文档库 最新最全的文档下载
当前位置:文档库 › 泥水平衡盾构施工

泥水平衡盾构施工

土压平衡盾构与泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的结构原理 傅德明 上海市土木工程学会 1 土压平衡盾构的结构原理 土压平衡盾构的基本原理 土压平衡盾构属封闭式盾构。盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。当土体充满土舱时,其被动土压与掘削面上的土、水压基本相同,故掘削面实现平衡(即稳定)。示意图如图所示。由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。由装在螺旋输送机排土口 处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。 1.1.1 稳定掘削面的机理及种类 土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。通常可分为粘性土和砂质土两类,这里分别进行叙述。 1.1.1.1 粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2 砂质土层掘削面的稳定机理 就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。 1.1.1.3 土压盾构的种类 按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。 表1 土压盾构的种类 图1 土压盾构基本形状

盾构施工质量控制要点

盾构施工质量控制要点 一、盾构法隧道施工质量控制要点 (一)审查盾构施工总体方案,需重点注意的内容 1.施工场地总平面布置图; 2.盾构推进方案(始发、掘进、到站或掉头); 3.盾构推进计划; 4.管片的质量控制; 5.施工测量方案、沉降监测方案; 6.同步注浆和二次补浆的质量控制; 7.盾构设备性能参数及操作方法; 8.出土方案和弃土安排; 9.端头和联络通道地层加固方案; 10.建筑物、管线等调查及保护方案; 11.补充地质勘探方案; 12.洞门密封及处理方案; 13.盾构设备组装调试; (二)进场设备检查 应对进入施工现场的各种设备进行检查,包括注浆设备、起吊设备、管片运输设备、管片防雨设施、给排水系统、供电设备等。在盾构始发井前,这些设备应处于可正常工作的状态。 (三)控制测量复核 盾构施工前,应对所使用的水准点和控制点进行复核,确认

没问题后才可使用。 (四)临时管片安装和盾构设备推进前的检查 应对以下方面进行检查,确认没问题后,才可以开始安装临时管片和进行盾构设备推进。 1.盾构设备定位; 2.反力架安装; 3.洞口橡胶密封条和端墙凿除; 4.临时管片固定方式; 5.盾构设备操作方式; 6.同步注浆和二次补浆方式; 7.垂直运输和水平运输设备及其运输方法; (五)盾构设备掘进与管片拼装检查 1.在盾构设备推进前,承包商应提交详细的施工进度安排 报监理和业主批准; 2.监理应通过承包商提供的施工进度报表和现场检查来判 断盾构设备的掘进与管片拼装的情况,出现异常情况时 须及时分析原因,必要时采取相应措施; (六)进场管片检查 1.要求承包商在管片安装之前,必须有专人对以下内容进 行检查,并填写检查表(检查表应有承包商提交给监理 备案):(1)管片表面损坏情况;(2)管片生产日期;(3) 管片类型编号;(4)止水带封条的粘贴(位置和牢固性);

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研究

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研 究 摘要:本文以南京纬三路过江隧道工程超大直径泥水平衡盾构机穿越江中深槽段施工为例,通过对风险源的分析与应对措施研究,提出了超大泥水平衡盾构长距离穿越深水浅覆土地区应对措施。 1.工程背景 南京纬三路过江通道工程采用直径14.93m泥水平衡盾构,盾构穿越江中深槽段总长度为586m,该段掘进全部位于江中段,是工程中风险最高、难度最大的施工区段。在该段深槽线路范围内,线路位于右偏R=1500m的圆曲线内,线路为V字型,坡度从-3.892%过最低点(SDK4+780)后变为2.45%。江底最低覆土深度为14.46m(到盾构机顶部),水深最深为34.9m(2009年9月数据)。江中段地质情况见表1。 表1 地质分层分段情况表 2.施工风险分析 2.1地质勘测准确性风险 由于江底深水地质勘测难度大、成本高,准确性也难以保证,江底隧道地质勘探具有极大的局限性,遇到未勘查清楚的不良地质或存在未查明的地下障碍物的风险十分可能发生。因此,施工准备阶段和施工过程中,需要通过对筛分渣样的分析达到地质预测的目的,可部分揭示开挖面前方地层情况。同时江底可能会出现特异性的障碍物,如废弃铁块、沉船等影响盾构掘进。 2.2盾构机的适应性、可靠性风险 盾构机选型极大程度上是工程成功的决定性因素,盾构机穿越江底掘进过程中,盾构机选型尤为重要,主要表现在以下几个方面: (1)刀盘、刀具磨损:盾构机长距离掘进对刀盘、刀具磨损大;在软硬不均的地层及卵石地层掘进时,刀具不可避免的产生卡刀或偏磨等问题。 (2)泥浆泵及管路磨损、堵塞:泥水循环回路泥浆中的砂石成分会磨损泥浆泵及排送管路,导致盾构机排渣不畅; (3)主轴承磨损,密封件防水失效:因主轴承在长距离掘进被磨损可能导致密封件防水失效,泥浆向盾构机内渗漏,保压系统失衡; (4)盾尾密封:盾尾密封系统的不适应性或受管片及周围土体的磨损影响,导致盾构间隙增大或油脂仓保压失效,盾构机发生渗漏; (5)数据采集系统、传感器失灵:受开挖面恶劣条件影响,盾构工作面数据采集系统、传感器有失效风险,盾构掘进参数或正面舱压等指标无法准确显示; (6)液压推进系统漏油:液压推进系统漏油,推力不足可能导致盾构后退风险; (7)注浆管路堵塞:由于浆液残留结块等原因可能导致注浆管路堵塞,无法进行正常的同步注浆; (8)主轴承断裂:由于主轴承磨损或在掘进复杂地层中偏心力矩致过大可导致主轴承断裂。 2.3江底冒浆风险 由于隧道穿越复合地层、上软下硬地层控制难度大,卵砾石层、粉砂岩层等地层表现为孔隙较大的特点,要依据地层条件及时调整泥浆质量和泥水压力,加

