文档库 最新最全的文档下载
当前位置:文档库 › 排列组合归纳总结

排列组合归纳总结

排列组合归纳总结
排列组合归纳总结

排列、组合及二项式定理

一、计数

分类加法计数原理和分步乘法计数原理 → 1.分类加法计数原理定义

完成一件事,可以有n 类办法,在第一类办法中有m 1种方法,在第二类办法中有m 2种方法,……,在第n 类办法中有种不同的方法,那么,完成这件事情共有N =m 1+ m 2+…种不同的方法.

2.分步乘法计数原理定义

完成一件事情需要经过n 个步骤,缺一不可,做第一步有m 1种方法,做第二步有m 2种方法,……,做第n 步有种方法,那么完成这件事共有N =m 1 m 2…种不同的方法.

3.分类加法计数原理与分步乘法计数原理区别与联系

联系;都涉及完成一件事情的不同方法的种数.

区别:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成. 4. 分类分步标准

分类就是一步到位,(1)类与类之间要互斥;(2)总数完整。 分步是局部到位,(1)按事件发生的连贯过程进行分步;(2)步与步之间相互独立,互不干扰;(3)保证连续性。 → 排列与组合

1.排列

(1)排列定义:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.

(2)排列数公式:=A C m

m m n (n -1)(n -2)…(n -m +1)或写成=.特殊: (1)!

(3)特征:有序且不重复 2.组合

(1)组合定义:从n 个不同元素中,任取m (m ≤n )个元素组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.

(2)组合数公式:=m m

m

n

A A 或写成=.

(3)组合数的性质

①=; ②=+.

(4)特征:有序且不重复

3.排列与组合的区别与联系: 区别:排列有序,组合无序

联系:排列可视为先组合后全排 4.基本原则:(1)先特殊后一般;(2)先选后排;(3)先分类后分步。

→排列组合的应用(常用方法:直接法,间接法) 1.抽取问题:

(1)关键:特殊优先;

(2)题型:① 把n 个相同的小球,一次性的放入到m 个不同的盒子中(n ≤m ),每个盒子至少1个,有多少种不同的方法? ②把n 个相同的小球,依次性的放入到m 个不同的盒子中(n ≤m ),每个盒子至少1个,有多少种不同的方法? ③把n 个相同的小球,放入到m 个不同的盒子中(n ≤m ),每个盒子放球数目不限,有多少种不同的方法? ④把n 个不同的小球,放入到m 个不同的盒子中(n ≤m ),每个盒子至少1个,有多少种不同的方法? ⑤把n 个相同的小球,依次性的放入到m 个不同的

盒子中(n ≥m ),每个盒子至多1个,有多少种不同的方法?-1m1

隔板法

2.排序问题:特殊优先 (1)排队问题:

① 对n 个元素做不重复排序;

② 对n 个元素进行(其中有m 个元素的位置固定)排列

m m

n

n A A ;

如果对n 个元素进行(其中有m 个元素的位置固定个元素的位置固定)排列

K K

m m n

n

A A A ;

③ 相邻问题—捆绑法(注意松绑);

④不相邻问题:(a)一方不相邻—先排没要求的元素,再把不相邻的元素插入空位; (b)互不相邻先排少的在插入多的; (2)数字问题;

①各位相加为奇数的奇数的个数是奇数; ②各位相加为偶数的奇数的个数是偶数; ③组成n 为偶数(奇数)的数特殊优先法; ④能被n 整除的数特殊优先法;

⑤比某数大的数,比某数小的数或某数的位置从大于(小于)开始排,再排等于; (3)着色问题:

①区域优先颜色就是分类点; ②颜色优先区域就是分类点.

(4)几何问题:①点、 线、 面的关系一般均为组合问题; ②图中有多少个矩形 C 62 C 42

;从A 到B

的最短距离 C 83

(5)分组、分配问题:

①非均分不编号个不同元素分成m 组,每组元素数目均不相等,且不考虑各组间的顺序,不考虑是否分尽......

3

2

1

2

1

1

?---C C C m m

m n m m n m n

B

②非均分编号个不同元素分成m 组,每组组元素数目均不相等,且考虑各组间的顺序,不考虑是否分尽

m

m

m m m n m m n m n

A C

C

C ??--- (3)

2

121

1

③均分不编号个不同元素分成m 组,其中有k 组元素数目均相等,且不考虑各组间的顺序,不考虑是否分尽k

k m m

m n m m n m n A C C C ......

