破粉碎的目的是按照配料要求制成不同粒级的颗粒及细粉,进行级配,使多组分间混合均匀,以便相互反应,并尽可能获得

致密的或具有一定粒状结构的制品胚体。 2耐火材料成型工艺 耐火材料借助于外力或模型,成为具有一定尺寸。形状和强度的胚体或制品的过程。压制或成型是耐火材料生产工艺过程中的重要环节。按胚料含水量的多少,分为半干法.可塑法.注浆法。 3耐火材料的干燥 干燥过程可分为三个阶段。在此之前有一个加热阶段。一般加热阶段时间很短,胚体温度上升到湿球温度。第二阶段是降速阶段,随着干燥时间的延长,或胚体含水量的减少,胚体表面的有效蒸发面积逐渐减少,干燥速度逐渐降低。第三阶段干燥速度逐渐接近零,最终胚体水分不再减少。 4耐火材料的烧成 烧成是耐火制品生产中最后一道工序。制品在烧成过程中发生一系列物理化学变化,随着这些变化的进行,气孔率降低,体积密度增大,使胚体变成具有一定尺寸.形状和结构强度的制品。 耐火材料的生产工艺 1原料的加工 原料的加工主要包括原料的精选提纯.均化或合成;原料的干燥和煅烧;原料的破粉碎和分级。 2配料与混练 配料组成:(1).化学组成:主成分,易熔杂质总量和有害杂质量的规定(2).颗粒配比(3).常温结合剂(4).原料中水分和灼减的换算。配料方法:重量:磅秤、自动称量称、称量车、电子称、光电数字显示称。容积:带式、板式、槽式、圆盘式、螺旋式、振动给料机。混练:使不同组分和粒度的物料同的物料同

相关文档
相关文档 最新文档