盾构施工控制要点

地铁隧道盾构法施工质量控制重点及措施 摘要:盾构工法是我国城市地铁隧道建设的主要工法,施工人员熟悉和掌握地铁隧道的施工质量控制重点及方法,对保证隧道的安全生产及质量具有重大意义。 关键词:盾构工法;施工质量;控制重点;措施 引言 我国城市地铁隧道建设正步入快速发展的轨道,由于盾构工法具有工期短、造价低、施工领域宽、自动化程度高等特点,因此得到广泛应用。就沈阳地铁2号线土压平衡盾构的施工实践,论述盾构隧道质量的控制方法,并对一些质量控制重点及方法进行探讨。 1 盾构始发阶段 1.1 盾构端头井土体加固(始发)等相关质量控制 在盾构始发时,提高地基强度,防止沉陷,防止地下水突出及土砂等流入端头井内,需进行洞圈周围土体的加固和改良。常用方法有搅拌桩法、药液注入法、冻结法等。无论采取何种方法,加固和改良的效果是质量控制的关键。 (1)加固效果要通过在不同部位、不同深度钻心取样等手段进行验证,确保满足设计要求。 (2)降低地下水位。在始发期间,端头井周围地 下水位要降至洞圈以下1.5—2m,要实施实时监测,并有备用降水井和降水设备。

(3)临时墙拆除。这是在盾构施工中最应引起注意的一道作业,有很大的危险性。国内外有多种始发掘进的方法:①根据地基改良等情况保持始发井前面土体稳定的同时,拆除临时挡土墙进行掘进。②将始发部位做成双层墙结构,边拔除前面的墙边掘进。③用盾构机边直接切削临时墙边掘进。现在多采用第一种方法。拆除临时墙时应掌握门封的具体结构,制定针对性的措施。拆除临时墙的时间应在盾构机调试达到稳定推进条件后。临时墙与盾构机间应预留不小于1.2m的作业空间。拆除临时墙前应钻梅花型探孔(不少于5点)观察,观察时间不少于12h。考虑到综合因素,始发推进尽量选在白天上午。目前正在开发一种盾构机刀盘直接切削的新材料来替代钢筋,可以不必拆除临时墙,无需释放土体应力,就可以使盾构机安全推进,值得关注。 (4)出洞止水密封装置安装。帘布橡胶板上的安装螺栓必须齐全紧固,防翻卷装置加工牢固,帘布橡胶板紧贴洞门,防泥水流失。 (5)始发出洞应做如下工作:①洞门凿除后,盾构机应迅速靠上洞口土体。②观察洞口有无渗漏,如有应及时封堵(应急封堵材料及排水设备)。③盾构机土仓内不得有砼块、钢筋等,临时墙周边钢筋不得伸入盾构切削圆周内。④第一正环拼装时检查最后一负环管片的位置、真圆度等。⑤控制推进千斤顶的使用情况,防止盾构机磕头或上飘。⑥严格控制负环管片的真圆度。 1.2 盾构始发设备 1.2.1 盾构机基座质量控制重点 (1)位置及尺寸。基座设置前,应对洞中的实际净尺、平面位置、直径及高程进行复核,确定基座的位置和高程。盾构姿态的调整,

泥水平衡盾构机施工方案

针对本项目的特性技术方案简述 施工技术篇 一、工程概述 二、总体施工部署及施工思路 2.1 初步施工安排 2.2 总体计划 2.3 工程管理目标 2.4 施工的前准备工作 2.5 施工组织管理 2.6 项目施工总体思路及工艺 2.7 施工总平面图布置规划 三、重点、关键和难点工程的施工方案、工艺及其措施简述 3.1 重点、关键和难点工程分析及应对措施 3.1.1 城市中心区的和谐施工 3.1.2 交通疏解、管线改迁及征地拆迁对工程前期推进影响大 3.1.3 盾构始发与到达施工难度大 3.1.4 基坑安全施工 3.1.5 顶管施工重难点分析及应对措施 3.1.6 泥水盾构刀盘、刀具设计 3.2 本项目主要工程施工方案及工艺简述 3.2.1 竖井(工作井)施工 3.2.2 顶管施工 3.2.3 盾构施工 3.2.4 管道功能性试验 3.2.5 其他附属及机电安装工程 四、交通疏导方案规划 4.1 交通疏导原则及规定 4.2 交通疏解实施程序 4.3 交通疏解方案

五、地下管线及其他地上地下设施的保护加固措施 5.1 地下管线保护措施 5.2 建构筑物保护措施 六、施工保障措施 6.1 施工质量保障措施 6.1.1 质量目标 6.1.2 质量保证体系 6.1.3 质量保证制度 6.1.4 主要工程施工质量控制措施 6.2 施工安全保障措施 6.2.1 安全目标 6.2.2 安全保证体系 6.2.3 安全保证制度 6.2.4 主要工程施工安全控制措施 6.3 应急预案 6.3.1 应急救援中心的职责 6.3.2 信息报告及处理 6.3.3 应急决策及响应 6.3.4 应急救援的资源配置 6.4 文明施工及环境保护措施 6.4.1 管理体系 6.4.2 文明施工措施 6.4.2 环境保护措施 七、本项目拟配备的机械设备情况

泥水平衡盾构机施工总结

泥水平衡盾构机施工总结 本工程是我单位常规直径地铁盾构第一次采用泥水盾构机施工。在施工、操作方面可借鉴经验不多,造成在施工中走过了不少弯路,出现了许多问题。泥水盾构机操作的基本原则是:控制切口压力在技术交底范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口压力的稳定是保证地面沉降、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错台、开裂、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过一年多的泥水盾构机施工经验,结合自己以前土压平衡盾构机的操作经验,对泥水盾构机的施工和质量控制方面的一些想法做如下总结。 一.工程概况: 东莞市城市快速轨道交通R2线工程(东莞火车站~东莞虎门站段)[2303A标:榴花公园站、茶山站~榴花公园站区间]土建工程施工项目,位于方中路上的茶山站后,正线隧道与出入段线隧道并行约100m由东向西穿越宽约200米的寒溪河,进入东岸大片农田(此时出入段线进入寒溪河东岸的东城车辆段)、通过中间风井及河西岸的数幢别墅后进入莞龙路。线路继续沿莞龙路前行,绕避了数架人行天

