文档库 最新最全的文档下载
当前位置:文档库 › 北京地铁盾构新型同步注浆及其材料的研究

北京地铁盾构新型同步注浆及其材料的研究

北京地铁盾构新型同步注浆及其材料的研究
北京地铁盾构新型同步注浆及其材料的研究

北京地铁盾构新型同步注浆及其材料的研究

[摘要]北京地铁五号线盾构试验段工程采用了城建集团自行研制的惰性浆液(已申请专利),其注浆效果非常理想,在施工中有效的控制了地表沉降。

[关键词]盾构北京地铁五号线同步注浆惰性浆液

一、概况

北京地铁五号线试验段工程,采用了土压平衡式盾构机进行施工。盾构机配备了盾尾同步单液注浆系统,可在盾构掘进的同时进行壁后注浆。在盾构掘进施工中,当管片刚脱离盾尾时即可对管片外侧的建筑空隙进行填充,从而起到控制地表沉降和稳定成型隧道的作用。在施工中我们使用的浆液是自行研制的惰性浆液,此浆液通过施工中达到了很好的效果,有效地控制了地表沉降。

二、盾构法施工壁后注浆技术

2.1同步注浆原理

北京地铁五号线盾构试验段工程的施工采取了同步注浆方式。其工作原理是:在盾构机推进过程中,保持一定压力(综合考虑注入量)不间断地从盾尾直接向壁后注浆,当盾构机推进结束时,停止注浆。这种方法是在环形空隙形成的同时用浆液将其填充的注浆方式。

2.2注浆材料和配比的选择

2.2.1注浆材料应具备的基本性能

根据北京地区的地质条件、工程特点以及现有盾构机的型式,浆液应具备以下性能:

1)具有良好的长期稳定性及流动性,并能保证适当的初凝时间,以适应盾构施工以及远距离输送的要求。

2)具有良好的充填性能。

3)在满足注浆施工的前提下,尽可能早地获得高于地层的早期强度。

4)浆液在地下水环境中,不易产生稀释现象。

5)浆液固结后体积收缩小,泌水率小。

6)原料来源丰富、经济,施工管理方便,并能满足施工自动化技术要求。

7)浆液无公害,价格便宜。

2.2.2. 注浆材料

为了保证壁后注浆的填充效果,施工中结合现场条件和盾构机自身注浆系统的配置,选取了两种单液浆组成以便进行对比优选:

1)以水泥、粉煤灰为主剂的常规单液浆a

成分:水泥、粉煤灰、细砂、膨润土(钠土)和水;

2)以生石灰、粉煤灰为主剂的惰性浆液b

成分:生石灰、粉煤灰、细砂、膨润土(钠土)和水。

浆液组成a以水泥作为提供浆液固结强度和调节浆液凝结时间的材料,浆液组成b以粉煤灰作为提供浆液固结强度和调节浆液凝结时间的材料。其中浆液组成b 中使用的粉煤灰可以改善浆液的和易性(流动性),生石灰能增加浆液的粘度,并有一定的固结作用,膨润土用以减缓浆液的材料分离,降低泌水率,还具有一定的防渗作用。砂在两种浆液中都作为填充料。

2.2.

3. 浆液配比及性能测试

在确定浆液配比时,先根据相关资料,确定了两种浆液的各种材料的基本用量,然后结合浆液站调试,每种配比生产一定方量,并对浆液性能进行相关的性能测试,从而对配比单进行筛选,保留能够生产出合格浆液的配比,以便今后用于施工。按测试配比拌制出的浆液送到试验室进行了主要性能指标的测试。根据配比单和浆液配合比试验报告中的测试数据,绘制出浆液流动度、稠度和分层度随时间变化的对比曲线。

由图2-2中可知,水泥浆液(配比1、2、3)的流动性略优于惰性浆液(配比4、5、6、7、8)。但两类浆液随时间的变化趋势略有不同,水泥浆液的流动性随时间推移下降幅度较大,而惰性浆液的流动性保持平稳。

