文档库 最新最全的文档下载
当前位置:文档库 › 高中数学竞赛_平面几何【讲义】

高中数学竞赛_平面几何【讲义】

高中数学竞赛_平面几何【讲义】
高中数学竞赛_平面几何【讲义】

第十六章 平面几何

一、常用定理(仅给出定理,证明请读者完成)

梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则

.1''''''=??B

C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B

C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B

C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B

C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA

B CBB CB

C ACC AC A BAA 广义托勒密定理 设ABC

D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。

斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有

AP 2=AB 2?BC PC +AC 2?BC

BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。

九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。

蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)

欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2

1GH OG = 二、方法与例题

1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。

例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠

PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。

[证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以

CQ AC QP AP =1

,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

2

22sin sin ABP AP B AP AB ∠=∠,②Q BP BQ QP 202sin 20sin ∠=,③.70sin 30sin 00AC AB =④ 由②,③,④得221

1QP AP QP AP =。又因为P 1,P 2同在线段AQ 上,所以P 1,P 2重合,又BP 与CP 仅有一个交点,所以P 1,P 2即为P ,所以A ,P ,Q 共线。

2.面积法。

例2 见图16-1,◇ABCD 中,E ,F 分别是CD ,BC 上的点,且BE=DF ,BE 交DF 于P ,求证:AP 为∠BPD 的平分线。

[证明] 设A 点到BE ,DF 距离分别为h 1,h 2,则

,2

1,2121h DF S h BE S ADF ABE ?=?=

?? 又因为21=?ABE S S ◇ABCD =S ΔADF ,又BE=DF 。 所以h 1=h 2,所以PA 为∠BPD 的平分线。

3.几何变换。

例3 (蝴蝶定理)见图16-2,AB 是⊙O 的一条弦,M 为AB 中点,CD ,EF 为过M 的任意弦,CF ,DE 分别交AB 于P ,Q 。求证:PM=MQ 。

[证明] 由题设OM ⊥AB 。不妨设BD AF ≤。作D 关于直线OM 的对称点'D 。

连结F D DD M D PD ',',',',则.'.'D M Q P M D

DM M D ∠=∠=要证PM=MQ ,只需证MDQ M PD ∠=∠',又∠MDQ=∠PFM ,所以只需证F ,P ,M ,'D 共圆。

因为∠'PFD =1800-'MDD =1800-∠D MD '=1800

-∠'PMD 。(因为'DD ⊥OM 。AB//'DD ) 所以F ,P ,M ,'D 四点共圆。所以ΔM PD '≌ΔMDQ 。所以MP=MQ 。

例4 平面上每一点都以红、蓝两色之一染色,证明:存在这样的两个相似三角形,它们的相似比为1995,而且每个三角形三个顶点同色。

[证明] 在平面上作两个同心圆,半径分别为1和1995,因为小圆上每一点都染以红、蓝两色之一,所以小圆上必有五个点同色,设此五点为A ,B ,C ,D ,E ,过这两点作半径并将半径延长分别交大圆于A 1,B 1,C 1,D 1,E 1,由抽屉原理知这五点中必有三点同色,不妨设为A 1,B 1,C 1,则ΔABC 与ΔA 1B 1C 1都是顶点同色的三角形,且相似比为1995。

4.三角法。

例5 设AD ,BE 与CF 为ΔABC 的内角平分线,D ,E ,F 在ΔABC 的边上,如果∠EDF=900,

求∠BAC 的所有可能的值。

[解] 见图16-3,记∠ADE=α,∠EDC=β, 由题设∠FDA=

2π-α,∠BDF=2

π-β, 由正弦定理:C DE CE A DE AE sin sin ,2

sin sin ==βα, 得2sin sin sin sin A C CE AE ?=βα,

高中数学竞赛专题精讲27同余(含答案)

27同余 1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作,否则,就说a 与b 对模m 不同余,记作,显然,; 每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质: 1).反身性:; 2).对称性:; 3).若,则; 4).若,,则 特别是; 5).若,,则; 特别是 ; 6).; 7).若 ; 8).若, ……………… ,且 例题讲解 1.证明:完全平方数模4同余于0或1; 2.证明对于任何整数,能被7整除; )(mod m b a ≡)(mod m b a ≡)(|)(,)(mod b a m Z k b km a m b a -?∈+=?≡)(mod m a a ≡)(mod )(mod m a b m b a ≡?≡)(mod m b a ≡)(mod m c b ≡)(mod m c a ≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ±≡±)(mod )(mod m k b k a m b a ±≡±?≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ≡)(m od ),(m od m bk ak Z k m b a ≡?∈≡则)(m od ),(m od m b a N n m b a n n ≡?∈≡则)(mod )(m ac ab c b a +≡+)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当)(mod )(mod ).(mod ),(m b a mc bc ac d m b a d m c ≡?≡≡=特别地,时,当)(m od 1m b a ≡)(m od 2m b a ≡)(mod 3m b a ≡)(mod n m b a ≡)(m od ],,[21M b a m m m M n ≡??=,则0≥k 153261616+++++k k k