桥后到达榴花公园前的榴花公园站结束。 本标段起讫里程YDK2+298.728~ YDK5+502.598,包含1个明挖车站(【榴花公园站】)和1个区间(【茶山站~榴花公园站区间】),1条出段线盾构隧道(【中间风井~出段线盾构井】),1条入段线盾构隧道(【茶山站~入段线盾构井】)。其中正线段茶山站~榴花公园站区间左线起讫里程为:ZDK2+301.000~ZDK3+497.720、 ZDK3+653.485~ZDK4+118.812,左线长1662.041m; 右线起讫里程为:YDK2+298.728~YDK3+434.162、YDK3+601.659~ YDK4+110.000,右线长1643、775m;区间正线总长3406.628m。其中ZDK3+653.485~ZDK3+746.000、YDK3+601.659~ YDK3+690.000采用矿山法开挖,盾构管片衬砌。 二.操作注意事项: (一)泥浆粘度控制 在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的原理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制掌子面变形和地面沉降;在掌子面形成弱透水性泥膜,保持泥水压力有效作用于掌子面。泥浆作为一种运输介质将开挖下来的渣土以流体形式输送,经地面泥水处离处理设备分离,将处理过的渣土运至弃土场。 泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。(1)泥浆比重 为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥

隧道工程《盾构法施工》超详细讲解

3 盾构法施工 概述 盾构法是以盾构为核心在地面以下暗挖隧洞的一种施工方法。盾构法始于英国,自1925年布鲁诺尔(Brunel)在伦敦泰晤士河下首次用一台矩形盾构开挖水底隧洞以来,已有170余年历史。在一百多年中,世界各国制造了数以千计的各种类型、各种直径的盾构,盾构掘进机从低级发展到高级,从手工操作到计算机监控机械化施工,使盾构掘进机及其施工技术得到了不断发展和完善。现代盾构已经发展成为集机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧洞衬砌、测量导向纠偏等功能的大型的施工机械设备。 ●盾构法作为一种先进的隧洞施工工法具有: (1)对环境干扰少,对交通及居民生活影响小; (2)盾构推进、出土、衬砌等工序循环进行,易于管理,施工人员少; (3)施工不受地形地貌,江河水域等地表环境条件限制; (4)施工不受天气条件(雨雪等)限制; (5)出土量少,对周围环境及地表沉降影响小; (6)在土质差,地下水位高的地方建大埋深隧洞具有优越性。 由于这些优点,盾构法特别适宜于城市隧洞和穿江越海的施工,目前盾构工法已在城市隧洞的构筑中确定了稳固的统治地位。 ●盾构法是一项综合性的施工技术。构成盾构法的主要内容有: (1)先在隧洞某段的一端建造竖井或基坑,以供盾构安装就位。 (2)盾构机主机和配件吊装下井,在预定位置组装成整机并调试使其性能达到设计要求。 (3)盾构从竖井或基坑的墙壁开口处出发,在地层中沿着设计轴线推进。盾构推进中所受到的地层阻力,通过盾构千斤顶传至盾构尾部已拼装的预制衬砌,再传到竖井或基坑的后靠壁上。盾构每推进一环距离,就在盾尾支护下拼装一环衬砌,并及时向盾尾后面的衬砌环外周的空隙中压注浆体,以防止隧洞及地面下沉,在盾构推进过程中不断从开挖面排出适量的土方。 (4)盾构到达预定终点的竖井或基坑时掘进结束,然后检修盾构或解体盾构运出。 ●盾构是进行土方开挖正面支护和隧洞衬砌结构安装的施工机具,它还需要其它施工技术密切配合才能顺利施工。主要有: (1)地下水的降低; (2)稳定地层、防止隧洞及地面沉陷的土壤加固措施; (3)隧洞衬砌结构的制造; (4)隧洞内的运输; (5)衬砌与地层间的充填; (6)衬砌的防水与堵漏; (7)开挖土方的运输及处理方法; (8)配合施工的测量、监测技术; (9)采用气压法施工时,还涉及到医学上的一些问题和防护措施等。 目前在我国主要使用的有土压平衡盾构和泥水平衡盾构。 (1)土压平衡盾构 土压平衡盾构是在机械式盾构的前部设置隔板,在刀盘的旋转作用下,刀具切削开挖面的泥土,破碎的泥土通过刀盘开口进入土仓,使土仓和排土用的螺旋输送机内充满切削下来的泥土,依靠盾构推进油缸的推力通过隔板给土仓内的土碴加压,使土压作用于开挖面以平衡开挖面的水土压力。破碎的泥土通过刀盘开口进入土仓,泥土落到土仓底部后,通过螺旋输送机运到皮带输

大型泥水盾构现场施工中的泥水处理

精心整理大型泥水盾构施工中的 泥 水 分

第一章绪论 一、泥水加压式盾构及其泥水分离处理系统概述 盾构法施工已有170余年历史,随着科学水平的不断提高,盾构技术也得到不断发展和完善。至今,盾构已发展成为软土地层修建隧 施工提供了广阔的舞台。 泥水加压式盾构是在机械掘削式盾构的前部刀盘后侧设置隔板,它与刀盘之间形成压力室,将加压的泥水送入泥水压力室,当泥水压力室充满加压的泥水后,通过加压作用和压力保持机构,来谋求开挖面的稳定。盾构推进时由旋转刀盘切削下来的土砂经搅拌装置搅拌后

形成高浓度泥水,用流体输送方式送到地面。在地面调整槽中,将泥水调整到合适地层土质状态后,由泥水输送泵加压后,经管路送到开挖面泥水压力室,泥水在稳定开挖面的同时,将刀盘切削下来的土砂搅成浓泥浆,再由排泥泵经管路输送到地面。被送到地面的泥水,根据土砂颗粒直径,通过一次分离设备和二次分离设备将土砂分离并脱 在实际施工中,泥膜的形成是至关重要的。当泥水压力大于地下水压力时,泥水理论按达西定律渗入土壤,形成与土壤间隙成一定比例的悬浮颗粒,在“阻塞”和“架桥”效应的作用下,被捕获并积聚于土壤与泥水的接触表面,泥膜就此形成。随着时间的渐渐推移,泥膜的厚度不断增加,渗透抵抗力逐渐增强,当泥膜抵抗力远大于正面