根据测试结果还可得知,与水泥浆液相比,以生石灰、粉煤灰为主剂的浆液的凝结时间较长,在10~12小时左右。考虑到盾构掘进过程中一些不可避免的停机(如管片拼装、连接电缆、风管安装、机器维护保养、盾构机临时停机、电路故障等),若浆液的初凝时间较短,则增加了停机期间发生堵管的可能性,增加额外的清洗工作,并影响盾构的继续掘进。因此,浆液合理的初凝时间应与盾构掘进施工一个工班的时间接近,这样可以在每班结束时再安排浆液输送管路的清理工作,既不影响盾构连续施工,又保证能及时清理管路,避免堵管现象的发生,选用惰性浆液更为可靠。

惰性浆液在主要成分加量不变的情况下,只需调节添加剂的加量就能有效地控制、调节浆液的性能。在施工过程中,可以比较方便地对浆液的性能进行调整,以适应不同地层、不同掘进进度对浆液性能的要求。

通过上面的分析比较,试验段施工最终选定采用以生石灰、粉煤灰为主料的惰性单液浆作为盾构施工壁后注浆的材料。

2.3注浆工艺参数的确定

2.3.1注浆量的计算

壁后注浆量Q,通常可按下式估算:Q=Vα

式中,V为理论空隙量,α为注入率。

北京地铁五号线试验段采用的土压平衡盾构机刀盘直径6.20m,而预制钢筋混凝土管片外径为6.0m,则理论上每掘进一环,盾构掘削土体形成的空间与管片外壁之间的空隙的理论体积为:V=0.25×π×(6.22-62)×1.2=2.298m3。

注入率α的主要影响因素包括注入压力决定的压密系数α1、土质系数α2、施

工损耗系数α3和超挖系数α4。

则α=1+α1+α2+α3+α4

每环实际注浆量可根据地层和施工损耗等情况选取相应的注入率。

2.3.2注浆压力的确定

北京地铁五号线土压平衡盾构机在盾尾处设有四个浆液注入点,盾尾同步注浆的压力因浆液注入点位置的不同而不同。盾尾四个注浆点的位置和相互关系如图

2-8所示(图中尺寸仅为示意)。

经计算得出盾构拱顶水土压力,管道中的压力损失在盾构机厂内组装时已测定,则A1、A4点处注浆压力理论计算值为

拱顶水土压力+管道中的压力损失

最大注入压力为

(拱顶水土压力+管道中的压力损失)×1.25

最小注入压力为

(拱顶水土压力+管道中的压力损失)×0.75

A2和A3点处注浆压力理论计算值为

拱顶水土压力+管道中的压力损失+侧压力系数×γ’×H+γ水×H

则最大注入压力为:

(拱顶水土压力+管道中的压力损失+侧压力系数×γ’×H+γ水×H)×1.25 最小注入压力为:

(拱顶水土压力+管道中的压力损失+侧压力系数×γ’×H+γ水×H)×0.75 实际操作过程中,可根据以上理论计算所得结果分别设定A1、A2、A3、A4点的注浆压力。

2.3.3注浆量和注浆压力的控制

壁后注浆的注入量受浆液向土体中的渗透、泄露损失(浆液流到注入区域之外)、

小曲率半径施工、超挖、壁后注浆所用浆液的种类等多种因素的影响。虽然这些因素的影响程度目前尚在探索,但控制注入量多少的基本原则是不变的,就是要保证有足够的浆液能很好的填充管片与地层之间的空隙。

一般每环浆液注入量为3~4m3,施工中如果发现注入量持续增多时,必须检查超挖、漏失等因素。而注入量低于预定注入量时,可以考虑是注入浆液的配比、注入时期、盾构推进速度过快或出现故障所致,必须认真检查采取相应的措施,一般可采取加大注浆压力或在盾构掘进后进行补浆。