3

2

1

21

1?---

④均分编号个不同元素分成m 组,其中有k 组元素数目均相等,且考虑各组间的顺序,不考虑是否分尽

m

m

k k m m m n m m n m n

A A C

C

C ) (3)

2

121

1

(?---

二、二项式定理

1.定理:(a +b )n =0+-1b +-2b 2+…+-+…+a 0

(r =0,1,2,…,n ).

2.二项展开式的通项

+1=-

,r =0,1,2,…,n ,其中叫做二项式系数. 3.二项式系数的性质

①对称性:与首末两端“等距离”两项的二项式系数相等, 即=,=,…,=,….

②最大值:当n 为偶数时,中间的一项的二项式系数

取得最大值;当n 为奇数时,中间的两项的二项式系数 , 相等,且同时取得最大值.

③各二项式系数的和

a .+++…++…+=2n

b .++…++…=++…++…=·2n =2n -1

. →二项式定理的应用: 1.求通项; r r n r n r b a C T -+=1

2.含的项:① 项的系数;②二项式系数。

3.常数项(含的项中0)整数项(含的项中r ∈N )有理项(含的项中r ∈Z )无理项(含的项中?)

4.项的系数和:

12

C n n -12

C n n

+2

C

n n

(1)已知多项式f(x)=()n (>0)0 12x 2

+…: ①a 0 (0)

②a 0 12+… = f(1)= ()n

;

③0 1 2 … f(1)= ()n

; ④a 0 24+…=

;2

)

1()1(-+f f ⑤a 1 35+…=;2

)1()1(--f f

⑥(a 0 24+…)2-( a 1 35+…)2

(1)f (-1)。 (2)已知多项式f(x)=()n

(>0)0 12x 2

+…: ①a 0 (0)

②a 0 12+… = f(1)= ()n ;

③0 1 2 … f(-1)= ()n ; ④a 0 24+…=

;2

)1()1(-+f f ⑤a 1 35+…=;2

)1()1(--f f

⑥(a 0 24+…)2-( a 1 35+…)2

(1)f (-1)。 (3) 已知多项式f(x)=()n

(>0)0 12x 2

+…: 令g(x)=(-1)n

()n

①a 0 (0)

②a 0 12+… = f(1)= ()n

;

③0 1 2 … (-1)(-1)

④a 0 24+…=

;2

)

1()1(-+f f ⑤a 1 35+…=;2

)1()1(--f f

⑥(a 0 24+…)2-( a 1 35+…)2

(1)f (-1)。 (4) 已知多项式f(x)=()n

(>0)0 12x 2

+…: 令g(x)=(-1)n

()n

①a 0 (0)

②a 0 12+… = f(1)= ()n

;

③0 1 2 … (-1)(1) ④a 0 24+…=

;2

)1()1(-+f f ⑤a 1 35+…=;2

)1()1(--f f

⑥(a 0 24+…)2-( a 1 35+…)2

(1)f (-1)。 5.最值问题:

① 二项式系数最大:(a )当n 为偶数时,二项式系数中,C n

n

2 最大;(b )当n 为奇数时,二项式系数中,C

21n

21--n n n

C 和 最大

②项的是系数最大:1

=r T

C 表示第1项的系数

(a) 个项都为正数时112

1++++?????

?≥≥r r

r r r T T T T T C C C C C 最大; (b) 一项为正一项为负时111

3

1+-+++?????

?≥≥r r r r r T T T T T C C C C C 最大

排 列 组 合 公 式 及 排 列 组 合 算 法

排列组合n选m,组合算法——0-1转换算法(巧妙算法)C++实现 知识储备 排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示计算公式: 注意:m中取n个数,按照一定顺序排列出来,排列是有顺序的,就算已经出现过一次的几个数。只要顺序不同,就能得出一个排列的组合,例如1,2,3和1,3,2是两个组合。 组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。 计算公式: 注意:m中取n个数,将他们组合在一起,并且顺序不用管,1,2,3和1,3,2其实是一个组合。只要组合里面数不同即可 组合算法 本算法的思路是开两个数组,一个index[n]数组,其下标0~n-1表示1到n个数,1代表的数被选中,为0则没选中。value[n]数组表示组合