土压时,产生泥水平衡效果。 2、泥水管理控制 (1)、进浆泥水指标 泥浆能否在渗入土壤时形成优质泥膜,能否稳定切口前方土体, 泥水的比重是一个主要控制指标。掘进中进泥比重不易过高或过低,前者将影响泥水的输送能力,后者将破坏开挖面的稳定。 泥水比重的范围应在1.15~1.30 g/cm3,下限为1.15 g/cm3,上限根据施工的特殊要求而定,在砂性土中施工、保护地面建筑物、盾构穿越浅覆层等,可达1.30 g/cm3。甚至可达1.35 g/cm3。

泥水盾构泥水系统技术

泥水盾构泥水系统技术 傅德明 上海申通地铁集团公司 2010.3 1 泥水盾构简介 ?1818年,英国的布鲁诺从蛀虫钻孔得到启示,提出盾构掘进隧道设想。 ? 1825--1843年,布鲁诺在伦敦泰吾士河下用盾构法修建458m长的矩形隧(11.4m× 6.8m)。 ? 1830年,英国的罗德发明“气压法”辅助解决隧道涌水。

1874年Greathead提出泥浆盾构专利 1896年,开始应用刀盘式盾构掘进机 不 ?20世纪60年代初,穿越不稳定和含水地层的隧道工程辅助技术有:降水法、气压 法、地层加固法和冻结法。 ?气压法最经济有效,由于安全和健康等原因,希望有一种能不干扰地面和使工人不 在气压下施工的隧道掘进机,欧洲国家提出“局部气压方法”,但这种对工作面不能提供不变的和有规则的支护。 ?英国隧道专家建议在隔舱板前用喷水“水力盾构”,但水不能支护开挖面,无法阻 止开挖面不停地流动。这种情况与充满水的挖槽相类拟,从而提出在开挖面用类同槽壁法的支护,这样就诞生了泥水加压盾构掘进机。 ?1967年,英国开发成功首台泥水加压平衡盾构。 ?1974年,日本开发成功首台土压平衡盾构。 ?1987--1991年,英国、法国采用11台盾构掘进深50km长的英法海峡隧道,创造单 台盾构连续掘进21km的记录。 ?1989--1996年,日本采用8台世界最大直径14.14m泥水加压盾构,掘进东京湾海 峡隧道,2条隧道各长9.4km。 英国体系泥水盾构

?1964年英国Mott, Hay和Anderson的John Bartlett 申请了泥水加压平 衡盾构掘进机原理专利(英国专利号1083322)。 ?1971年开挖直径4.1m、长140m的试验段。英国体系泥水加压平衡盾构掘 进机与同类德国体系相对照,其研制的特征是有长槽的鼓轮状的切削头、提取来自压力室的泥浆,有粗和细两套分离装置,以及以控制弃土出口压力(阀或泵)的方法保持开挖面的压力。当时,英国由于缺乏能适合促进这种技术的隧道工程,这种技术的发展受到了限制。 日本体系泥水盾构 ?日本工程师相信液体支护隧道开挖面的原理、他们称为“泥水加压平衡盾 构”(即泥水加压平衡盾构)。 ?1970年日本铁建公司在京叶线森崎运河下,羽田隧道工程中采用了直径 7.29m的泥水加压盾构施工,土质为冲积粉砂土层和洪积砂层,N值为2-50,施工 长度为865× 2条=1712延米,见图1。 ?直径7.29m泥水加压盾构掘进机,在隧道施工中获得了极大的成功,它是 当代时最大直径的泥水加压平衡盾构。 ?纵观日本在近30年的泥水盾构发展,自日本泥水盾构问世以来,泥水盾 构一直持续发展。

泥水盾构施工要点

掌握土压仓内土砂塑性流动性的方法 塑流化改良控制是土压平衡式盾构施工的最重要要素之一,要随时把握土压仓内土砂的塑性流动性。一般按以下方法掌握塑流性状态。 1.根据排土性状 取样测定(或根据经验目视)土砂的坍落度,以把握土压仓内土砂的流动状态。采用的坍落度控制值取决于土质、改良材料性状与土的输送方式。 2.根据土砂输送效率 按螺旋输送机转数计算的排土量与按盾构推进速度计算的排土量进行比较,以判断开挖土砂的流动状态。一般情况下,土压仓内土砂的塑性流动性好,盾构掘进就正常,两者高度相关。 3.根据盾构机械负荷 根据刀盘油压(或电压)、刀盘扭矩、螺旋输送机扭矩、千斤顶推力等机械负荷变化,判断土砂的流动状态。一般根据初始掘进时的机械负荷状况和地层变化结果等因素,确定开挖土砂的最适性状和控制值的容许范围。 泥水平衡盾构掘进中泥浆的作用 泥水平衡式盾构掘进时,泥浆起着两方面的重要作用: 一是依靠泥浆压力在开挖面形成泥膜或渗透区域,开挖面土体强度提高,同时泥浆压力平衡了开挖面土压和水压,达到了开挖面稳定的目的;二是泥浆作为输送介质,担负着将所有挖出土砂运送到工作井外的任务。 因此,泥浆性能控制是泥水平衡式盾构施工的最重要要素之一。 泥水平衡盾构掘进对泥浆的性能指标要求 泥浆性能包括: 物理稳定性、化学稳定性、相对密度、黏度、pH值、含砂率。

