文档库 最新最全的文档下载
当前位置:文档库 › 专题 函数、导数与方程、不等式综合问题经典精讲-讲义

专题 函数、导数与方程、不等式综合问题经典精讲-讲义

专题 函数、导数与方程、不等式综合问题经典精讲-讲义
专题 函数、导数与方程、不等式综合问题经典精讲-讲义

函数、导数与方程、不等式综合问题经典精讲

主讲教师:王老师 北京市重点中学数学特级教师

金题精讲

题1:函数)1ln(4

1)(2x x x f --=的单调增区间为 . 题2:设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处

的切线与y 轴相交于点()0,6.

(1)确定a 的值和函数()f x 的定义域;

(2)求函数()f x 的单调区间与极值。

题3:已知函数()e x f x x =- (e 为自然对数的底数) .

(1)求()f x 的最小值;

(2)求证:11

1

(1)2312111n n e e e

n n +??+++>+-+ (3)设*n ∈N ,证明:1e e 1n

n k k n =??< ?-?

?∑.

题4:已知函数)ln()(m x e x f x +-=.

(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;

(2)当2m ≤时,证明:()0f x >.

函数、导数与方程、不等式综合问题经典精讲

讲义答案

金题精讲

题1:(-1 , 1)

题2:(1)12

a =

,定义域为(0,)+∞. (2)由(1)知21()(5)6ln 2

f x x x =-+, 所以6(2)(3)()5(0)x x f x x x x x --'=-+=>, 由()0f x '=解得2x =或3x =,'(),()f x f x 的情况如下:

所以()f x 的单调增区间是(02),、(3,)+∞,单调减区间是(2,3);

极大值为:9(2)6ln 22

f =+,极小值为:(3)26ln 3f =+. 题3:(1)1.

(2)证明:由(1)知,e

1x x -≥,即e 1x x ≥+,当且仅当0x =时,等号成立,所以 左边11111111111(1)1223(1)2231

n n n n n >++++++=+-+-++-??++ 111

n n =+-+,故原不等式成立. (3)由(1)知,e

1x x ≥+,两边同时取对数得:ln(1)x x ≥+,所以1ln x x -≥, 所以ln()ln (1)n k k k n n k n n n n =≤-=-,所以()e n k n k n

-≤,当且仅当k n =时等号成立, 所以左边1112e (1e )e e e e e e 1e 1e e 1

n n n n n n n -------<+++==<--- ,故原不等式成立. 题4:(1)1m =,

当(1,0)x ∈-时,

()0f x '<,()f x 在(1,0)-上单调递减, 当(0,)x ∈+∞时,()0f x '>,()f x 在(0,)+∞上单调递增;

(2)证明:当2m ≤,(,)x m ∈-+∞时,ln()ln(2)x m x +≤+, 故只需证明当2m =时,

()e ln(2)0x f x x =-+>,即证e ln(2)x x >+. 构造函数ln(1)y x x =+-,11(1)11x y x x x -'=

-=>-++, 当(1,0)x ∈-时,0y '>,y 在(1,0)-上单调递增,

当(0,)x ∈+∞时,

0y '<,y 在(0,)+∞上单调递减, 所以当0x =时,y 取得最大值,max 0y =,即ln(1)0x x +-≤,ln(1)x x +≤,

所以1e x x +≤;ln(2)1x x +≤+,所以e 1ln(2)x x x ≥+≥+,

又因为两个不等号不能同时取等,所以e

ln(2)x x >+.故原不等式成立.

