文档库 最新最全的文档下载
当前位置:文档库 › 简单的数学建模题目

简单的数学建模题目

简单的数学建模题目
简单的数学建模题目

〈〈数学模型及数学软件》上机报告

专业:班级:姓名:学号:

地点及机位编号:日期时间:5月26日

一、上机训练题目或内容

报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。这就是说,报童售出一份报纸赚,退回一份报纸赔。报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。

二、数学模型或求解分析或算法描述

解:设:

报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。设每日的订购量为n,如

果订购的多了,报纸剩下会造成浪费,甚至陪钱。订的少了,报纸不够卖,又会少赚钱。为了获得最大效益,现在要

确定最优订购量n。

n的意义:n是每天购进报纸的数量,确定n一方面可以使报童长期以内拥有一个稳定的收入,另一方

面也可以让报社确定每日的印刷量,避免纸张浪费。所以,笔者认为n的意义是双重的。

本题就是让我们根据a、b、c及r来确定每日进购数n。

基本假设

1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。

2、假设报纸每日的需求量是r,但报童是一个初次涉足卖报行业的菜鸟,毫无经验,无法掌握需求量r的

分布函数,只知道每份报纸的进价b、售价a及退回价c。

3、假设每日的定购量是n。

4、报童的目的是尽可能的多赚钱。

建立模型

应该根据需求量r确定需求量n,而需求量r是随机的,所以这是一个风险决策问题。而报童却因为

自身的局限,无法掌握每日需求量的分布规律,已确定优化模型的目标函数。但是要得到n值,我们可以

从卖报纸的结果入手,结合r与n的量化关系,从实际出发最终确定n值。

由常识可以知道卖报纸只有赚钱、不赚钱不赔钱、赔钱会有三种结果。现在用简单的数学式表示这三种结果。

1、赚钱。赚钱又可分为两种情况:

①r>n,则最终收益为(a-b)n (1)

r0

整理得:r/n>(b-c)/(a-c) (2)

2、由(2)式容易得出不赚钱不赔钱

r/n=(b-c)/(a-c) (3)

3、赔钱

r/n<(b-c)/(a-c) (4)

三、结果或结论

模型的求解

首先由(1)式可以看出n与最终的收益呈正相关。收益越多,n的取值越大。但同时订购量n又由需求

量r约束,不可能无限的增大。

所以求n问题就转化成研究r与n的之间的约束关系。

然后分析(3)、(4)两式。因为(3)、(4)分别代表不赚钱不赔钱及赔钱两种情况,而我们确定n值是为

了获得最大收益,所以可以预见由(3)、(4)两式确立出的n值不是我们需要的结果,所以在这里可以排除,

不予以讨论。

最后重点分析(2)式。

显然式中r表需求量,n表订购量,(b-c)表示退回一份儿报纸赔的钱。因为(a-c)无法表示一个显而易见的意义,所以现在把它放入不等式中做研究。由a>b>c,可得a-c>a-b,而(a-b)恰好是卖一份报纸赚得的钱。

然后采用放缩法,把(2)式中的(a-c)换成(a-b),得到

r/n<(b-c)/(a-b)⑸

不等式依然成立。

由(5)式再结合(1)式可知收益与n正相关,所以要想使订购数n的份数越多,报童每份报纸赔钱(b-c)

赚钱(a-b)的比值就应越小。当报社与报童签订的合同使报童每份报纸赔钱与赚钱之比越小,订购数就应越多。

四、结果分析或评价、推广

在日常生活中,经常会碰到一些季节性强、更新快、不易保存等特点的物品,如海产、山货、时装、

报纸等,因此在整个的需求过程中只考虑一次进货,也就是说当存货售完时,并不发生补充进货问题。这就产生一种两难局面:订货量过多出现过剩,会造成损失;订货量过又可能失去销售机会,影响利润。报童就面临这种局面,每天进购报纸在街上零售,到晚上卖不完的报纸可退回报社,每份要赔钱,那么每天要订购多少份报纸以获得最大利润。