土压平衡式盾构出土运输方法与排土量控制 土压平衡式盾构的出土运输(二次运输)一般采用轨道运输方式。 土压平衡式盾构排土量控制方法分为重量控制与容积控制两种。重量控制有检测运土车重量、用计量漏斗检测排土量等控制方法。容积控制一般采用比较单位掘进距离开挖土砂运土车台数的方法和根据螺旋输送机转数推算的方法。我国目前多采用容积控制方法。 泥水平衡式盾构排土量控制方法 泥水平衡式盾构排土量控制方法分为容积控制与干砂量(干土量)控制. 容积控制方法如下,检测单位掘进循环送泥流量Q1与排泥流量Q2,按下式计算排土体积Q3:Q3= Q2-Q1 对比Q3与Q,当Q>Q3时,一般表示泥浆流失(泥浆或泥浆中的水渗入土体);Q<Q3时,一般表示涌水(由于泥水压低,地下水流入)。正常掘进时,泥浆流失现象居多。 干砂量表征土体或泥浆中土颗粒的体积 干砂量控制方法是,检测单位掘进循环送泥干砂量V1与排泥干砂量V2,按下式计算排土干砂量V3,V3= V2-V1 对比V3与V,当V>V3时,一般表示泥浆流失;V<V3时,一般表示超挖。 盾构管片拼装成环方式 盾构推进结束后,迅速拼装管片成环。除特殊场合外,大都采取错缝拼装。在纠偏或急曲线施工的情况下,有时采用通缝拼装。 盾构管片拼装顺序 一般从下部的标准(A型)管片开始,依次左右两侧交替安装标准管片,然后拼装邻接(B型)管片,最后安装楔形(K型)管片。

泥水盾构施工管理介绍

5.1盾构机选型 5.1.1盾构机的选型原则和依据 盾构机选型是盾构隧洞能否优质、安全、快速建成的关键工作之一,选型时主要遵照以下原则: (1)选择的盾构机机型和功能必须满足本标段线路条件、工期、施工条件和环境等要求。 (2)选用的盾构机按本标段的地质条件,进行有针对性的设计与制造,要求其性能与本标段内的工程地质、水文地质条件相适应。 (3)选用的盾构机应具有良好的性能和可靠性。 (4)类似地质、施工条件下盾构选型、施工实例及其效果。 (5)盾构机制造商的知名度、业绩、信誉和技术服务。 (6)依据南水北调中线一期穿黄工程上游线隧洞土建及设备安装施工招标文件及第三卷图纸,为选用盾构机机型的重要依据。 5.1.2盾构隧洞线路条件及混凝土管片 (1)隧洞由邙山隧洞段和过黄河隧洞段组成,最大开挖直径9030mm,总长4250m的直线隧洞。 (2)线路纵坡有三:邙山隧洞约4.91%,过河隧洞段有0.1%和0.2%两种,变坡点竖曲线半径为800m。见5.1-1南水北调中线穿黄隧洞示意图

图1 南水北调中线穿黄隧洞示意图 (3)过河段隧洞围土有单一粘土结构、上砂下土结构和单一砂土结构三种。 (4)主要地质问题有: —砂层中石英颗粒含量高40%-70%,刀具磨损加剧; —刀具检查地点和检查方式; —换刀地点及加固方式选择; —常压下换刀作业和气压下的换刀作业; —遇到枯树和大孤石的处理; —局部有抗压强度达16.5MPa砂岩等。 (5)隧洞外层采用通用环混凝土楔形管片衬砌,每环的楔形量为34.8mm。管环外径8.7m,内径7.9m,管片宽度1.6m,由7块管片组成,错缝拼装,每块管片所对应圆心角51.4286度。管片重量约6.2t。 5.2土压平衡式盾构机与混合式盾构机的基本掘进构成 5.2.1土压平衡式盾构机的基本掘进构成 盾构法施工从气压式盾构机开始到当今广泛使用土压平衡式盾

大型泥水盾构施工中的泥水处理

大型泥水盾构施工中的 泥 水 分 离 处 理 系 统

第一章绪论 一、泥水加压式盾构及其泥水分离处理系统概述 盾构法施工已有170余年历史,随着科学水平的不断提高,盾构技术也得到不断发展和完善。至今,盾构已发展成为软土地层修建隧道的一种专用施工机械,盾构施工法也已成为当今城市隧道和地铁工程中不可缺少的一种施工法。 为了满足城市隧道建设的地表沉降控制和加快施工速度,泥水加压式盾构逐渐发展并成熟,泥水加压式盾构用泥浆代替气压,用管道输送代替轨道出土,加快了掘进速度,改善了劳动条件和施工环境,能较好地稳定开挖面和防止地表隆陷,成为当今一种划时代的盾构新技术。 1996年,上海采用直径11.22m泥水加压式盾构,成功穿越7m 浅覆土河床和4.2m超浅覆土软土地层,完成延安东路南线水底公路隧道施工,标志着中国隧道施工技术已达到国际先进水平。 近来,上海市相继开始建设大连路和复兴东路越江隧道工程,并采用直径11.22m泥水加压式盾构施工,为该施工工艺在软土地基中施工提供了广阔的舞台。 泥水加压式盾构是在机械掘削式盾构的前部刀盘后侧设置隔板,它与刀盘之间形成压力室,将加压的泥水送入泥水压力室,当泥水压力室充满加压的泥水后,通过加压作用和压力保持机构,来谋求开挖面的稳定。盾构推进时由旋转刀盘切削下来的土砂经搅拌装置搅拌后

形成高浓度泥水,用流体输送方式送到地面。在地面调整槽中,将泥水调整到合适地层土质状态后,由泥水输送泵加压后,经管路送到开挖面泥水压力室,泥水在稳定开挖面的同时,将刀盘切削下来的土砂搅成浓泥浆,再由排泥泵经管路输送到地面。被送到地面的泥水,根据土砂颗粒直径,通过一次分离设备和二次分离设备将土砂分离并脱水后,排去分离后的水,经调整槽进行再次调整,使其成为优质泥水后再循环到开挖面。 二、泥水平衡机理及指标 1、泥水平衡机理 泥水平衡盾构是在切削刀盘与隔板之间形成的密封舱中,注入满足施工要求压力的泥浆,使其在开挖面形成泥膜,支承正面土体,并由安装在正面的大刀盘切削土体表层泥膜,由刀盘开口进入密封舱与泥水混合后,形成高密度泥浆,由排泥泵及管道输送至地面进行处理,整个过程通过建立在地面中央控制室内的泥水平衡自动控制系统统一管理。盾构掘进机设有操作步骤设定,各操作步骤间设有联锁装置,制约因误操作而引起事故,施工安全可靠。 在实际施工中,泥膜的形成是至关重要的。当泥水压力大于地下水压力时,泥水理论按达西定律渗入土壤,形成与土壤间隙成一定比例的悬浮颗粒,在“阻塞”和“架桥”效应的作用下,被捕获并积聚于土壤与泥水的接触表面,泥膜就此形成。随着时间的渐渐推移,泥膜的厚度不断增加,渗透抵抗力逐渐增强,当泥膜抵抗力远大于正面