2021年高考数学复习《导数---泰勒不等式专题》

导数——泰勒不等式专题 一、泰勒公式: 泰勒公式,也称泰勒展开式,主要是用于求某一个复杂函数在某点的函数值。如果一个函数足够平滑,即若函数)(x f 在包含0x 的某个闭区间],[b a 具有n 各阶导数,且在开区间),(b a 上存在1+n 阶导数,则对],[b a 上任意一点x ,有 ).()(! )()(!2)()(!1)(!0)()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= 其中)(x R n 为泰勒展开式的余项,泰勒展开式也叫泰勒级数. 我们更多的是用泰勒公式在00=x 的特殊形式: )(!) 0(!2) 0( !1)0(!0)0()(2 2x R x n f x f f f x f n n +++''+'+= .以下列举一些常见函数的泰勒公式: ++++=32!31 !21 !11 1x x x e x ① +-+-=+4324 1 3121 )1ln(x x x x x ② +-+-=753!71!51!31sin x x x x x ③ -+-=4 2!41!211cos x x x ④ ++++=-32111x x x x ⑤从中截取片段,就构成了高考数学考察导数的常见不等式: x e x +≥1①; 1ln -≤x x ②; 212 x x e x ++≥③对0≥x 恒成立; x x x x ≤+≤+)1ln(1④对0≥x 恒成立; x x x x ≤≤-sin 63 ⑤对0≥x 恒成立; 2421cos 214 22x x x x +-≤≤-⑥对0≥x 恒成立

一次函数与一次方程一次不等式

13.3 一次函数与一次方程、一次不等式 ◆知识概述 1、通过简单的实例发现并了解一次函数、一元一次方程与一元一次不等式之间的联系. 2、通过用函数观点处理方程(组)与不等式问题,体验用函数观点认识问题和处理问题的意义和方法,进一步体验数与形的相互联系的紧密性和相互转化的灵活性. 3、任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值. 4、任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0 (a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 5、一次函数y=kx+b与一元一次方程kx+b=0和一元一次不等式的关系:函数y=kx+b的图象在x轴上方点所对应的自变量x的值,即为不等式kx+b>0的解集;在x轴上所对应的点的自变量的值即为方程kx+b=0的解;在x轴下方所对应的点的自变量的值即为不等式kx+b<0的解集. ◆典型例题 例1、若正比例函数y=(1-2m)x的图象经过点A(x,y)和点B(x,y),当x<x时,y>1211212 >.m< 0C<mO B.m>.mD),则ym的取值范围是( A.2答案:D.例2、一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解读式为____________. 分析: 本题分两种情况讨论:①当k>0时,y随x的增大而增大,则有:当x=-3,y=-5;当x =6中可得b +,把它们代入y=-2y=kx时,=x-y∴∴函 数解读式为4. 1 / 7 ②当k

构造函数法证明导数不等式的八种方法Word版

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

利用导数解决不等式恒成立中的参数问题学案

利用导数解决不等式恒成立中的参数问题 一、单参数放在不等式上型: 【例题1】(07全国Ⅰ理)设函数()x x f x e e -=-.若对所有0x ≥都有()f x ax ≥,求a 的取值范围. 解:令()()g x f x ax =-,则()()x x g x f x a e e a -''=-=+-, (1)若2a ≤,当0x >时,()20x x g x e e a a -'=+->-≥,故()g x 在(0,)+∞上为增函数, ∴0x ≥时,()(0)g x g ≥,即()f x ax ≥. (2)若2a >,方程()0g x '=的正根为1x = 此时,若1(0,)x x ∈,则()0g x '<,故()g x 在该区间为减函数. ∴1(0,)x x ∈时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(,2]-∞. 说明:上述方法是不等式放缩法. 【针对练习1】(10课标理)设函数2 ()1x f x e x ax =---,当0x ≥时,()0f x ≥,求a 的取值范围. 解: 【例题2】(07全国Ⅰ文)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (1)求a 、b 的值;(2)若对于任意的[0,3]x ∈,都有2()f x c <成立,求c 的取值范围. 解:(1)2()663f x x ax b '=++, ∵函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=. 即6630241230a b a b ++=?? ++=? ,解得3a =-,4b =. (2)由(1)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--. 当(0,1)x ∈时,()0f x '>;当(1,2)x ∈时,()0f x '<;当(2,3)x ∈时,()0f x '>. ∴当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[0,3]x ∈时,()f x 的最大值为(3)98f c =+. ∵对于任意的[0,3]x ∈,有2()f x c <恒成立,∴298c c +<,解得1c <-或9c >, 因此c 的取值范围为(,1)(9,)-∞-+∞. 最值法总结:区间给定情况下,转化为求函数在给定区间上的最值. 【针对练习2】(07重庆理)已知函数44 ()ln (0)f x ax x bx c x =+->在1x =处取得极值3c --,其中 a 、b 、c 为常数. (1)试确定a 、b 的值;(2)讨论函数()f x 的单调区间; (3)若对任意0x >,不等式2()2f x c ≥-恒成立,求c 的取值范围.