〈〈数学模型及数学软件》上机报告

专业:信息与计算科学班级:一班姓名:陆亲娟学号:13540138

地点及机位编号:日期时间:6月2日

一、上机训练题目或内容

一饲养场每天投入5元资金用于饲料、设备、人力,估计可使一头80公斤重的生猪每天增加2公斤。

目前生猪出售的市场价格为每公斤8元,但是预测每天会降低0.1元,问该场应该什么时候出售这样的生

猪可以获得最大利润。

二、数学模型或求解分析或算法描述

解:设在第t大出售这样的生猪(初始重80公斤的猪)可以获得的利润为z元。

每头猪投入:5t元

产出:(8-0.1t ) (80+2t)元

利润:Z = 5t + (8-0.1t ) (80+2t) =-0.2 t A2 + 13t +640

=-0.2 (tA2-65t+4225/4 ) +3405/4

三、结果或结论

当t=32 或t=33 时,Zmax=851.25(元)

因此,应该在第32天过后卖出这样的生猪,可以获得最大利润。

四、结果分析或评价、推广

由于在饲养过程中受多种因素的影响,并且市场价格受多种不确定因素的影响,因此我们假设价格稳定与题设,从而得到最大收益与最佳销售时间。

〈〈数学模型及数学软件》上机报告

专业:信息与计算科学班级:一班姓名:陆亲娟学号:13540138地点及机位编号:日期时间:6月8日

一、上机训练题目或内容

学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。

二、数学模型或求解分析或算法描述

解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A宿舍的委员数为x人,B宿舍的委员数为y 人,C宿舍的委员数为z人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。则

x + y + z = 101

z 432

io =looo

0 x

0 1/ , x,y,z为整数

0 z

三、结果或结论

解得:

r=3

y = 3

z = 4

四、结果分析或评价、推广

.在现实生活中,常常会出现席位分配问题是由多种因素决定的,而不仅仅是人数一项指标。

4 人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。在生活磨难面前,精神上的坚强和无动于衷是

我们抵抗罪恶和人生意外的最好武器。

〈〈数学模型及数学软件》上机报告

专业:信息与计算科学班级:一班姓名:陆亲娟学号:13540138

地点及机位编号:日期时间:6月16日

一、上机训练题目或内容

在冷却过程中,物体的温度在任何时刻变化的速率大致正比于它的温度与周围介质温度之差,这一结

论称为牛顿冷却定律,该定律同样用于加热过程。一个煮硬了的鸡蛋有98C,将它放在18 C的水池里,5分钟后,鸡蛋的温度为38C,假定没有感到水变热,问鸡蛋达到20C,还需多长时间?

二、数学模型或求解分析或算法描述

设:鸡蛋的温度为T,温度变化率就是dT/dt其中t为时间,水的温度为T1,则鸡蛋与水温差为T-T1 由题意有:

T-T1=kdT/dt (其中k为比例常数)(1)

方程(1)化为:dt=kdT/ (T- T1) (2)

对(2)两边同时积分之后并整理一下就得到:

t=k*ln (T- T1) +C

则k*ln (98-18) + C=0

5=k*ln (38-18) +c

K=5/ln120

t1=k*ln(20-18)+c-[k*ln(38-18)+c]=8.3 (min) 所以,还需8.3 (min)。

三、结果或结论

假定没有感到水变热,问鸡蛋达到20C,还需8.3分钟。

四、结果分析或评价、推广

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模 简单的投资问题

数学建模简单的投资问题 建模论文—— 2011114114 覃婧 资金投资问题 摘要: 投资公司对现有资金进行投资,采取在无风险情况下,周期投资规律以及周期回收的资金的情况下,求取在一定时期内所掌握的的最大资金,建立相关线性规划公式,运用matlab或者lingo软件进行相关求解,得出最好的投资方式以盈利最大。此类问题适用于金融投资、证券投资等相关行业。关键词: matlab 目标函数设计变量目标变量新投资最大值 正文 一、问题重述: 某投资公司有资金200万元,现想投资一个项目,每年的投资方案如下“假设第一年投入一笔资金,第二年又继续投入此资金的50%,那么第三年就可回收第一年投入资金的一倍的金额。”请给该公司决定最优的投资策略使第六年所掌握的资金最多。 二、问题分析: 该问题作为线性规划问题,题目中给定的投资方案可以理解为每年投资金额,两年作为一个投资周期,三年作为一个资金回收周期,即第三年回收资金,每一个投资周期中偶数年的投资额与前一年是有关的,而且从第三年开始,每一年的回收金额是前两年投资金额的两倍,故以此类推,我们可以得到每年所掌握的资金,以求得第n年所掌握的最大金额。 所以该模型的目标变量为每年所掌握的资金,而设计变量为每年所进行的新投资。 设表示第i年所进行新投资的的资金,表示第i年所掌握的资金,xyii