注入压力要考虑不同地层的多种情况,注入压力一般是2~4bar,由于考虑在砂质或砂卵石地层中浆液的扩散,所以注入压力要比在粘土中的注入压力小一些。

北京地铁五号线试验段的地层条件复杂多变,隧道开挖面土体可分为粘土层、砂性土层、砂卵石层三种。在粘土层盾构施工过程中,浆液实际注入量2.7~3.0m3左右,约为理论计算量的104~117%,与我们预计的基本相符。而在砂、砾石层区段进行的注浆,由于浆液的渗入深度较大,在4~10cm左右,浆液固结体厚度一般在20cm以上,浆液用量相应有所增加,在3.7~4.5m3左右,为理论计算量的161~195%,略超出预计值。

在壁后注浆施工中,为控制注浆效果和质量,应对注入压力和注入量这两个参数进行严格控制,我们采取的是以设定注入压力为主,兼顾注入量的方法。

3盾构壁后注浆在生产实践中的应用

3.1注浆设备简介

3.1.1浆液站简介

为配合北京地铁五号线盾构试验段土压平衡盾构机掘进施工,我公司从国外引进了浆液搅拌及泵送系统(图3-1)。该系统由搅拌和泵送两大部分组成,其中搅拌系统、泵送系统由德国引进,储料罐等钢结构件由国内配套加工制作。搅拌系统的连续生产能力可达到10m3/h,泵送系统的最长水平泵送距离可达到1km,可

以满足盾构施工对浆液生产和输送的要求。

搅拌系统由砂料储料、计量及上料装置,3种各自独立的干粉料的储料、计量及上料装置,水和一种液体添加剂的储料、计量及上料装置,还有搅拌机和控制室等组成。该系统的最大优点是采用了连续式计量装置,可以实现连续生产;控制系统采用了可靠性较高的PLC控制系统,可以实现自动、手动两种功能,并具有自动采集、存储、打印数据的功能。此外,在两种采用散装罐车加料的储料罐上安装了除尘装置,具有较好的环保性能。

泵送系统由动力包、搅拌罐和柱塞泵等组成,该系统采用的是液压驱动,具有体积小、可靠性高的优点。泵送系统可以单独控制,也可以在搅拌站控制室进行联动控制。

3.1.2盾尾注浆系统简介

盾尾同步注浆系统,包括储浆罐、注浆泵和控制面板三部分。储浆罐容积为5m3,可容纳盾构掘进1环注浆所需的浆液。浆罐带有搅拌轴和叶片,注浆过程中可以对浆液不停的搅拌,保证浆液的流动性,减少材料分离现象。配套设置的2台注浆泵,可以同时对4个加注口实施同步注浆。该套系统具有自动、手动两种功能,可以根据要求在盾构机控制室内对盾尾注浆的最大和最小压力进行设定,从而实现对注浆量的控制。由于在系统的相应部位安装了传感器和压力表,在控制面板上可显示盾尾的注浆压力、泵的工作压力及注浆泵的冲程数等参数,以方便对注浆泵的操作、控制。

3.2地铁五号线盾构试验段壁后注浆工艺

3.2.1前60m始发阶段掘进

由于现场条件的限制,此阶段盾构后配套台车位于地表,浆液由浆液站拌制好后直接通过地表管路泵入到后配套台车的注浆罐中,再经泵送至盾尾浆液注入点注入地层。盾尾注浆压力设定为3~3.5bar,采用盾尾上方A1,A4两点注入。