最新中考专题复习-二次函数与方程(组)或不等式

中考专题复习 二次函数与方程(组)或不等式 ◆知识讲解 (1)最大值或最小值的求法 第一步确定a 的符号:a>0有最小值,a<0有最大值;第二步求顶点,?顶点的纵坐标即为对应的最大值或最小值. (2)y 轴与抛物线y=ax 2+bx+c 的交点为(0,c ). (3)与y 轴平行的直线x=h 与抛物线y=ax 2+bx+c 有且只有一个交点(h ,ah 2+bh+c ). (4)抛物线与x 轴的交点. 二次函数y=ax 2+bx+c 的图像与x 轴的两个交点的横坐标x 1,x 2是对应的一元二次方程ax 2+bx+c=0的两个实数根.抛物线与x ?轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点?△>0?抛物线与x 轴相交. ②有一个交点(顶点在x 轴上)?△=0?抛物线与x 轴相切; ③没有交点?△<0?抛物线与x 轴相离. (5)平行于x 轴的直线与抛物线的交点. 同(4)一样可能有0个交点,1个交点,2个交点.当有2个交点时,?两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2+bx+c=k 的两个实数根. (6)一次函数y=kx+n (k≠0)的图像L 与二次函数y=ax 2+bx+c (a≠0)的图像G 的交点,由方程组2y kx n y ax bx c =+??=++?的解的数目确定:①当方程组有两组不同的解时?L 与G 有两个交点;②方程组只有一组解时?L 与G 只有一个交点;③方程组无解时?L 与G 没有交点. (7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x 轴的交点,?再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分.

方程不等式与一次函数专题(实际应用)

方程、不等式与一次函数专题练习(实际应用) 题型一:方程、不等式的直接应用 典型例题1:(2009,株洲)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知: 在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分.... 每份可得0.2元. (1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份. (2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内. 典型例题2:(2007,福州,10分)李晖到“宁泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息: 假设月销售件数为x 件,月总收入为y 元,销售1件奖励a 元,营业员月基本工资 为b 元. (1)求a ,b 的值; (2)若营业员小俐某月总收入不低于1800元,则小俐当月至少要卖服装多少件? 配套练习: 3、(2009,益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元 买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格; (2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运 会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出. 4、(2009,济南)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五 月份的工资情况信息: (1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元? (2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品? 5、(2009,青岛)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=?利润成本 ) 题型二:方案设计 典型例题6、(2009,深圳)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆. (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元? 典型例题7:(2008、湖北咸宁)“5、12”四川汶川大地震的灾情牵动全国人民的心,某市A 、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区。已知A 蔬菜基地有蔬菜200吨,B 蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C 、D 两个灾民安置点。从A 地运往C 、D 两处的费用分别为每吨20元和25元,从B 地运往C 、D 两处的费用分别为每吨15元和18元。设从地运往处的蔬菜为x 吨。 x 的值; ⑵、设A 、B 两个蔬菜基地的总运费为w 元,写出w 与x 之间的函数关系式,并求总运费最小的调运方案; ⑶、经过抢修,从B 地到C 地的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余路线的运费不变,试讨论总运费最小的调运方案。

3 用导数证明函数不等式的四种常用方法

用导数证明函数不等式的四种常用方法 本文将介绍用导数证明函数不等式的四种常用方法. 例1 证明不等式:)0)1ln(>+>x x x (. 证明 设)0)(1ln()(>+-=x x x x f ,可得欲证结论即()(0)(0)f x f x >>,所以只需证明函数()f x 是增函数. 而这用导数易证: 1()10(0)1 f x x x '=- >>+ 所以欲证结论成立. 注 欲证函数不等式()()()f x g x x a >>(或()()()f x g x x a ≥≥),只需证明()()0()f x g x x a ->>(或()()0()f x g x x a -≥≥). 设()()()()h x f x g x x a =->(或()()()()h x f x g x x a =-≥),即证()0()h x x a >>(或()0()h x x a ≥≥). 若()0h a =,则即证()()()h x h a x a >>(或()()()h x h a x a ≥≥). 接下来,若能证得函数()h x 是增函数即可,这往往用导数容易解决. 例2 证明不等式:)1ln(+≥x x . 证明 设()ln(1)(1)f x x x x =-+>-,可得欲证结论即()0(1)f x x >>-. 显然,本题不能用例1的单调性法来证,但可以这样证明:即证)1)(1ln()(->+-=x x x x f 的最小值是0,而这用导数易证: 1()1(1)11 x f x x x x '=-=>-++ 所以函数()f x 在(1,0],[0,)-+∞上分别是减函数、增函数,进而可得 min ()(1)0(1)f x f x =-=>- 所以欲证结论成立. 注 欲证函数不等式()()()(,f x g x x I I >≥∈是区间),只需证明()()()0(f x g x x I ->≥∈.