(i=1,2,3,...n)则有: y,200,x第一年 11 3xx11200200y,,x,,x,,,x第二年: 212222 xx312y,200,,x,,x,2x第三年: 323122 xx3112y,200,,,x,x,x,2x第四年: 43342222 xx3112y,200,,,x,x,x,2x,x 第五年: 5344352222 13xxx1252002y,,,,x,x,x,,x 第六年: 6344622222 以此类推: xxx3n12,4y,200,,,...,,x,2x第n-1年: n,1n,3n,32222 xxx3n12,3y,200,,,...,,x,2x第n年: nn,2n,22222三、模型假设: 1(该投资模型实在稳定的经济条件下进行,没有任何风险; 2(每年的投资项目固定不变,不会有资金的额外转移; 3(每年所回收的资金都是依据题目条件固定的纯收益; 4. 每年的资金投资是连续的,是可以进行零投资的; 5. 新的投资不影响旧的投资。 四、符号定义与说明: 1. 表示第i年所进行新投资的的资金, xi 2.表示第i年所掌握的资金,(i=1,2,3,...n); yi 3. 表示最初手头上的资金。 y0 五、模型求解: 根据线性模型中目标变量与设计变量的线性关系我们可以得出该模型的线性公式为: xxx3n12,3max(200,,,...,,x,2x) n,2n,22222 x,200 1 x1,x,200,x 212

19191-数学建模-3.1

微分方程模型 浙江大学数学建模实践基地

§3.1 微分方程的几个简单实例 在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题, 本节将通过一些最简单的实例来说明微分方程建模的一般方法。在连续变量问题的研究中,微分方程是十分常用的数学工具之一。

例1(理想单摆运动)建立理想单摆运动满足的微 分方程,并得出理想单摆运动的周期公式。 从图3-1 中不难看出,小球所受的合力为mgsin θ,根据牛顿第二定律可得:sin ml mg θ θ=-从而得出两阶微分方程:0sin 0(0)0,(0)g l θθθθθ+==?=????(3.1)这是理想单摆应满足的运动方程 (3.1)是一个两阶非线性方程,不 易求解。当θ很小时,sin θ≈θ,此时,可 考察(3.1)的近似线性方程: 0(0)0,(0)g l θθθθθ+==?=?? ??(3.2)由此即可得出2g T l π=(3.2)的解为: θ(t )=θ0cosωt g l ω=其中当时,θ(t )=04T t =42g T l π =故有M Q P mg θl 图3-1 (3.1)的 近似方程

例2我方巡逻艇发现敌方潜水艇。与此同时敌方潜水艇也发现了 我方巡逻艇,并迅速下潜逃逸。设两艇间距离为60哩,潜水艇最大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜水艇。 这一问题属于对策问题,较为复杂。讨论以下简单情形:敌潜艇发现自己目标已暴露后,立即下潜,并沿着直线方向全速逃逸,逃逸方向我方不知。 设巡逻艇在A 处发现位于B 处的潜水艇,取极坐标,以B 为极点,BA 为极轴,设巡逻艇追赶路径在此极坐标下的方程为r =r (θ),见图3-2。 B A A1 dr ds dθ θ图3-2 由题意,,故ds =2dr 2ds dr dt dt =图3-2可看出, 2 2 2 ()()()ds dr rd θ=+