高中数学竞赛_函数【讲义】

1 第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

高中数学竞赛讲义-抽屉原理

§23抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

高中平面几何讲义(上) 叶中豪

高中平面几何(上) 知识要点 几何问题的联系和转化 比例线段与相似图形 共点线与共线点(梅涅劳斯定理和塞瓦定理) 三角形的“五心” 四点共圆及其判定 正弦定理和余弦定理 几何变换及相似理论 完全四边形与Miquel点 位似及其应用 例题和习题 1.已知H是△ABC的垂心,M、N分别是BC和AH的中点,直线MN交以AH 为直径的圆于点S、T。求证:AT、AS平分∠BAC及其外角。(10040601-2.gsp) 2.已知:ABCD是正方形,AE=AD,BF=BC,且∠EAD+∠FBC=90°,联结BE、EF,分别交AD于P、Q。求证:PQ=QD。(08012304.gsp)

3.已知梯形ABCD中,AD∥BC,E、F分别为AB、CD上的点,满足∠AED=∠BEC,∠AFD=∠BFC,对角线AC、BD交于O。求证:OE=OF。(07112501.gsp) 4.已知四边形ABCD中,∠B=90°对角线AC=BD,P是对边BC、AD中垂线的交点,Q是对边AB、CD中垂线的交点。求证:B、P、Q三点共线。(10041302.gsp) 5.如图,矩形ABCD中,EF∥AB,EF与对角线BD交于G点。过E作ET⊥DF,

垂足为T;过F作FS⊥BE,垂足为S。求证:S、G、T三点共线。 6.如图,设N是△ABC的弧BAC的中点,M是BC边中点,I是△ABC的内心。求证:∠ANI=2∠IMC。(09021701.gsp) 7.已知O是△ABC的外心,D、E、F分别是各边中点,R、r 为外接圆和内切圆的半径。求证:OD+OE+OF=R+r。(10040601-9.gsp) 8.已知:P是△ABC内任一点,EH∥BC,FI∥AB,GD∥AC,且三线共点于P,

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

高中数学竞赛训练题(0530)

数学竞赛训练题 1、函数()x x x x x f 44cos cos sin sin ++=的最大值是_______。 2、已知S n 、T n 分别是等差数列{}n a 与{}n b 的前n 项的和,且2412-+=n n T S n n ,则=+++15 61118310b b a b b a _______。 3、若函数()?? ? ?? +=x a x x f a 4log 在区间上为增函数,则a 的取值范围是为_______。 4、在四面体ABCD 中,已知DA ⊥平面ABC ,△ABC 是边长为2的正三角形,则当二面角A-BD-C 的正切值为2时,四面体ABCD 的体积为_______。 5、已知定义在R 上的函数()x f 满足: (1)()11=f ; (2)当10<x f ; (3)对任意的实数x 、y 均有()()()()y f x f y x f y x f -=--+12。则=??? ??31f _______。 6、已知x 、y 满足条件484322=+y x ,则542442222++-+++-+y x y x x y x 的最 大值为_______。 7、对正整数n ,设n x 是关于x 的方程nx 3 +2x-n=0的实数根,记()[]()11>+=n x n a n n (符号表示不超过x 的最大整数),则()=++++20114321005 1a a a a _______。 8、在平面直角坐标系中,已知点集I={(x ,y )|x 、y 为整数,且0≤x ≤5,0≤y ≤5},则以 集合I 中的点为顶点且位置不同的正方形的个数为_______。 9、若函数()x x x x f 2cos 24sin sin 42+?? ? ??+=π。 (1)设常数0>w ,若函数()wx f y =在区间??????- 32,2ππ上是增函数,求w 的取值范围; (2)集合??????≤≤=326ππx x A ,(){} 2<-=m x f x B ,若B B A =?,求实数m 的取值范围。

高中数学竞赛讲义_数列

数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高一数学竞赛讲义:平面几何

平面几何习题 2016.4.18 例1、(2005)13.已知点 M 是 ABC ? 的中线 AD 上的一点, 直线 BM 交边 AC 于点N , 且 AB 是 NBC ? 的外接圆的切线, 设 BC BN λ=, 试求 BM MN (用 λ 表示). 例2、(2006)15. △ABC 中,AB