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

专题09导数与不等式的解题技巧

专题09导数与不等式的解 题技巧 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

专题导数与不等式的解题技巧 一.知识点 基本初等函数的导数公式 ()常用函数的导数 ①()′=(为常数); ②()′=; ③()′=;④′=; ⑤()′=. ()初等函数的导数公式 ①()′=;②( )′=; ③( )′=;④()′=; ⑤()′=;⑥( )′=; ⑦()′=. .导数的运算法则 ()[()±()]′=; ()[()·()]′=; ()′=. .复合函数的导数 ()对于两个函数=()和=(),如果通过变量,可以表示成的函数,那么称这两个函数(函数=()和=())的复合函数为=(()). ()复合函数=(())的导数和函数=(),=()的导数间的关系为,即对的导数等于对的导数与对的导数的乘积. 二.题型分析 (一)函数单调性与不等式 例.【一轮复习】已知函数()=+,∈(-,),则满足(-)+(-)>的的取值范围是( ).(,) .(,) .(,) .(,) 【答案】 【分析】在区间(﹣,)上,由(﹣)=﹣(),且′()>可知函数()是奇函数且单调递增,由此可求出的取值范围.

【点睛】本题考查了判断函数的奇偶性和单调性的问题,综合运用了函数的奇偶性和单调性解不等式进行合理的转化,属于中档题. 练习.对任意,不等式恒成立,则下列不等式错误的是().. .. 【答案】 【分析】构造函数,对其求导后利用已知条件得到的单调性,将选项中的角代入函数中,利用单调性化简,并判断正误,由此得出选项. 【解读】构造函数,则,∵,∴ ,即在上为增函数,则,即 ,即,即,又,即, 即,故错误的是.故选:. 【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有,也含有其导数的不等式,根据不等式的结构,构造出相应的函数.如已知是,可构造,可得 . (二)函数最值与不等式

函数导数不等式(含答案)

函数、导数和不等式 1i.(北京卷8)某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高.m值为() A.5 B.7 C.9 D.11 由已知中图象表示某棵果树前n年的总产量S与n之间的关系,可 分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答 案. 解答:解:若果树前n年的总产量S与n在图中对应P(S,n)点 则前n年的年平均产量即为直线OP的斜率 由图易得当n=9时,直线OP的斜率最大 即前9年的年平均产量最高, 故选C 2ii(北京卷14) 已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件: ①x∈R,f(x)<0或g(x)<0; ②x∈(-∞,-4),f(x)g(x)<0. 则m的取值范围是________. iii 3(全国卷10) 已知函数y=x2-3x+c的图像与x轴恰有两个公共点,则c=() (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1 求导函数可得y′=3(x+1)(x-1) 令y′>0,可得x>1或x<-1;令y′<0,可得-1<x<1; ∴函数在(-∞,-1),(1,+∞)上单调增,(-1,1)上单调减 ∴函数在x=-1处取得极大值,在x=1处取得极小值 ∵函数y=x^3-3x+c的图象与x轴恰有两个公共点