简单的数学建模题目

《数学模型及数学软件》上机报告 专业:班级::学号: 地点及机位编号:日期时间:5月26日 一、上机训练题目或容 报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。这就是说,报童售出一份报纸赚,退回一份报纸赔。报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。 二、数学模型或求解分析或算法描述 解:设: 报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。设每日的订购量为n,如果订购的多了,报纸剩下会造成浪费,甚至陪钱。订的少了,报纸不够卖,又会少赚钱。为了获得最大效益,现在要确定最优订购量n。 n的意义:n是每天购进报纸的数量,确定n一方面可以使报童长期以拥有一个稳定的收入,另一方面也可以让报社确定每日的印刷量,避免纸浪费。所以,笔者认为n的意义是双重的。 本题就是让我们根据a、b、c及r来确定每日进购数n。 基本假设 1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。 2、假设报纸每日的需求量是r,但报童是一个初次涉足卖报行业的菜鸟,毫无经验,无法掌握需求量r的分布函数,只知道每份报纸的进价b、售价a及退回价c。 3、假设每日的定购量是n。 4、报童的目的是尽可能的多赚钱。 建立模型 应该根据需求量r确定需求量n,而需求量r是随机的,所以这是一个风险决策问题。而报童却因为自身的局限,无法掌握每日需求量的分布规律,已确定优化模型的目标函数。但是要得到n值,我们可以从卖报纸的结果入手,结合r与n的量化关系,从实际出发最终确定n值。 由常识可以知道卖报纸只有赚钱、不赚钱不赔钱、赔钱会有三种结果。现在用简单的数学式表示这三种结果。 1、赚钱。赚钱又可分为两种情况: ①r>n,则最终收益为(a-b)n (1) r0 整理得:r/n>(b-c)/(a-c) (2) 2、由(2)式容易得出不赚钱不赔钱 r/n=(b-c)/(a-c) (3) 3、赔钱 r/n<(b-c)/(a-c) (4) 三、结果或结论 模型的求解 首先由(1)式可以看出n与最终的收益呈正相关。收益越多,n的取值越大。但同时订购量n又由需求

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

数学建模 练习题1

2.14成绩与体重数学建模 一、问题 举重比赛按照体育运动员的体重分组,你能在一些合理、简单的假设下,建立比赛成绩与体重之间的关系吗?下面是下一届奥运会的成绩,可供检验你的模型。 一、问题分析 成绩与肌肉的力度有直接关系,随着力度的增加,成绩呈上升趋势。 假设力度与肌肉横截面积成正比,而截面积和体重都与身体的某个特征尺寸有直接关联。由此可以找到成绩和体重之间的关系。可以以此建立模型。

二、模型假设以及符号说明 1.本模型主要考虑运动员举重总成绩和体重的关系,所以假设运动员其他条件相差不大。 2.运动员的举重能力用其举重的总成绩来刻画 3.符号说明: 人的体重 W 人的身高 h 肌肉横截面积 S 人的体积 V 肌肉强度 T 举重成绩 C 非肌肉重量 W1 斜率 K 三、模型构成 模型一 1.题中给出举重比赛按照体育运动员的体重分组,所以我们猜测成绩与体重应该是正比关系。 2.画出坐标图,体重越重,成绩越好,进一步验证了正比关系。 最大体重

从上图可以看出,体重越大,举重总成绩相对越好,所以我们猜测举重总成绩与体重大概成线性关系。则,我们可以用一次函数C=kW+b对三个体重进行拟合,根据图中数据,可得: = = 2.66, = = 1.45, = = 1.17 把b代入得出三个一次函数为: = 2.66W+143.8, = 1.45W+75.1, = 1.17W+69.7, 用上述模型计算得到的理论值,并画出图表与原图表进行比较: 最大体重

通过比较两个图表,我们可以推测体重与成绩数据的推测图表和已知图标的拟合度并不是特别的理想,所以我们可以认为用线性函数对举重总成绩与体重进行拟合的模型过于简单、粗略,考虑的因素比较少。 模型二 我们这一次综合各种因素来进行分析建模。 通过查阅各种自然科学磁疗,我们可以近似以为:一般举重运动员的举重能力是用举重成绩来衡量,而举重运动员的举重能力与其肌肉强度近似成正比关系,从而举重运动员的举重总成绩与其肌肉强度近似成正比,即: C = T (为常数且>0) ○1从运动生理学得知,肌肉的强度与其横截面积近似成正比,即: T = S (为常数且>0) ○ 2综合○1,○2可得 C=T=S ○3通过查阅资料,我们可以假设肌肉的横截面积正比于身高的平方,人的体重正比于身高的三次方,即可得: S = , W = (,为常数且>0,>0) 综合上述所有算式,我们有: C= S = ○ 4 因为W = ,我们可以推测出举重运动员举重总成绩与其体重的关系为: C = 利用题目表格中所给的体重和举重总成绩数据,求出上述模型的常数M。利用题目表格中所给的体重和举重总成绩数据,运用最小二乘法求出上述模型的系数 K 。因为体重超过108千克的运动员的体重没有具体的数据,为了模型的准确性,故将这个数据舍去。经过代入9次运算得出平均常数,为=20.3,=9.6,=9.0。于是举重运动员的举重总成绩与体重的关系模型为