的数值,作为输出之用。 ? 首先初始化,将index数组前m个元素置1,表示第一个组合为前m 个数,后面的置为0。? 然后从左到右扫描数组元素值的“10”组合,找到第一个“10”组合后将其变为?“01”组合,同时将其左边的所有“1”全部移动到数组的最左端。一起得到下一个组合(是一起得出,是一起得出,是一起得出)重复1、2步骤,当第一个“1”移动到数组的n-m的位置,即m个“1”全部移动到最右端时;即直到无法找到”10”组合,就得到了最后一个组合。 组合的个数为: 例如求5中选3的组合: 1 1 1 0 0 --1,2,3? 1 1 0 1 0 --1,2,4? 1 0 1 1 0 --1,3,4? 0 1 1 1 0 --2,3,4? 1 1 0 0 1 --1,2,5? 1 0 1 0 1 --1,3,5? 0 1 1 0 1 --2,3,5? 1 0 0 1 1 --1,4,5? 0 1 0 1 1 --2,4,5? 0 0 1 1 1 --3,4,5 代码如下:

高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列 组合重点知识 高中数学排列组合公式大全_高中数学排列组合重点知识 高中数学排列组合公式大全 1.排列及计算公式 从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标)) Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 高中数学排列组合公式记忆口诀 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 高中数学排列组合重点知识 1.计数原理知识点 ①乘法原理:N=n1 n2 n3 nM (分步) ②加法原理:N=n1+n2+n3+ +nM (分类) 2. 排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3) (n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m!

排列组合中的区域涂色问题

排列组合中区域涂色问题 排列组合中的区域涂色问题技巧性强,方法灵活多变,一直是选修2-3中的教学难点问题。本文对部分常见区域涂色问题的解题规律做一下探讨。 区域涂色问题,应当从使用多少种颜色入手,分类讨论。再每一类中(若有必要),再根据两个不相邻区域是否同色分小类讨论。最后再根据分类加法计数原理求出所有方法种数。 例1、用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜 分析:当使用4中颜色涂色时,方法种数为4 5A ;当使用3中颜色时,分两类:①④同色或者②④同色,方法种数为3 52A 。可以这样给学生解释:①④同色,相当于①④合并成了一个区域,这样的话原本的四个区域变成了3个区域,故涂色方法种数为35A 。根据分类分类加法原理,所有涂色方法总数为4355 2A A +。 例2、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意,可分为3种颜色或4中颜色两类。 ①当先用三种颜色时,区域2与4必须同色,区域3与5必须同色,(相当于5个区 域合并成了4个区域)故有3 4A 种; ②当用四种颜色时,若区域2与4同色,则区域3与5不同色,有4 4A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有24 4A 种。最后,由加法原理可知满足题意的着色方法共有34A +244A =24+2?24=72

例3、用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类: ①涂四中颜色:四格涂不同的颜色,方法种数为45A ; ②涂三种颜色:有且仅两个区域相同的颜色,即只有一组对角小方格涂相同的颜色, 涂法种数为 12 542C A ; ③涂两种颜色:两组对角小方格分别涂相同的颜色,涂法种数为2 5A , 因此,所求的涂法种数为 2122 55452260A C A A ++= 例4、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有4 4A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有44A ; (5)②与④同色、③与⑥同色,则有44A ; 所以根据分类加法原理得涂色方法总数为544A =120 例5、将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少? 分析:可把这个问题转化成相邻区域不同色问题:如图,对这五个区域用5种颜色涂色,有多少种不同的涂色方法? ① ② ③ ④ ⑤ ⑥

排列组合问题的20种解法

排列组合问题的20种解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 复习巩固分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在 1 第2类办法中有 m种不同的方法,…,在第n类办法中有n m种不同 2 的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做 1 第2步有 m种不同的方法,…,做第n步有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 占了这两个位置 . 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中 间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也 看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 4 4 3

排 列 组 合 公 式 及 排 列 组 合 算 法 ( 2 0 2 0 )

字符串的排列组合算法合集 全排列在笔试面试中很热门,因为它难度适中,既可以考察递归实现,又能进一步考察非递归的实现,便于区分出考生的水平。所以在百度和迅雷的校园招聘以及程序员和软件设计师的考试中都考到了,因此本文对全排列作下总结帮助大家更好的学习和理解。对本文有任何补充之处,欢迎大家指出。 首先来看看题目是如何要求的(百度迅雷校招笔试题)。一、字符串的排列 用C++写一个函数, 如 Foo(const char *str), 打印出 str 的全排列,如 abc 的全排列: abc, acb, bca, dac, cab, cba 一、全排列的递归实现 为方便起见,用123来示例下。123的全排列有123、132、213、231、312、321这六种。首先考虑213和321这二个数是如何得出的。显然这二个都是123中的1与后面两数交换得到的。然后可以将123的第二个数和每三个数交换得到132。同理可以根据213和321来得231和312。因此可以知道——全排列就是从第一个数字起每个数分别与它后面的数字交换。找到这个规律后,递归的代码就很容易写出来了: view plaincopy #includeiostream?using?namespace?std;?#includeassert.h?v oid?Permutation(char*?pStr,?char*?pBegin)?{?assert(pStr?pBe