盾构法隧道施工及验收规范GB

1.0.1编制本规范的目的时为了加强盾构隧道工程的施工管理,确保施工过程的工程安全、环境安全和工程质量,统一盾构法隧道工程的施工技术与质量验收标准。本规范不包括盾构隧道的设计、使用和维护方面的内容 1.0.2本规范为规定的内容应按照国家现行相关标准执行。 2术语 本章给出了本规范有关章节引用的19条术语。目前盾构及其施工技术在术语尚存在地区和习惯差异,通过本规范统一盾构法施工及验收的相关术语。 本规范的术语主要参考现行国家标准《地铁设计规范》GB50157、《城市轨道交通岩土工程勘察规范》GB50307、《城市轨道交通工程测量规范》GB50308、《城市轨道交通工程监测技术规范》GB50911、《地下轨道工程施工及验收规范》GB50299及《地下铁道设计与施工》等资料,经编制组集中归纳和整理编入本规范。 本规范的术语时从盾构法隧道施工及验收角度赋予其含义,同时还给出相应的推荐性英文翻译,仅供参考。 3基本规定 3.0.1施工管理体系包括质量管理体系、环境管理体系、职业健康安全管理体系。对于施工现场管理,除应具有健全的施工管理体系外,还要求有相应的施工技术标准、施工质量控制和检验制度,以及施工人员和设备安全保障和环境保护措施。 对具体的施工项目,要求有经审查批准的施工组织设计和施工技术方案,并能在施工过程中有效运行。对于涉及隧道结构安全、人身安全和环境保护的内容,应有明确的规定和相应的措施。 3.0.3本条为强制性条文。规范操作盾构,并制定应急预案,使其在预定条件和正确操作下正常使用时确保盾构法隧道施工的重中之重。因此,在施工前应根据盾构类型、地址条件和工程实践,首先由针对性地进行危险源和环境因素的辨识和评估,根据分解结论制定包括盾构安全操作技术规程、对周边环境的影响及应对措施等在内的专项施工方案和应急预案,确保施工作业在安全和卫生环境下进行。 3.0.7盾构法隧道施工应建立信息管理体系,制定信息管理制度。为便于几时了解施工现场情况,鼓励有条件的施工现场配置地面远程监控系统,将盾构掘进参数实时传递到地面监控中心。 3.0.8盾构法隧道工程施工期间,对重要或有特殊要求的建(构)筑物,应及时采取注浆、加固、支护等技术措施,保证邻近建(构)筑物、地下管线、道路及轨道交通线路等安全。 3.0.9质量验收包括实物检验和资料检查。资料检查包括施工质量验收依据和质量验收记录等。施工质量验收层次为:生产班组的自检、交接检;施工单位质量检验部门的专业检查和评定,监理单位(建设单位)组织的验收。 根据有关规定和工程合同的规定,对工程质量起重要作用或有争议的检验项目,有各方参与见证检验,已确保施工过程中关键部位的质量得到控制。 4施工准备 4.1前期调查 4.1.2~4.1.4位防止资料与实际工况条件不符,施工前应进行工程环境的调查和实地踏勘,位制定施工组织设计提供足够的依据,调查的主要内容有: 1实地踏勘调查各种建(构)筑物的使用功能、结构形式、基础类型及其与隧道的相对位置等; 2道路种类和路面交通情况; 3工程用地情况,主要对施工场地及材料堆放场地、弃土场地、运输路线等做必要的调

盾构常规重难点施工监理管控要点教学内容

盾构施工重难点管控要点一、盾构始发 盾构始发流程见图1.1。

图1.1盾构始发流程图 (1)始发台架安装 在安装始发台架前先由测量组在始发井底板设立控制护桩,根据护桩精确定位始发台的高程和左右位置。在完成定位之后,将始发台架底部结构焊接在埋设好的预埋铁板上,以保证始发台架的整体稳定。 在盾构机主体组装时,在始发台架的轨道上涂硬质润滑油以减小盾构机在始发台上前后平移到的阻力。始发台的坡度(即盾构机的中心坡度)与隧道设计轴线坡度平行,以保证盾构机按照设计的中心和高度进入地层。根据隧道设计轴线定出盾构始发的空间位置,推算出始发基座的位置。始发基架示意图见图1.2. (2)反力架安装 在盾构主体部分吊入始发井后,进行反力架的安装。反力架底部固定在底板预埋件上,支撑固定于端头结构墙埋设的预埋件上,以确保始发过程中反力架的稳定。 反力架示意图见图1.3。 图1.3反力架示意图图1.2 始发基架示意图安装反力架时,先用经纬仪双向校正两根立柱的垂直度,使其形成的平面与盾构机的推进轴线垂直。为了保证盾构机始发姿态,安装反力架和始发台时,反力架左右偏差控制在±10mm之内,高程偏差控制在±5mm之内,上下偏差控制在±10mm之内。始发台水平轴线的垂直方向与反力架的夹角<±2‰,盾构姿态与设计