2003全国大学生数学建模竞赛B题优秀论文(出题人亲作)

2003高教社杯全国大学生数学建模竞赛 B 题参考答案 注意:以下答案是命题人给出的,仅供参考。各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 问题分析: 本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。 运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现; 第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从1207 10 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。 对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。 调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。 这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。 合理的假设主要有: 1. 卡车在一个班次中不应发生等待或熄火后再启动的情况; 2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即 可,不进行排时讨论; 3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量; 4. 卡车可提前退出系统。 符号:x ij ~ 从i 号铲位到j 号卸点的石料运量 单位 吨; c ij ~ 从i 号铲位到j 号卸点的距离 公里; T ij ~ 从i 号铲位到j 号卸点路线上运行一个周期平均所需时间 分; A ij ~ 从i 号铲位到j 号卸点最多能同时运行的卡车数 辆; B ij ~ 从i 号铲位到j 号卸点路线上一辆车最多可以运行的次数 次; p i ~ i 号铲位的矿石铁含量。 % p =(30,28,29,32,31,33,32,31,33,31) q j ~ j 号卸点任务需求 吨 q =(1.2,1.3,1.3,1.9,1.3)*10000

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模练习试题

1、放射性废料的处理问题 美国原子能委员会以往处理浓缩的放射性废料的方法,一直是把它们装入密封的圆桶里,然后扔到水深为90多米的海底。生态学家和科学家们表示担心,怕圆桶下沉到海底时与海底碰撞而发生破裂,从而造成核污染。原子能委员会分辨说这是不可能的。为此工程师们进行了碰撞实验。发现当圆桶下沉速度超过12.2 m/s 与海底相撞时,圆桶就可能发生碰裂。这样为避免圆桶碰裂,需要计算一下圆桶沉到海底时速度是多少? 这时已知圆桶重量为239.46 kg,体积为 0.2058m3,海水密度为1035.71kg/m3,如果圆桶速度小于12.2 m/s就说明这种方法是安全可靠的,否则就要禁止使用这种方法来处理放射性废料。假设水的阻力与速度大小成正比例,其正比例常数k=0.6。现要求建立合理的数学模型,解决如下实际问题: 1. 判断这种处理废料的方法是否合理? 2. 一般情况下,v大,k也大;v小,k也小。当v很大时,常用kv来代替k,那么这时速度与时间关系如何? 并求出当速度不超过12.2 m/s,圆桶的运动时间和位移应不超过多少? (的值仍设为0.6) 鱼雷攻击问题 在一场战争中,甲方一潜艇在乙方领海进行秘密侦察活动。当甲方潜艇位于乙方一潜艇的正西100千米处,两方潜艇士兵同时发现对方。甲方潜艇开始向正北60千米处的营地逃跑,在甲方潜艇开始逃跑的同时,乙方潜艇发射了鱼雷进行追踪攻击。假设甲方潜艇与乙方鱼雷是在同一平面上进行运动。已知甲方潜艇和乙方鱼雷的速度均匀且鱼雷的速度是甲方潜艇速度的两倍。 试建立合理的数学模型解决以下问题: 1) 求鱼雷在追踪攻击过程中的运动轨迹; 2) 确定甲方潜艇能否安全的回到营地而不会被乙方鱼雷击中 3、贷款买房问题 某居民买房向银行贷款6万元,利息为月利率1%,贷款期为25年,要求建立数学模型解决如下问题: 1) 问该居民每月应定额偿还多少钱? 2)假设此居民每月可节余700元,是否可以去买房? 4、养老保险问题 养老保险是保险中的一种重要险种,保险公司将提供不同的保险方案以供选择,分析保险品种的实际投资价值。 某保险公司的一份材料指出:在每月交费200元至60岁开始领取养老金的约定下,男子若25岁起投保,届时月养老金2282元;若35岁起投保,月养老金1056元;若45岁起投保,月养老金420元. 试求出保险公司为了兑现保险责任,每月至少应有多少投资收益率(也就是投保人的实际收益率)? 5、生物种群数量问题