∴极大值等于0或极小值等于0 ∴1-3+c=0或-1+3+c=0 ∴c=-2或2 4iv (福建卷9)若函数y=2x 图像上存在点(x ,y )满足约束条件30,230,,x y x y x m +-≤??--≤??≥? ,则实数m 的最大值为( )A . 12 B.1 C. 32 D.2 解:约束条件 x +y ?3≤0 x ?2y ?3≤0 x ≥m 确定的区域为如图阴影部分,即△ABC 的边与其内部区域, 分析可得函数y=2x 与边界直线x+y=3交与点(1,2), 若函数y=2x 图象上存在点(x ,y )满足约束条件, 即y=2x 图象上存在点在阴影部分内部, 则必有m≤1,即实数m 的最大值为1, 故选B . 5v .(湖北卷9)函数f (x )=xcosx 2在区间[0,4]上的零点个数为( ) A.4 B.5 C.6 D.7 f(x)=xcosx2,0<=x<=4,0<=x2<=16<5.5π x=0是零点之一 cos2x=0,cosx=0,x=π/2或者x=3π/2或者x=5π/2或者x=7π/2或者x=9π/2 所以:零点共有6个 6vi (江苏卷13)已知函数2 ()(,)f x x ax b a b R =++∈的值域为[)0,+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为

导数与不等式专题一

导数与不等式专题一 1. (优质试题北京理18倒数第3大题,最值的直接应用) 已知函数。 ⑴求的单调区间; ⑵若对于任意的,都有 ≤,求的取值范围. 解:⑴,令, 当时,与的情况如下: 所以,的单调递增区间是和:单调递减区间是, 当时,与的情况如下: 所以,的单调递减区间是和:单调递增区间是。 ⑵当时,因为11 (1)k k f k e e ++=>,所以不会有 当时,由(Ⅰ)知在上的最大值是, 所以等价于,解 综上:故当时,的取值范围是[,0]. 2 ()()x k f x x k e =-()f x (0,)x ∈+∞()f x 1e k 221()()x k f x x k e k '=-()0,f x x k '==±0k >()f x ()f x '()f x (,)k -∞-(,)k +∞(,)k k -0k <()f x ()f x '()f x (,)k -∞(,)k -+∞(,)k k -0k >1(0,),().x f x e ?∈+∞≤0k <()f x (0,)+∞2 4()k f k e -=1(0,),()x f x e ?∈+∞≤24()k f k e -= 1 e ≤10.2k -≤<1(0,),()x f x e ?∈+∞≤ k 1 2 -

2. (优质试题天津理20倒数第3大题,最值的直接应用,第3问带有小的处理技巧) 已知函数,其中. ⑴若曲线在点处切线方程为,求函数的解析式; ⑵讨论函数的单调性; ⑶若对于任意的,不等式在上恒成立,求的取值范围. 解:⑴,由导数的几何意义得,于是. 由切点在直线上可得,解得. 所以函数的解析式为. ⑵. 当时,显然(),这时在,上内是增函数. 当时,令,解得 当变化时,,的变化情况如下表: + 0 - - 0 + ↗ 极大 值 ↘ ↘ 极小值 ↗ ∴在,内是增函数,在,内是减函数. ⑶由⑵知,在上的最大值为与的较大者,对于任意的 ,()()0≠++= x b x a x x f R b a ∈ ,()x f y =()( )2,2f P 13+=x y ()x f ()x f ??????∈2,21a ()10≤x f ?? ? ???1,41b 2()1a f x x '=- (2)3f '=8a =-(2,(2))P f 31y x =+27b -+=9b =()f x 8 ()9f x x x =-+2 ()1a f x x '=- 0a ≤()0f x '>0x ≠()f x (,0)-∞(0,)+∞0a >()0f x '=x =x ()f x '()f x x (,-∞()+∞()f x '()f x ()f x (,-∞)+∞((0,)+∞()f x 1[,1]41()4f (1)f 1 [,2]2 a ∈