gin);?if(*pBegin?==?'0')?printf("%s",pStr);?else?{?for(char *?pCh?=?pBegin;?*pCh?!=?'0';?pCh++)?{?swap(*pBegin,*pCh);?P ermutation(pStr,?pBegin+1);?swap(*pBegin,*pCh);?}?}?}?int?m ain(void)?{?char?str[]?=?"abc";?Permutation(str,str);?retur n?0;?}? 另外一种写法: view plaincopy --k表示当前选取到第几个数,m表示共有多少个数?void?Permutation(char*?pStr,int?k,int?m)?{?assert(pStr); ?if(k?==?m)?{?static?int?num?=?1;?--局部静态变量,用来统计全排列的个数?printf("第%d个排列t%s",num++,pStr);?}?else?{?for(int?i?=?k;?i?=?m;?i++)?{?swa p(*(pStr+k),*(pStr+i));?Permutation(pStr,?k?+?1?,?m);?swap( *(pStr+k),*(pStr+i));?}?}?}?int?main(void)?{?char?str[]?=?" abc";?Permutation(str?,?0?,?strlen(str)-1);?return?0;?}? 如果字符串中有重复字符的话,上面的那个方法肯定不会符合要求的,因此现在要想办法来去掉重复的数列。二、去掉重复的全排列的递归实现 由于全排列就是从第一个数字起每个数分别与它后面的数字交换。我们先尝试加个这样的判断——如果一个数与后面的数字相同那么这二个数就不交换了。如122,第一个数与后面交换得212、221。然后122中第二数就不用与第三个数交换了,但对212,它第二个数

排列组合公式排列组合计算公式----高中数学!

排列组合公式/排列组合计算公式 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每

名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式

排列组合专题之染色问题3

排列组合专题之染色问题 【引例】 引例1.在一个正六边形的6个区域栽种观赏植物,如右图,要求同一块中种 同一种植物,相邻的两块种不同的植物.现有四种不同的植物可供选择,则有 ________种栽种方案. 引例2.某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要 栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花, 不同的栽种方法有_____种.(以数字作答) 【分析】首先栽种第1部分,有14C 种栽种方法; 然后问题就转化为用余下3种颜色的花,去栽种周围的5个部分(如右图所 示), 此问题和引例1是同一题型,因此我们有必要对这一题型的解法做一深入探讨。 【剖析】 为了深入探讨这一题型的解法, (1)让我们首先用m (m ≥3)种不同的颜色(可供选择),去涂4个扇形的情形 (要求每一个扇形着一种颜色,相邻扇形着不同颜色),如图所示 以1和3(相间)涂色相同与否为分类标准: ①1和3涂同一种颜色,有m 种涂法;2有m-1种涂法,4也有m-1种涂法, ∴ 共有 (1)(1)m m m ?-?-种涂法。 ②1和3涂不同种颜色,有2m A 种涂法;2有m-2种涂法,4也有m-2种涂 法, ∴ 共有 2(2)(2)m A m m ?-?-种涂法。 综合①和②,共有(1)(1)m m m ?-?-+2(2)(2)m A m m ?-?-432 463m m m m =-+-种涂法。 (2)下面来分析引例1 以A 、C 、E (相间)栽种植物情况作为分类标准: ①A 、C 、E 栽种同一种植物,有4种栽法;B 、D 、F 各有3种栽法, ∴ 共有 4×3×3×3=108 种栽法。 ②A 、C 、E 栽种两种植物,有222432C C A 种栽法(24C 是4种植物中选出2 种,23C 是A 、C 、E3个区域中选出2个区域栽种同一种植物,22A 是 选出的2种植物排列),B 、D 、F 共有3×2×2 种栽法(注:若A 、C 栽种同一种植物,则B 有 3 种栽法,D 、F 各有2种栽法), 222432322432C C A ∴???=共有种栽法。 ③A 、C 、E 栽种3种植物,有3 4A 种栽法;B 、D 、F 各有2种栽法, ∴ 共有 34A ×2×2×2=192 种栽法。