轴线竖直趋势偏差<2‰,水平偏差<±3‰。 (3)洞门凿除 在洞门凿除前应先对端头加固体进行垂直抽芯检验和水平探孔,以检验端头加固的止水效果和加固体的稳定性。垂直抽芯检验数量为加固桩数的1%,抽芯总数不少于三根。水平探孔以洞门作业面按上、中、下、左、右共布设5个φ50孔位进行,钻孔深度不小于2.5m。经检验合格后方允许进行洞门凿除施工。 凿除施工时在盾构机与掌子面之间搭建脚手架,人工用高压风镐进行凿除围护结构砼施工,凿除按照从上往下、从中间往两边的顺序进行,凿除的范围为预留洞门轮廓线内的围护结构。拆除工作保证围护结构钢筋全部切断,以避免盾构刀盘被围护结构的钢筋挂住。凿除施工完毕后拆除脚手架,快速拼装负环管片,使盾构机抵拢掌子面,避免掌子面暴露太久发生失稳坍塌。 (4)洞门密封装置 为了防止盾构始发掘进时泥浆从盾壳和洞门的间隙处流失,以及盾尾通过洞门后背衬注浆浆液的流失,在盾构始发时需安装洞门临时密封装置,临时密封装置由帘布橡胶、扇形压板、垫片和螺栓等组成。 为了保证在盾构机始发时快速、牢固地安装密封装置,在吊装井施工时在预留洞门处预埋环状钢板。密封装置安装前应对帘布橡胶的整体性、硬度、老化程度等进行检查,对圆环板的成圆螺栓孔位等进行检查,并提前把帘布橡胶的螺栓孔加工好。盾构机进入预留洞门前在外围刀盘和帘布橡胶板外侧涂润滑油以免盾构机刀盘挂破帘布橡胶板影响密封效果。当盾构机刀盘进入洞门后将卡板置于盾体外侧并用螺栓固定;当盾构机主体部分全部通过洞门后将卡板置于负环管片的外表面,起到防止泥水、浆液流失的作用,从而减少始发时的地层损失。 (5)负环管片的安装 按设计要求经精确测量定位后拼装负环管片。在拼装第一环负环管片前,在盾尾管片拼装区下部180度范围内安设7根长1.4m、30mm厚的木条或钢板(盾尾内侧与管片间的间隙为30mm)。在盾构机内拼装好整环后利用盾构机推进千斤顶将管

狮子洋隧道盾构施工技术

狮子洋隧道盾构施工技术 1工程相关简介 1.1 工程概况 狮子洋隧道广深港铁路客运专线的控制性工程,工程位于珠江入海口、虎门大桥上游,处于线路东涌站~虎门站之间,下穿珠江主航道——狮子洋水道,隧道工程全长10.8km,设计时速350公里,是我国首座水下铁路隧道,同时也是目前国内水深最深、长度最长、标准最高的水下盾构隧道,被誉为“中国铁路的世纪隧道”。 狮子洋隧道分为进口(SDⅡ标)、出口(SDⅢ标)两个标段,盾构隧道投入四台直径Φ11.18m气压调节式泥水平衡盾构机,采用“相向掘进,地下对接,洞内解体”方式组织施工。我中铁隧道集团承担狮子洋隧道出口标段(SDⅢ标)的施工任务,合同总价亿元。 SDⅢ标段工程包括引道敞开段180m,明挖暗埋段长597m,工作井长23m,明挖工程总长800m;盾构段左线长4450m,右线长4750m;另外,还包含敞开段雨棚、设备用房、11处联络通道和泵房等附属工程。左线正线长度 5.25km,右线正线长度5.55km。 盾构隧道采用预制拼装式管片衬砌,管片采用“5+2+1”双面楔形通用环管片,错缝拼装。管片内径9.8m、外径10.8m、管片厚度500mm、管片环宽2.0m,楔形量为24mm。盾构隧道以管片自防水为主,接缝采用两道弹性密封止水条防水。 隧道最大纵坡20‰,最小纵坡3‰。盾构隧道最大覆土52.3m,最小覆土7.8m;狮子洋水道最大水深26.4m,水深最大处的隧道覆土26.0m。隧道轨面最低点标高为-60.988m,与百年一遇高潮位的高差约64.2m。 盾构隧道大部分处于微风化泥质粉砂岩、砂岩和砂砾岩中,局部位于淤泥质与粉质黏土中,部分地段穿越软硬不均底层,并通过多处断裂带和风化深槽;穿越基岩的最大单轴抗压强度为,渗透系数达×10-4m/s,石英含量最高达%,岩石地层的黏粉粒(≤75μm)含量达%。地下水主要为第四系地层的孔隙水和白垩系岩层的裂隙水,且具承压性,本标段隧道最大水压为。 本标段工程有工程规模大、设计标准高、涉及工法多、工期紧、工程地质复杂、水压力大、盾构掘进距离长等特点。同时,本工程存在明挖基坑地层软弱、长距离盾构掘进及刀具管理、高水压带压作业以及江底地中盾构对接与拆解等重难点。

(建筑施工工艺标准)盾构施工工艺工法(土压泥水)

(建筑施工工艺标准)盾构施工工艺工法(土压泥水)

盾构施工工艺工法 0前言 盾构法(Shield Method)是暗挖法施工中的一种全机械化施工方法,它是将盾构在地中推进,通过盾构外壳和管片支承四周围岩防止发生往隧道内的坍塌,同时在开挖面前方用切削装置进行土体开挖,通过出土机械运出洞外,靠千斤顶在后部加压顶进,并拼装预制混凝土管片,形成隧道结构的一种机械化施工方法。 本施工工法中所描述的盾构分为两类:土压平衡盾构和泥水平衡盾构。 土压平衡式盾构是把土料(必要时添加泡沫、膨润土等对土壤进行改良)作为稳定开挖面的介质,刀盘后隔板与开挖面之间形成泥土室,刀盘旋转开挖使泥土料增加,再由螺旋输料器旋转将土料运出,泥土室内土压可由刀盘旋转开挖速度和螺旋输出料器出土量(旋转速度)进行调节。 泥水式盾构是通过加压泥水或泥浆(通常为膨润土悬浮液)来稳定开挖面,其刀盘后面有一个密封隔板,与开挖面之间形成泥水室,里面充满了泥浆,开挖土料与泥浆混合由泥浆泵输送到洞外分离厂,经分离后泥浆重复使用。 (2)本工法内容包括 ①主要内容 本工法的主要内容包括:盾构组装、调试作业,盾构始发作业,盾构正常掘进作业,盾构到达作业,盾构过站、调头作业,盾构拆卸、吊装、存放作业,刀盘刀具的检查与更换作业,施工运输作业,施工通风及洞内轨道、管线布置作业,盾构施工测量作业10部分。每部分按工序细分,各项作业按照紧前工序达到标准、适用条件、作业内容、作业流程及控制要点、作业组织、紧后工序- 2 -