在此段盾构施工过程中,盾构掘进出土时进行同步注浆,以控制注浆压力为主兼顾注浆量(图3-2 )。由于当时施工条件所限,盾构每掘进一次时只能出土一斗。土斗装满后需返回竖井口,将土斗吊出倒空再放回平板车上,开至螺旋输送机口下继续掘进下一斗土。在等待土斗的这段时间内,如果注浆压力在掘进结束时未达到要求,那么应持续注浆,直到注浆压力达到要求为止。在拼装管片时,停止注浆,以免拼装时千斤顶部分松开时注浆会造成管片移位、变形。每天在掘进当天最后一斗土时,将注浆罐中残余的砂浆放掉,由浆液站重新拌制一定方量的膨润土液打入注浆罐,在掘进最后一斗土的过程中用注浆泵泵送,这样从地表台车到盾尾的胶管内以及盾尾注浆管路内即充满了膨润土液,原管路内存留的砂浆被膨润土液挤入地层。停机后,清洗注浆罐、注浆泵,盾尾则在停机6~7小时后再用高压清洗设备清洗。通过采用这种方式注浆,避免了停机造成注浆管路和盾尾堵塞,也减少了清洗管路的工作量,保证施工能够连续进行。在此段施工过程中,一方面由于浆液泵送距离较短,另一方面采取的注浆工艺比较合理,在施工过程中基本未出现堵管现象。

3.2.2掘进60m至150m正常段施工

盾构掘进60m后,盾构后配套台车全部下入隧道,注浆泵与盾尾之间的注浆胶管缩短,但浆液站至注浆罐的浆液输送管路随盾构的推进不断延长,浆液输送阻力日渐增大,同时浆液在输送管路中停留的时间较长,浆液中砂沉积较多,堵管现象逐渐出现,经常出现在管路中的变径处。此时采取的注浆工艺和前60m相同,只是由于盾构推进进度较快,为保证施工进度,常常等不及拌制膨润土液,造成管路清洗工作量加大。100m至150m左右,浆液罐车暂时未加工完毕,仍采用管路将浆液从浆液站泵送至隧道内盾构后配套台车上的注浆罐中的方式。由于管路较长,浆液较稠,泵送阻力很大。同时由于要降低成本,将浆液配制材料中的钠土改为了钙土,在不加外加剂的条件下,拌制的浆液流动性不好,浆液易发

生固液分离现象,砂沉淀较快,造成管路极易堵塞,稍不及时清理就会造成清洗极度困难,有时甚至停机10多个小时来清洗管路。此时一方面尝试添加适当的添加剂来改善钙土的性能,保证拌制出的浆液的流动性和减少浆液的材料分离,利于泵送;另一方面采取特殊的泵送方式来减少堵管。具体方法参见图3-3。

每环开始推进前,先拌制足够一环使用的砂浆打入注浆罐。当开始掘进后,随着砂浆的消耗不断向注浆罐内补充砂浆,即让浆液站基本不间断泵送浆液,保持浆液在管路中处于流动状态。这样在一环掘进结束时,注浆罐内仍还有够一环使用的砂浆。从拼装本环管片到下一环掘进结束这一段时间,浆液站不需再泵送浆液,可以用清洗球和清水进行清洗管路的工作,及时疏通浆液泵送管路,减少堵管的可能。这种方法取得了较好的使用效果,即使泵送较稠的浆液,堵管的次数也大大减少,保证了施工的连续性。

3.2.3掘进150m以后的施工

盾构掘进150m以后,浆液罐车加工完毕运至现场投入使用,基本解决了堵管问题,施工进度得到保障。此时盾构机逐渐进入砂层,我们对浆液配比进行了一定的调整,以保证注入的砂浆既能充分充填管片与地层之间的空隙,又不至于流失太大。这一段时间内有时会在注浆泵与注浆胶管之间的变径处出现轻微堵塞。由于此段为24小时不间断施工,停机时间很少,基本不再采用最后注入膨润土的方式,只是进行正常的清洗,盾尾在周末停机后再用高压清洗机清洗

3.3注浆质量控制

3.3.1浆液搅拌

制浆时的注意事项:

1)对于制浆材料要把好质量关,选用供货质量稳定的供货商。拌制浆液时,不能投入固结的生石灰和膨润土,砂料应是粒径2~4mm的细砂,含泥量不能超过标准,不得混有杂物和大粒径石子;