函数、方程、不等式之间的关系

很多学生在学习中把函数、方程和不等式看作三个独立的知识点。实际上,他们之间的联系非常紧密。如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。 ★函数与方程之间的关系。 先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。这个方程的解也就是原先的函数图像与x 轴交点的横坐标。这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。举例说明如下: 例如函数23y x =-的图像如右所示: 该函数与x 轴的交点坐标为3 (,0)2 ,也就是在函数 解析式23y x =-中,令0y =即可。令0y =也 就意味着将一元一次函数23y x =-变成了一元 一次方程230x -=,其解和一次函数与x 轴的交 点的横坐标是相同的。接下来推广到二次函数: 例如函数2 252y x x =-+的图像如右图所示: 很容易验证,该函数图象与x 轴的交点的横坐标 正是方程2 2520x x -+=的解。 如果右边的函数图象是通过列表、描点、连线 的方式作出来的,虽然比较精确,但过程十分繁琐。 在实际中,很多时候并不要求我们把函数图象作得 很精准。有时候只需要作出大致图像即可。 既然上面讲述了函数图象与对应的方程之间 的关系,我们可不可以通过利用方程的根来绘制 对应的函数图象呢 函数2 252y x x =-+对应的方程是2 2520x x -+=,先求出这个方程的两个解。很容 易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为 1 2 和2。这样,根据函数

2-3-23函数、导数与不等式、解析几何、数列型解答题

高考专题训练二十三 函数、导数与不等式、解析几何、数列型解答题 班级_______ 姓名_______ 时间:45分钟 分值:72分 总得分________ 1.(12分)(2011·成都市高中毕业班第二次诊断性检测)设△ABC 的三内角A 、B 、C 所对应的边长分别为a 、b 、c ,平面向量m =(cos A ,cos C ),n =(c ,a ),p =(2b,0),且m ·(n -p )=0. (1)求角A 的大小; (2)当|x |≤A 时,求函数f (x )=sin x cos x +sin x sin ? ?? ?? x -π6的值域. 解:(1)m ·(n -p )=(cos A ,cos C )·(c -2b ,a ) =(c -2b )cos A +a cos C =0 ?(sin C -2sin B )cos A +sin A cos C =0?-2sin B cos A +sin B =0. ∵sin B ≠0,∴cos A =12?A =π3 . (2)f (x )=sin x cos x +sin x sin ? ????x -π6=1 2 sin x cos x +32sin 2x =14sin2x +32·1-cos2x 2=34+1 4sin2x - 34cos2x =34+12sin ? ?? ?? 2x -π3. ∵|x |≤A ,A =π3,∴-π3≤x ≤π3-π≤2x -π3≤π3∴-1≤sin ? ????2x -π3≤32?3-24≤34+12sin ? ????2x -π3≤3 2. ∴函数f (x )的值域为[3-24,3 2 ].

利用导数解决不等式问题

考点43 利用导数解决不等式问题 1.(13天津T8)设函数2()e 2,()ln 3x x g x x x x f +-=+-=. 若实数,a b 满足()0,()0f a g b ==, 则( ) A. ()0()g a f b << B. ()0()f b g a << C. 0()()g a f b << D. ()()0f b g a << 【测量目标】利用导数解决不等式问题. 【考查方式】已知两个函数,通过导数判断函数的单调性,比较值的大小. 【试题解析】首先确定b a ,的取值范围,再根据函数的单调性求解. ()e 10x f x '=+>,∴()x f 是增函数. (步骤1) ∵()x g 的定义域是()0,+∞,∴()120,g x x x '=+> ∴()x g 是()0,+∞上的增函数. (步骤2) ∵()010,(1)e 10,0 1.f f a =-<=->∴<<(步骤3) (1)20,g =-<(2)ln 210,12,()0,()0.g b f b g a =+>∴<<∴><(步骤4) 2.(13湖南T21)(本小题满分13分)已知函数21()e 1x x f x x -= +. ⑴求()f x 的单调区间; ⑵证明:当时1212()()()f x f x x x =≠时,120x x +<. 【测量目标】导数的运算,导数研究函数的单调性,导数在不等式证明问题中的应用. 【考查方式】考查导数的运算、利用导数求函数单调区间的方法、构造函数判断函数大小的方法. 【试题解析】⑴ 函数的定义域,-∞+∞(), 2211()e e 11x x x x f x x x '--??'=+ ?++?? 222(11)e 1)(1)e 21)x x x x x x x -+-?+--?=+((22232e 1)x x x x x --+=?+((步骤1) 22420?=-?<,∴当(,0)x ∈-∞时,()0,()f x y f x '>=单调递增,