等内容进行编制。 ② 总体施工流程图 盾构法隧道总体施工流程图见图1 ③ 盾构法隧道施工阶段划分及工作要点 图Ⅲ.1盾构法隧道总体施工流程图 施 工准备阶段 正 常 施工阶段 收尾阶段

泥水盾构机操作总结

泥水盾构机操作总结 泥水盾构机操作的基本原则是:在控制切口环压力在要求范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口环压力的稳定是保证隧道正常、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口环压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口环压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错胎、崩缺、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过几个月的盾构机实际操作,我对自己操作泥水盾构机和质量控制方面的一些想法做如下总结。 (一)泥浆粘度控制 在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的机理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制开挖面变形和地基沉降;在开挖面形成弱透水性泥膜,保持泥水压力有效作用于开挖面。泥浆作为一种运输介质将开挖下来的弃土以流体形式输送,经泥水分离处理设备滤除废渣,将泥水分离。泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。

(1)泥浆比重 为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥浆比重应比较高。从理论上讲,泥水比重最好能达到开挖土体的密度。但是,泥浆比重大会引起泥浆泵超负荷运转以及泥水处理困难;泥浆比重小虽可减轻泥浆泵的负荷,但因泥粒渗走量增加,泥膜形成慢,对开挖面稳定不利。因此,在选定泥浆比重时,必须充分考虑土体的地层结构,在保证开挖面的稳定的同时也要考虑泥水分离设备的处理能力。一般情况下,在砂层中,泥浆比重要求偏大一些,在1.20~1.25g/cm3,在粘土层中应当偏小一点,一般在1.10~1.15g/cm3。 (2)泥水粘度 泥水必须具有适当的粘性,以收到以下效果: ①防止泥水中的粘土、砂粒在土仓内的沉积,保持开挖面稳定; ②提高粘性,增大阻力防止逸泥; ③使开挖下来的弃土以流体输送,经泥水分离处理设备滤除废渣,将泥水分离。泥浆粘度低,达不到携带弃土能力和稳定开挖面的要求,粘度太高会影响它的运输能力,易形成堵管。在我们的掘进过程中,一般情况下,在全断面3-1,3-2砂层中,粘度控制在35s~40s,上部有3-1,3-2砂层,中低部为少量4-1粘土时,粘度控制在25~30s,中上部是4-1粘土层,下部有6、7、8号层时,粘度控制在20-25s。在实际掘进中,我们应当结合地层分布情况、泥水分离系统的出渣情况、进出口泥浆粘度和比重的差值、环流系统是否顺畅、地表沉降等原因综合考虑。

盾构讲座二(泥水式盾构机)

泥水式盾构机 1 发展概况 泥水式盾构机是通过有一定压力的泥浆来支撑稳固开挖面;由旋转刀盘、悬臂刀头或水力射流等进行土体开挖;开挖下来的土料与泥水混合以泥水状态由泥浆泵进行输运。泥水式盾构机适用于各种松散地层,有无地下水均可。采用泥水式盾构机进行施工的隧洞工程都说明它是一种低沉降及安全的施工方法,在稳定的地层中其优点更加明显。 最初的泥水盾构要追溯到一百多年前的Greathead及Haag的专利。由于高透水性地层用压缩空气支撑隧洞开挖面非常困难,1874年,Greathead开发了用流体支撑开挖面的盾构,开挖出的土料以泥水流的方式排出。1896年Haag在柏林为第一台德国泥水式盾构申请了专利,该盾构以液体支撑开挖面,其开挖室是有压和密封的。1959年 E.C.Gardner成功地将以液体支撑开挖面应用于一台用于建造排污隧洞的直径为 3.35 m的盾构。1960年 Schneidereit 引进了用膨润土悬浮液来支撑开挖面,而H.Lorenz 的专利提出用加压的膨润土液来稳固开挖面。1967年第一台有切削刀盘并以水力出土、直径为3.1m的泥水盾构在日本开始使用。在德国,第一台以膨润土悬浮液支撑开挖面的盾构由Wayss & Freytag开发并投入使用。 泥水式盾构机的发展有三种历程,即日本历程、英国历程和德国历程。到目前则只有日本和德国两个主要的发展体系。日本的发展历程导致当今的泥水盾构,德国的发展历程导致水力盾构。以日本的泥水盾构为基础发展了土压平衡盾构,而德国的水力盾构导致很多不同的机型,如混合型盾构,悬臂刀头泥水盾构及水力喷射盾构等。德国和日本体系的主要区别是,德国式的在泥水舱中设置了气压舱,便于人工正面控制泥水压力,构造简单;日本式的泥水密封舱中全是泥水,要有一套自动控制泥 水平衡的装置。 1967年三菱公司制造了第一台为泥浆开挖面支护的试验盾构,直径为3.10m的样机取得经验后, 1970年建造了第一台大型泥水盾构,直径为7.20m,用于建设海峡下的Keiyo铁路线。自此以后,日本的很多制造商生产了此型盾构。与欧洲相比,泥水盾构在日本使用很多。在欧洲,英国的Markham,法国的NFM及FCB公司等采用日本许可证,也制造了泥水 盾构。 德国的发展历程起始于1972年,德国承包商Wayss及Freytag公司开发了水力盾构系统。1974年,其样机用于建设Hamburg港口下的Hamburg-Wilhelmsburg总管道,盾构外径为4.48m。当时还没有可靠的盾尾密封。这样一来整条隧道被加压。因为此型盾构是首次使用,很多修改事先未预料到。为了继续隧洞修建工程,采取了许多补救措施,解决了一些主要问题。第二次掘进着重解决了可靠的尾封,使得在最后的30m,采用了新的尾封后才达到隧洞内无压力的目的。当今水力盾构在欧洲市场占有很重要的位置,Herrenknecht,Howaldtswerke Deutsche Werft及Voest Alpine Bergtechnik等公司都是这类盾构最重要的制 造商。

相关文档
相关文档 最新文档