排列组合问题教师版

二十种排列组合问题的解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标 1.进一步理解和应用分步计数原理和分类计数原理. 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事. 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或 是分步与分类同时进行,确定分多少步及多少类. 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位,从1,3,5三个数中任选一个共有13C 排法; 然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种排法; 最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法; ∴由分步计数原理得113 4 34288C C A = 443

排列组合的数学公式

排列组合的数学公式 排列组合的数学公式 1. 排列及计算公式从n 个不同元素中,任取m(m≤n) 个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m 个宝鸡博瀚教 育元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m) 表示. p(n,m)=n(n-1)(n- 2) ...... (n -m+1)= n!/(n-m)!( 规定 0!=1). 2. 组合及计算公式 从n 个不同元素中,任取m(m≤n) 个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不 同元素中取出m(m≤n) 个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3. 其他排列与组合公式 从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这 n 个元素的全排列数为n!/(n1!*n2!*...*nk!). k 类元素, 每类的个数无限, 从中取出m 个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)(n- m+1);Pnm=n!/(n-m)!(注:是阶乘符号);Pnn(两个n 分别为上标和下标) =n!;0!=1;Pn1(n 为下标1 为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标) =1 ;Cn1(n 为下标 1 为上标)=n;Cnm=Cnn-m 排列组合的数学解题技巧 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

排列组合公式

排列组合公式 1.分类计数原理(加法原理) 12n N m m m =+++ . 2.分步计数原理(乘法原理) 12n N m m m =??? . 3.排列数公式 m n A =)1()1(+--m n n n =!! )(m n n -.(n ,m ∈N*,且m n ≤). 注:规定1!0=. 4.排列恒等式 (1)1 (1)m m n n A n m A -=-+; (2) 1 m m n n n A A n m -= -; (3) 1 1m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A mA -+=+. (6) 1!22!33!!(1)!1n n n +?+?++?=+- . 5.组合数公式 m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 6.组合数的两个性质 (1)m n C =m n n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定 10 =n C . 7.组合恒等式 (1) 1 1m m n n n m C C m --+= ;

(2) 1 m m n n n C C n m -= -; (3) 1 1m m n n n C C m --= ; (4)∑=n r r n C =n 2; (5) 1121++++=++++r n r n r r r r r r C C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9) r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ . 8.排列数与组合数的关系 m m n n A m C =?! . 9.单条件排列 以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位” ①某(特)元必在某位有11--m n A 种; ②某(特)元不在某位有11---m n m n A A (补集思想)1 111---=m n n A A (着眼位置)1 1111----+=m n m m n A A A (着眼元素)种. (2)紧贴与插空(即相邻与不相邻) ①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种. ②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 1 1+-+-种. 注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的 一组互不能挨近的所有排列数有 k h h h A A 1+种. (3)两组元素各相同的插空

高中数学《排列组合染色问题》典例讲解

高中数学《排列组合染色问题》典例讲解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

排列组合染色问题的探究 上饶县二中 徐 凯 在任教高二数学教学时,有许多同学被排列组合题的灵活性所困惑,甚至有学生向我询问有没有公式之类的解决途径,每道题都去分析似乎很累。其实就某些特殊的排列组合问题是可以抽象出数学模型来加以研究的,比如说下面我们所要提到的染色问题。 一、一个结论。 若把一个圆(除中间同心圆外的圆环部分)分成n 份( n > 1) , 每部分染一种颜色且相邻部分不能染同种颜色, 现有m (m > 1) 种不同颜色可供使用, 那么共有S )1()1()1(--+-=m m n n 种染色方法。 例:在一个圆形花坛种颜色花卉,现有4种颜色可供选 择,要求相邻两个区域不同色,则共有多少种方法? 解:从图中可以发现除同心圆部分外的圆环部分被分成了 n=5份,因为有4种颜色可供选择,我们先给同心圆①染色有4 种方法,那么圆环部分有3种颜色可供选择,即m=3,所以圆环 部分共有S=()30232)13()1(1355 =-=--+-种染色方法,从而整个圆形花坛共有120304=?种染色方法。 用常规方法同学们是否也能做到那么快和准确呢? 二、结论的证明。 把圆(除中间同心圆部分)分成n 份( n > 1) , 每部分 染一种颜色且相邻。部分不能染同种颜色, 现有m (m > 1) 种不同颜色可供使用, 求不同的染色方法总数。 (1) 当m = 2时, n 为偶数时有2种栽种法,n 为奇数时无 解。 1-1