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。 (15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。 因此对这个问题我们假设 : (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以长方桌的中心为坐标原点作直角 坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令 ()f θ为A 、B 离地距离之和, ()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ 的连续函数。又由假设(3),三条腿总能同时着地, 故 ()f θ()g θ=0必成立(?θ )。 不妨设 (0)0f =,(0)0g >g (若(0)g 也为 0,则初始时刻已四条腿着地,不必再旋转),于是问题归 结为: 已知 ()f θ,()g θ均为θ 的连续函数, (0)0f =,(0)0g >且对任意θ 有 00()()0f g θθ=,求证存 在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。作()()()h f g θθ θ=-,显然,() h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定 理,存在0θ,0 0θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有 00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

数学建模练习题

数学建模习题 题目1 1.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.5元,120g装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减小的程度变小,解释实际意义是什么。 解答: (1)分析:生产成本主要与重量w成正比,包装成本主要与表面积s成正比,其他成本也包含与w和s成正比的部分,上述三种成本中都包含有与w,s 均无关的成本。又因为形状一定时一般有,故商品的价格可表示 为(α,β,γ为大于0的常数)。 (2)单位重量价格,显然c是w的减函数。说明大 包装比小包装的商品更便宜,曲线是下凸的,说明单价的减少值随着包装的变大是逐渐降低的,不要追求太大包装的商品。 函数图像如下图所示: 题目2 2.在考虑最优定价问题时设销售期为T,由于商品的损耗,成本q随时间增长,设,β为增长率。又设单位时间的销售量为(p为价格)。今将销售期分为和两段,每段的价格固定,记为,.求,的最优值,使销售期内的总利润最大。如果要求销售期T内的总销售量为,

再求,的最优值。 解答: 由题意得:总利润为 ,=+ = 由=0,,可得最优价格 , 设总销量为, 在此约束条件下的最大值点为 , 题目3 (与数量无关),随3.某商店要订购一批商品零售,设购进价,售出,订购费c 机需求量r的概率密度为p(r),每件商品的贮存费为(与时间无关)。问如何确定订购量才能使商店的平均利润最大,这个平均利润是多少。为使这个平均利 加什么限制? 润为正值,需要对订购费c 解答: 设订购量为u,则平均利润为

数学建模题目及其答案(疾病诊断)

数学建模疾病的诊断 现要你给出疾病诊断的一种方法。 胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。从胃癌患者中抽 取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者 中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白( X)、 1 蓝色反应( X)、尿吲哚乙酸(3X)、中性硫化物(4X)、测得数据如表1 2 所示: 表1. 从人体中化验出的生化指标

* 根据数据,试给出鉴别胃病的方法。 论文题目:胃病的诊断 摘要 在临床医学中,诊断试验是一种诊断疾病的重要方法。好的诊断试验方法将对临床诊断的正确性和疾病的治疗效果起重要影响。因此,对于不同疾病不断发现新的诊断试验方法是医学进步的重要标志。传统的诊断试验方法有生化检测、DNA检测和影像检测等方法。而本文则通过利用多元统计分析中的判别分析及SPSS软件的辅助较好地解决了临床医学中胃病鉴别的问题。在临床医学上,既提高了临床诊断的正确性,又对疾病的治疗效果起了重要效果,同时也减轻了病人的负担。 判别分析是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。 , 首先,由判别分析定义可知,只有当多个总体的特征具有显著的差异时,进行判别分析才有意义,且总体间差异越大,才会使误判率越小。因此在进行判别分析时,有必要对总体多元变量的均值进行是否不等的显著性检验。 其次,利用判别分析中的费歇判别和贝叶斯判别进行判别函数的建立。 最后,利用所建立的判别函数进行回判并测得其误判率,以及对其修正。 本文利用SPSS软件实现了对总体间给类变量的均值是否不等的显著性检验并根据样本建立了相应的费歇判别函数和贝叶斯判别函数,最后进行了回判并测得了误判率,从而获得了在临床诊断中模型,给临床上的诊断试验提供了新方法和新建议。 关键词:判别分析;判别函数;Fisher判别;Bayes判别 一问题的提出 在传统的胃病诊断中,胃癌患者容易被误诊为萎缩性胃炎患者或非胃病患者,为了