2)浆液搅拌要充分,拌和要连续,不能间断;

3)定期检查计量系统,保证按配比生产浆液;

4)根据拌制的第一罐浆液的性能指标,合理调整各骨料和水的加量,保证浆液的性能最终满足要求;

5)按规定对设备进行日常维护保养,使设备经常处于良好的工作状态。冬季施工,要对浆液搅拌站的关键部位做好保温工作。

6)缩短供货周期,尽量缩短原料在施工现场的存放时间,减少材料的板结现象。如用含水量较大的细砂,应相应地调节水的加量。

3.3.2浆液运输及注入

浆液运输及注入过程中的注意事项

1)若浆液运输距离较长,直接泵送至盾构机浆液罐内容易发生堵管现象,应采用浆液罐车运输,缩短泵送距离,减少堵管现象的发生;

2)在浆液站向罐车内泵送浆液的过程中,应保证罐车在连续搅拌,防止浆液离析;浆液运送到后配台车后,应及时泵入到储浆罐中,由储浆罐继续进行搅拌;

3)罐车泵送完浆液后,及时进行清洗;

4)检查从注入孔到泵的输浆管接头的好坏;

5)注意观察注入压力、注入量;

6)定期清理注浆管及注浆孔。

4、注浆效果的检测

壁后注浆的效果好坏,关键在于浆液在管片与地层间的间隙是否完全充满及浆液填充后地层沉降是否得到有效控制。施工中可以有选择地在部分管片上打检测孔,对注浆效果进行探查、检测,见图5-1。

北京地铁五号线盾构试验段工程施工中在盾构机经过北新桥车站时中采用了“先盾构掘进过站、后基坑开挖并拆除既有成型隧道”的盾构过站方式,其施工

方式在国内上属首次。它的应用为后续盾构施工提供了新的思路,同时也为检验我们壁后注浆技术措施及材料的的应用效果提供了难得的机会。

在既有隧道的管片拆除施工中,从开挖出的170.8m长的隧道外部进可以看到壁后注浆凝固后形成了一圈质地非常均匀的壳体,壳体的平均厚度达到150mm以上。

在拆除范围内,拱顶部分通过的地层有粘土层和砂土层,下部为砂土层及卵砾石层。通过观察可以看出,沿隧道纵向粘土层外部浆液充填较厚,砂土层外部浆液充填稍薄,但差别很小。在同一环面上纵向浆液填充厚度几乎无差异。从拆除管片时隧道断面可以看出,隧道上部浆液充填最厚,平均可达250mm,最厚处可达300mm;其下部浆液充填较薄,平均厚度约为100mm,最厚可达140mm。这种现象主要是由于注浆孔布置的位置及盾构施工中的开挖特点所产生的。从砂浆断面可以看出浆液凝固后呈青灰色,颗粒非常细腻、均匀,同时其壳体没有任何接缝或接茬的痕迹。说明其注浆效果是连续、密实的,见图5-2。

对现场壁后注浆凝固后的砂浆,进行取样并制成试块。共分段选确并制作了80个150×150mm的试块,委托试验室对其进行抗压检验。通过实验报告中最大抗压强度值13.5Mpa,最小抗压强度值4.3Mpa,平均抗压强度值可达6.75Mpa,且各试块抗压强度差别不大。管片四周浆液充填良好,有的部位浆液厚度可达320mm。建成的隧道基本无渗漏,管片基本无错台。根据地表沉降观测报告,沿线地表沉降都控制在-17.5mm之内。