A B C P 例4、(2010)13.如图,圆内接五边形ABCDE 中,AD 是外接圆的直径,BE AD ⊥, 垂足H . 过点H 作平行于CE 的直线,与直线AC 、DC 分别交于点F 、G . 证明: (1) 点A 、B 、F 、H 共圆; (2) 四边形BFCG 是矩形. 例5、(2011)13.如图,P 是ABC 内一点. (1)若P 是ABC 的内心,证明:1 902 BPC BAC ∠=+∠; (2)若1902BPC BAC ∠=+∠且1 902 APC ABC ∠=+∠,证明:P 是ABC 的内心. A B C D E F H G

M B D O A 例6、(2012) 13. 如图,半径为1的圆O 上有一定点M, A 为圆O 上动点, 在射线OM 上有一动点B,AB=1,OB>1. 线段AB 交圆O 于另一点C,D 为线段OB 的中点,求线段CD 长的取值范围 例7、(2013)12.如图,梯形ABCD 中,B 、D 关于对角线AC 对称的点分别是'B 、 'D ,A 、C 关于对角线BD 对称的点分别是'A 、'C .证明:四边形'''' A B C D 是梯形.

高中数学立体几何之面面平行的判定与性质讲义及练习电子教案

高中数学立体几何之面面平行的判定与性质讲义及练习

面面平行的判定与性质 一、基本内容 1.面面平行的判定 文字 图形 几何符号 简称 判定定理1 判定定理2 2.面面平行的性质 文字 图形 几何符号 简称 性质定理1 性质定理2 二、例题 1. 正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面. 2.在正方体1111ABCD A B C D 中,E 、F 、G 分别是AB 、AD 、11C D 的中点. 求证:平面1D EF ∥平面BDG . A 1 A B 1 C 1 C D 1 D G E F

F E D B A P C 3.如图,在四棱锥ABCD P -中,底面ABCD 是正方形, PA ⊥平面ABCD , E 是PC 中点,F 为线段AC 上一点. (Ⅰ)求证:EF BD ⊥; (Ⅱ)试确定点F 在线段AC 上的位置,使EF //平面PBD . 4. 在四棱锥P ABCD 中,AB //CD ,AB AD ,4,22,2AB AD CD ,PA 平面 ABCD ,4PA . (Ⅰ)设平面PAB 平面PCD m =,求证:CD //m ; (Ⅱ)求证:BD ⊥平面PAC ; (Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC 所 成角的正弦值为33,求PQ PB 的值. 5. 在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠?, EB ⊥平面ABCD , EF//AB ,2AB=,=1EF ,=13BC ,且M 是BD 的中点. (Ⅰ)求证://EM 平面ADF ; (Ⅱ)在EB 上是否存在一点P ,使得CPD ∠最大? 若存在,请求出CPD ∠的正切值;若不存在, 请说明理由. P D C B A C A F E B M D

高中数学竞赛讲义_复数

复数 一、基础知识 1.复数的定义:设i 为方程x 2 =-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ 表示cos θ+isin θ,则z=re i θ ,称为复数的指数形 式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2 1 21z z z z =???? ??;(5)||||||2121z z z z ?=?; (6)| || |||2121z z z z = ;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2 +|z 1-z 2|2 =2|z 1|2 +2|z 2|2 ;(9)若|z|=1,则z z 1= 。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1 212, 0r r z z z = ≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2) , .) (2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n π θπ θ+++= , k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n π π2sin 2cos +,则全部单位根可表示为1,1Z ,1 1 21,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

高中数学竞赛试题附详细答案

高中数学竞赛试题 一选择题(每题5分,满分60分) 1. 如果a,b,c 都是实数,那么P ∶ac<0,是q ∶关于x 的方程ax 2 +bx+c=0有一个正根和一个 负根的( ) (A )必要而不充分条件 (B )充要条件 (C )充分而不必要条件 (D )既不充分也不必要条件 2. 某种放射性元素,100年后只剩原来质量的一半,现有这种元素1克,3年后剩下( )。 (A ) 100 5 .03?克 (B )(1-0.5%)3克 (C )0.925克 (D )100125.0克 3. 由甲城市到乙城市t 分钟的电话费由函数g (t )=1.06×(0.75[t ]+1)给出,其中t >0,[t ]表示 大于或等于t 的最小整数,则从甲城市到乙城市5.5分钟的电话费为( )。 (A )5.83元 (B )5.25元 (C )5.56元 (D )5.04元 4. 已知函数 >0, 则 的值 A 、一定大于零 B 、一定小于零 C 、等于零 D 、正负都有可能 5. 已知数列3,7,11,15,…则113是它的( ) (A )第23项 (B )第24项 (C )第19项 (D )第25项 6. 已知等差数列}{n a 的公差不为零,}{n a 中的部分项 ,,,,,321n k k k k a a a a 构成等比数 列,其中,17,5,1321===k k k 则n k k k k ++++ 321等于( ) (A) 13--n n (B) 13-+n n (C) 13+-n n (D)都不对 7. 已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4 π = x 处取得最小 值,则函数)4 3( x f y -=π 是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 8. 如果 A A tan 1tan 1+-= 4+5,那么cot (A +4 π )的值等于 ( ) A -4-5 B 4+5 C - 5 41+ D 5 41+ 9. 已知︱︱=1,︱︱=3,?=0,点C 在∠AOB 内,且∠AOC =30°,设 =m +n (m 、n ∈R ),则 n m 等于