经典的数学建模例子1

经典的数学建模例子 一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1 二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。 要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3 建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答;

matlab数学建模实例

第四周3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj()for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769;if (abs(x1)<1.0e-8)x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20;k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1;end x1k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1;end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while(abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

一些基本的数学建模示例

1.3 一些基本的数学建模示例 1.3.1椅子的摆放问题 1.3.2 双层玻璃的功效问题 1.3.3 搭积木问题 1.3.4 四足动物的身长和体重关系问题 1.3.5 圆杆堆垛问题 1.3.6 公平的席位分配问题 1.3.7 中国人重姓名问题 1.3.8实物交换问题 椅子能在不平的地面上放稳吗?下面用数学建模的方法解决此问题。 模型准备 仔细分析本问题的实质,发现本问题与椅子腿、地面及椅子腿和地面是否接触有关。如果把椅子腿看成平面上的点,并引入椅子腿和地面距离的函数关系就可以将问题1与平面几何和连续函数联系起来,从而可以用几何知识和连续函数知识来进行数学建模。为讨论问题方便,我们对问题进行简化,先做出如下3个假设: 模型假设 1、椅子的四条腿一样长,椅子脚与地面接触可以视为一个点,四脚连线是正方形(对椅子的假设) 2、地面高度是连续变化的,沿任何方向都不出现间断。(对地面的假设) 3、椅子放在地面上至少有三只脚同时着地,(对椅子和地面之间关系的假设) 根据上述假设做本问题的模型构成: 模型构成Array用变量表示椅子的位置,引入平面图形及坐 标系如图1-1。图中A、B、C、D为椅子的四只脚, 坐标系原点选为椅子中心,坐标轴选为椅子的四 只脚的对角线。于是由假设2,椅子的移动位置 可以由正方形沿坐标原点旋转的角度θ来唯一表 示,而且椅子脚与地面的垂直距离就成为θ的函 数。注意到正方形的中心对称性,可以用椅子的 相对两个脚与地面的距离之和来表示这对应两 个脚与地面的距离关系,这样,用一个函数就可 以描述椅子两个脚是否着地情况。本题引入两个 函数即可以描述椅子四图 1-1

简单的数学建模题目

〈〈数学模型及数学软件》上机报告 专业:班级:姓名:学号: 地点及机位编号:日期时间:5月26日 一、上机训练题目或内容 报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。这就是说,报童售出一份报纸赚,退回一份报纸赔。报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。 二、数学模型或求解分析或算法描述 解:设: 报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。设每日的订购量为n,如 果订购的多了,报纸剩下会造成浪费,甚至陪钱。订的少了,报纸不够卖,又会少赚钱。为了获得最大效益,现在要 确定最优订购量n。 n的意义:n是每天购进报纸的数量,确定n一方面可以使报童长期以内拥有一个稳定的收入,另一方 面也可以让报社确定每日的印刷量,避免纸张浪费。所以,笔者认为n的意义是双重的。 本题就是让我们根据a、b、c及r来确定每日进购数n。 基本假设 1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。 2、假设报纸每日的需求量是r,但报童是一个初次涉足卖报行业的菜鸟,毫无经验,无法掌握需求量r的 分布函数,只知道每份报纸的进价b、售价a及退回价c。 3、假设每日的定购量是n。 4、报童的目的是尽可能的多赚钱。 建立模型 应该根据需求量r确定需求量n,而需求量r是随机的,所以这是一个风险决策问题。而报童却因为 自身的局限,无法掌握每日需求量的分布规律,已确定优化模型的目标函数。但是要得到n值,我们可以 从卖报纸的结果入手,结合r与n的量化关系,从实际出发最终确定n值。 由常识可以知道卖报纸只有赚钱、不赚钱不赔钱、赔钱会有三种结果。现在用简单的数学式表示这三种结果。 1、赚钱。赚钱又可分为两种情况: ①r>n,则最终收益为(a-b)n (1) r0 整理得:r/n>(b-c)/(a-c) (2) 2、由(2)式容易得出不赚钱不赔钱 r/n=(b-c)/(a-c) (3) 3、赔钱 r/n<(b-c)/(a-c) (4)

相关文档
相关文档 最新文档