通过上图可以看出选用的注浆材料、配比和采用的注浆工艺是合理的,注浆效果良好。

5总结

我们结合北京地铁盾构试验段工程的实际情况,通过试验对比最终研制出了采用生石灰和粉煤灰作为主料的惰性浆液(发明专利申请号:02158588.1)作为盾构

隧道壁后注浆的浆液。生产实践证明,在北京盾构隧道壁后注浆中采用我们研制的浆液是完全可行的。

总体而言,北京地铁五号线试验段采用的壁后注浆浆液不仅减少了堵管的发生,提高了工效,降低了成本,具有良好的经济效益;而且由于壁后注浆工艺和参数控制良好,壁后注浆起到了良好的填充空隙、控制沉降和防水的作用,保证了施工的安全顺利进行。其注浆的效果证明了这种惰性浆液的性价比明显优于其他浆液材料。其凝固效果相当理想,非常适合土压平衡盾构施工。可以说在北京盾构施工中进行的同步注浆取得了成功,在类似北京地质条件下,其应用是值得大力推广的。

盾构同步注浆

盾构同步注浆 当盾片脱离盾尾后,在土体与管片之间会形成一道宽度为3.5mm左右的环行空隙。同步注浆的目的是为了尽快填充环形间隙使管片尽早支撑地层,防止地面变形过大而危及周围环境安全,同时作为管片外防水和结构加强层。 1.1.1.1注浆材料 采用水泥砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。水泥采用42.5R普通硅酸盐水泥,以提高注浆结石体的耐腐蚀性,使管片处在耐腐蚀注浆结石体的包裹内,减弱地下水对管片混凝土的腐蚀。 (1)浆液配比及主要物理力学指标 根据盾构施工经验,同步注浆拟采用表8-5所示的配比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定。同步注浆浆液的主要物理力学性能应满足下列指标: ①胶凝时间:一般为3~10h,根据地层条件和掘进速度,通过现场试验加入促凝剂及变更配比来调整胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比和加入早强剂,进一步缩短胶凝时间。 ②固结体强度:一天不小于0.2MPa,28天不小于2.5MPa。 ③浆液结石率:>95%,即固结收缩率<5%。 ④浆液稠度:8~12cm。 ⑤浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5%。 同步注浆主要技术参数 1.1.1.2注浆压力 注浆压力略大于该地层位置的静止水土压力,同时避免浆液进入盾构机的土仓中。 最初的注浆压力是根据理论的静止水土压力确定的,在实际掘进中将不断优

化。如果注浆压力过大,会导致地面隆起和管片变形,还易漏浆。如果注浆压力过小,则浆液填充速度赶不上空隙形成速度,又会引起地面沉陷。一般而言,注浆压力取1.1~1.2倍的静止水土压力,最大不超过3.0bar。 由于从盾尾圆周上的四个点同时注浆,考虑到水土压力的差别和防止管片大幅度下沉和浮起的需要,各点的注浆压力将不同,并保持合适的压差,以达到最佳效果。在最初的压力设定时,下部每孔的压力比上部每孔的压力略大0.5~1.0bar。 1.1.1.3注浆量 根据刀盘开挖直径和管片外径,可以按下式计算出一环管片的注浆量。 V=π/4×K×L×(D12-D22)式中: V ——一环注浆量(m3) L ——环宽(m) D1——开挖直径(m) D2——管片外径(m) K——扩大系数取1.5~2 代入相关数据,可得: V=π/4×(1.5)×1.2×(40.2-38.4)=2.5~3.4 m3/环 上面经验公式计算中,注浆量取环形间隙理论体积的1.5~2倍,每环(1.2m)注浆量Q=2.5~3.4m3。 1.1.1.4注浆时间和速度 在不同的地层中根据需不同凝结时间的浆液及掘进速度来具体控制注浆时间的长短。做到“掘进、注浆同步,不注浆、不掘进”,通过控制同步注浆压力和注浆量双重标准来确定注浆时间。 注浆量和注浆压力均达到设定值后才停止注浆,否则仍需补浆。 同步注浆速度与掘进速度匹配,按盾构完成一环掘进的时间内完成当环注浆量来确定其平均注浆速度。 1.1.1.5注浆结束标准及效果检查 采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的85%以上时,即可认为达到了质量要求。 注浆效果检查主要采用分析法,即根据压力-注浆量-时间曲线,结合管片、地表及周围建筑物量测结果进行综合评价。对拱顶部分采用超声波探测法通过频谱分