导数中不等式相关的几个问题

导数中“不等式”相关的几个问题 f (x )=ln(1+ax ) -2x x +2 . 专题二:不等式两边“变量”相同且不含参 1. (2016年山东高考)已知.当时,证明对于任意的成立. 2. (2016年全国II 高考)讨论函数的单调性,并证明当时,; 专题三:不等式两边不同“变量”的任意存在组合型 1. 已知函数f (x )=x -1 x +1 ,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使 f (x 1)≥ g (x 2),则实数a 的取值范围是__________ 2. 已知函数.设当时,若()2 21 ()ln ,R x f x a x x a x -=-+ ∈1a =()3 ()'2 f x f x +>[]1,2x ∈x x 2f (x)x 2 -= +e 0x >(2)20x x e x -++>1()ln 1a f x x ax x -=-+ -()a R ∈2()2 4.g x x bx =-+1 4 a =

对任意,存在,使,求实数取值范围. 专题四:不等式两边不同“变量”的对等构造、齐次消元型 类型1:对称变量,构造法求解 1. 已知函数f(x)= 2 1x 2 -ax+(a-1)ln x ,1a >。 (1)讨论函数()f x 的单调性; (2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有 1212 ()() 1f x f x x x ->--。 2. 已知函数 (I )讨论函数的单调性; (II )设.如果对任意,,求的 取值范围。 3. 设函数f (x )=ln x +m x ,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x 3 零点的个数; (3)若对任意b >a >0,f (b )-f (a ) b -a <1恒成立,求m 的取值范围. 4. 当()1,,n m n m Z >>∈,时,证明:( )()m n n m mn nm > 1(0,2)x ∈[]21,2x ∈12()()f x g x ≥b 1ln )1()(2 +++=ax x a x f )(x f 1-

函数方程不等式综合应用专题

2011年中考复习二轮材料 函数、方程、不等式综合应用专题 一、专题诠释 函数思想就是用联系和变化的观点看待或提出数学对象之间的数量关系。函数是贯穿在中学数学中的一条主线;函数思想方法主要包括建立函数模型解决问题的意识,函数概念、性质、图象的灵活应用等。函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。也体现了函数图像与方程、不等式的内在联系,在初中阶段,应该深刻认识函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学生学习的基本指导思想,这也是初中阶段数学最为重要的内容之一。而新课程标准中把这个联系提到了十分明朗、鲜明的程度。因此,第二轮中考复习,对这部分内容应予以重视。 这一专题,往往以计算为主线,侧重决策问题,或综合各种几何知识命题,近年全国各地中考试卷中占有相当的分量。这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想。解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。 二、解题策略和解法精讲 函数与方程、函数与不等式密不可分,紧密联系。 利用kx+b=0或ax2+bx+c=0可以求函数与x轴的交点坐标问题,利用Δ与0的关系可以判定二次函数与x轴的交点个数等。等式与不等式是两种不同的数量关系,但在一定条件下又是可以转化的,如一元二次方程有实数根,可得不等式Δ≥0等。 一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)的解,所对应的坐标(-b/a,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;?直线y=ax+b在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解. 一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标。 两条直线的位置关系与二元一次方程组的解: (1)二元一次方程组有唯一的解直线y=k1x+b1不平行于直线y=k2x+b2 k1≠k2.(2)二元一次方程组无解直线y=k1x+b1∥直线y=k2x+b2 k1=k2,b1≠b2. (3)二元一次方程组有无数多个解直线y=k1x+b1与y=k2x+b2重合k1=k2,b1=b2.在复习中,本专题应抓好两个要点:第一个要点是各个内容之间相关概念之间的联系、第二个要点是各个内容之间相关性质之间的联系,以期在综合运用中灵活把握。 三、考点精讲 考点一:函数与方程(组)综合应用 例1.(2010广西梧州)直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b =0的解是x=______ 【分析】∵直线y=2x+b与x轴的交点坐标是(2,0),则x=2时,y=0,∴关于x的方程2x+b=0的解是x=2。

专题__一次函数与方程和不等式典型题

一次函数与方程和不等式典型练习 1、一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为( ) A .x =2 B .y =2 C .x =1- D .y =1- 2、一次函数y =ax +b 的图象如图所示,则不等式ax +b >0的解集是( ) A .x <-2 B .x >-2 C .x <1 D .x >1 3、已知一次函数y =ax +b 的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式a (x -1)-b >0的解集为( ) A .x <-1 B .x >-1 C .x >1 D .x <1 4、如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二 元一次方程组y ax b y kx =+=??? 的解是 . 5、(1)已知关于x 的方程mx +n =0的解是x =-2,那么,直线y =mx +n 与x 轴的交点坐标是 . (2)如图,在平面直角坐标系中,直线AB :y =kx +b 与直线OA :y =mx 相交于点A (-1,-2),则关于x 的不等式kx +b <mx 的解是 .