高中数学竞赛讲义(15)复数

高中数学竞赛讲义(十五) ──复数 一、基础知识 1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。 2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用e iθ表示cosθ+isin θ,则z=re iθ,称为复数的指数形式。 3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);

(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8) |z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2), 则z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θθ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2e i(θ1+θ1- 2), 5.棣莫弗定理:[r(cosθ+isinθ)]n=r n(cosnθ+isinnθ). 6.开方:若r(cosθ+isinθ),则 ,k=0,1,2,…,n-1。 7.单位根:若w n=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Z nq+r=Z r;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z1)(x-Z2)…(x-Z n-1)=(x-Z1)(x-)…(x-).

高中平面几何讲义

高中平面几何 (上海教育出版社叶中豪) 知识要点 三角形的特殊点 重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard点,聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线 特殊直线、圆 Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆, Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆 特殊三角形 中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形, 第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形 相关直线及相关三角形 Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形 重心坐标和三线坐标 四边形和四点形 质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线 完全四边形 Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理 重要轨迹 平方差,平方和,Apollonius圆 三角形和四边形中的共轭关系 等角共轭点,等角共轭线,等截共轭点,等截共轭线 几何变换及相似理论 平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心 Miquel定理 内接三角形,外接三角形,Miquel点 根轴 圆幂,根轴,共轴圆系,极限点 反演 反演,分式线性变换(正定向和反定向) 配极 极点与极线,共轭点对,三线极线及三线极点,垂极点 射影几何 点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 理,Brianchon定理 著名定理 三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli问题Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley定理Mannheim定理 例题和习题

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

高中数学联赛组合专题

课程简介:全国高中数学联赛是中国高中数学学科的最高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”。优胜者可以自动获得各重点大学的保送资格。各省赛区一等奖前6名可参加中国数学奥林匹克,获得进入国家集训队的机会。中小学教育网重磅推出“全国高中数学联赛”辅导课程,无论是有意向参加竞赛的初学者,还是已入围二试的竞赛选手,都有适合的课程提供。本套课程由中国数学奥林匹克高级教练熊斌、人大附中数学教师李秋生等名师主讲,轻松突破你的数学极限! 课程招生简章:https://www.wendangku.net/doc/7412852819.html,/webhtml/project/liansaigz.shtml 选课中心地址: https://www.wendangku.net/doc/7412852819.html,/selectcourse/commonCourse.shtm?courseeduid=170037#_170037_ 第二章组合专题 一、重要的概念与定理 1、完全图:每两个顶点之间均有边相连的简单图称为完全图,有个顶点的完全图(阶完全图)记为. 2、顶点的度:图中与顶点相关联的边数(环按2条边计算)称为顶点的度(或次数), 记为.与分别表示图的顶点的最小度与最大度.度为奇数的顶点称为奇顶点,度 为偶数的顶点称为偶顶点. 3、树:没有圈的连通图称为树,用表示,其中度为1的顶点称为树叶(或悬挂点).阶树常表示为. 4、部图:若图的顶点集可以分解为个两两不相交的非空子集的并,即 并且同一子集内任何两个顶点没有边相连,则称这样的图为部图,记作 . 2部图又叫做偶图,记为. 5、完全部图:在一个部图中, ,若对任意 均有边连接和,则称图为完全部图,记为. 6、欧拉迹:包含图中所有边的迹称为欧拉迹.起点与终点重合的欧拉迹称为闭欧拉迹. 欧拉图:包含欧拉迹的图为欧拉图. 欧拉图必是连通图. 哈密顿链(圈):经过图上各顶点一次并且仅仅一次的链(圈)称为哈密顿链(圈).包含哈密顿圈的图称为哈密顿图. 7、平面图:若一个图可画在平面上,即可作一个与同构的图,使的顶点与边在同一

相关文档
相关文档 最新文档