(2) 当m > 2时 设把圆分成的n 部分为n n T T T T T 、、、、1321...-。开始时,1T 有m 种不同的染色 法;1T 染好后, 2T 有m - 1 种染色法;21T T 、染好后,3T 也有m - 1种染色法; 这 样依次下去, 染色的方法总数为1)1(--n m m 。但是在这些染色方法中, 包括1 -n T 与n T 染同种颜色的情况,若某种染色法使1-n T 与n T 同色, 拆去1-n T 与n T 的边界后, 就是分圆为n-1部分, 相邻部分染不同颜色的方法。因此, 把圆分成n 部分时, 设染色方法的总数为n a , 当n = 2时, m m m m a -=-=22)1( 当n = 3、4、5、?时, 有 11)1(---=+n n n m m a a 此时问题可转化为: 在数列{n a }中,已知11)1(---?=+n n n m m a a 得: 2 23)1(a m m a --?= )1()1(2---?=m m m m )]1()1[(2---=m m m 334)1(a m m a --?= )]1()1()1[(23-+---=m m m m )]1()1()1()1[(2345---+---=m m m m m a …… ])1)(1(...)1()1()1[(321n n n n n m m m m m a --+--+---=--- )11(1])11(1[)1(11----- --=--m m m m a n n n ])11(1[)1(1-----=n n m m )1()1()1(1----=-m m n n )1()1()1(--+-=m m n n (m>2) 2-1

高中数学排列组合难题十一种方法教师版

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有 m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法

排列组合公式_排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

(word完整版)高中数学《排列组合染色问题》典例讲解

排列组合染色问题的探究 上饶县二中 徐 凯 在任教高二数学教学时,有许多同学被排列组合题的灵活性所困惑,甚至有学生向我询问有没有公式之类的解决途径,每道题都去分析似乎很累。其实就某些特殊的排列组合问题是可以抽象出数学模型来加以研究的,比如说下面我们所要提到的染色问题。 一、一个结论。 若把一个圆(除中间同心圆外的圆环部分)分成n 份( n > 1) , 每部分染一种颜色且相邻部分不能染同种颜色, 现有m (m > 1) 种不同颜色可供使用, 那么 共有S )1()1()1(--+-=m m n n 种染色方法。 例:在一个圆形花坛种颜色花卉,现有4种颜色可供选择,要求相邻两个区域不同色,则共有多少种方法? 解:从图中可以发现除同心圆部分外的圆环部分被分成了 n=5份,因为有4种颜色可供选择,我们先给同心圆①染色有4 种方法,那么圆环部分有3种颜色可供选择,即m=3,所以圆环部 分共有S=()30232)13()1(1355 =-=--+-种染色方法,从而整个圆形花坛共有120304=?种染色方法。 用常规方法同学们是否也能做到那么快和准确呢? 二、结论的证明。 把圆(除中间同心圆部分)分成n 份( n > 1) , 每部分染 一种颜色且相邻。部分不能染同种颜色, 现有m (m > 1) 种 不同颜色可供使用, 求不同的染色方法总数。 (1) 当m = 2时, n 为偶数时有2种栽种法,n 为奇数时无 解。 (2) 当m > 2时 设把圆分成的n 部分为n n T T T T T 、、、、1321...-。开始 时,1T 有m 种不同的染色法;1T 染好后, 2T 有m - 1 种染色 法;21T T 、染好后,3T 也有m - 1种染色法; 这样依次下去, 染色的方法总数为 1)1(--n m m 。但是在这些染色方法中, 包括1-n T 与n T 染同种颜色的情况,若某种染 色法使1-n T 与n T 同色, 拆去1-n T 与n T 的边界后, 就是分圆为n-1部分, 相邻部分 染不同颜色的方法。因此, 把圆分成n 部分时, 设染色方法的总数为 n a , 当n = 2时,m m m m a -=-=22)1( 当n = 3、4、5、?时, 有11)1(---=+n n n m m a a 此时问题可转化为: 1-1 2-1

解决排列组合难题二十一种方法

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C ,然后排首位共有14C 最后排其它位置共有34A ,由分步计数原理得113434288C C A = C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

排列组合公式 全

排列组合公式 排列定义??? 从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式

3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9! 集合B为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3! 这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3! 这就是我们用以前的方法求出的P(9,6) 例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法? 设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的

相关文档
相关文档 最新文档