6、(1)已知方程2x+1=-x+4的解是x=1,那么,直线y=2x+1与直线y=-x+4的交点坐标是__ __ . (2)在平面直角坐标系中,直线y=kx+1关于直线x=1对称的直线l刚好经过点(3,2),则不等式3x>kx+1的解集是__ __ . (3)如图,直线l1、l2交于点A,试求点A的坐标. 8、如图,已知一次函数的图象经过点A(-1,0)、B(0,2). (1)求一次函数的关系式; (2)设线段AB的垂直平分线交x轴于点C,求点C的坐标. 9、如图,已知直线y=kx+b经过点A(1,4),B(0,2),与x轴交于点C,经过点D(1, 0)的直线DE平行于OA,并与直线AB交于点E. (1)求直线AB的解析式; (2)求直线DE的解析式; (3)求△EDC的面积. 10、在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP 为等腰三角形,则符合条件的点P的个数为个. 11、在平面直角坐标系中,点A、B的坐标分别为(2,0)、(2,4),点P在坐标轴上,△ABP是等腰三角形,符合条件的点P共有个.

2021-2022年高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第2讲不等式问题练习

2021年高考数学二轮复习上篇专题整合突破专题一函数与导数不等 式第2讲不等式问题练习 一、填空题 1.(xx·苏州调研)已知f (x )=???x 2 +x (x ≥0),-x 2 +x (x <0), 则不等式f (x 2 -x +1)<12的解集是________. 解析 依题意得,函数f (x )是R 上的增函数,且f (3)=12,因此不等式f (x 2-x +1)<12等价于x 2-x +1<3,即x 2-x -2<0,由此解得-1<x <2. 因此,不等式f (x 2 -x +1)<12的解集是(-1,2). 答案 (-1,2) 2.若点A (m ,n )在第一象限,且在直线x 3+y 4 =1上,则mn 的最大值是________. 解析 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n >0,且m 3+n 4 =1, 所以m 3·n 4≤2 342m n ?? + ? ? ? ?? ? ???? 当且仅当m 3=n 4=12,即m =32,n =2时,取“=”,所以m 3·n 4≤? ????122=1 4,即mn ≤3,所以mn 的最大值为3. 答案 3 3.(xx·苏北四市模拟)已知函数f (x )=???x 2 +2x ,x ≥0, x 2-2x ,x <0, 若f (-a )+f (a )≤2f (1),则 实数a 的取值范围是________. 解析 f (-a )+f (a )≤2f (1)?

???a ≥0, (-a )2-2×(-a )+a 2 +2a ≤2×3或 ?? ?a <0, (-a )2+2×(-a )+a 2-2a ≤2×3 即???a ≥0,a 2+2a -3≤0或???a <0,a 2-2a -3≤0, 解得0≤a ≤1,或-1≤a <0. 故-1≤a ≤1. 答案 [-1,1] 4.已知函数f (x )=???log 3 x ,x >0, ? ?? ??13x ,x ≤0,那么不等式f (x )≥1的解集为________. 解析 当x >0时,由log 3x ≥1可得x ≥3,当x ≤0时,由? ?? ??13x ≥1可得x ≤0,∴不等 式f (x )≥1的解集为(-∞,0]∪[3,+∞). 答案 (-∞,0]∪[3,+∞) 5.(xx·南京、盐城模拟)若x ,y 满足不等式组???x +2y -2≥0, x -y +1≥0,3x +y -6≤0, 则 x 2+y 2的最小值是 ________. 解析 不等式组所表示的平面区域如图阴影部分所示, x 2+y 2表示原点(0,0)到此区域内的点P (x ,y )的距离. 显然该距离的最小值为原点到直线x +2y -2=0的距离. 故最小值为|0+0-2|12+22=25 5.

相关文档
相关文档 最新文档