盾构同步注浆

1.1. 盾构同步注浆 当盾片脱离盾尾后,在土体与管片之间会形成一道宽度为140mm 左右的环行空隙。同步注浆的目的是为了尽快填充环形间隙使管片尽早支撑地层,防止地面变形过大而危及周围环境安全,同时作为管片外防水和结构加强层。 1.1.1. 注浆材料 采用水泥砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。水泥采用普通硅酸盐水泥,以提高注浆结石体的耐腐蚀性,使管片处在耐腐蚀注浆结石体的包裹内,减弱地下水对管片混凝土的腐蚀。 根据盾构施工经验,同步注浆拟采用下表所示的配比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定。 同步注浆浆液的主要物理力学性能应满足下列指标,见表7-6 : 表7-6同步注浆材料配比和性能指标表 ⑴胶凝时间:一般为3?10h,根据地层条件和掘进速度,通过现场试验加入促凝剂及变更配比来调整胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比和加入早强剂,进一步缩短胶凝时间; ⑵固结体强度:一天不小于0.2MPa, 28天不小于2.5MPa ⑶浆液结石率:>95%,即固结收缩率<5% ⑷浆液稠度:8?12cm ⑸浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5% 1.1. 2. 同步注浆主要技术参数 1.1. 2.1.注浆压力 注浆压力略大于该地层位置的静止水土压力,同时避免浆液进入盾构机的土仓中。 最初的注浆压力是根据理论的静止水土压力确定的,在实际掘进

中将不断优化。如果注浆压力过大,会导致地面隆起和管片变形,还易漏浆。如果注浆压力过小,则浆液填充速度赶不上空隙形成速度,又会引起地面沉陷。一般而言,注浆压力取 1.1?1.2倍的静止水土 压力,最大不超过3.0?4.0bar。 由于从盾尾圆周上的四个点同时注浆,考虑到水土压力的差别和防止管片大幅度下沉和浮起的需要,各点的注浆压力将不同,并保持合适的压差,以达到最佳效果。在最初的压力设定时,下部每孔的压力比上部每孔的压力略大0.5?I.Obar。 1.12 2.注浆量 盾构掘进注浆采用盾尾同步注浆,随着盾构推进,脱出盾尾的管片与土体间出现“建筑空隙”,该空隙用浆液通过设在盾尾的压浆管予以充填。由于压入衬砌背面的浆液会发生失水收缩固结、部分浆液会劈裂到周围地层中,还有曲线推进、纠偏或盾构机抬头等原因,使得实际注浆量要超过理论建筑空隙体积。 每推进一环的建筑空隙为:n (6.482 — 6.22 ) X 1/4 X 1.2=3.35m3 开挖直径:①6.48m;管片外径:①6.2m 考虑到地层扩散系数,每环的压浆量一般为建筑空隙的150%-200%即每推进一环同步注浆量为 5.019 m3?6.692 m3,按地层的 不同注浆量也要因地制宜,应以注浆压力与数量进行双控来评价注浆最终量。 1.1. 2. 3. 注浆时间和速度 在不同的地层中根据需不同凝结时间的浆液及掘进速度来具体控制注浆时间的长短。做到“掘进、注浆同步,不注浆、不掘进”,通过控制同步注浆压力和注浆量双重标准来确定注浆时间。 注浆量和注浆压力均达到设定值后才停止注浆,否则仍需补浆。 同步注浆速度与掘进速度匹配,按盾构完成一环掘进的时间内即完成当环注浆量来确定其平均注浆速度。 1.1. 2.4. 注浆结束标准及浆效果检查 采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的85%以上时,即可认为达到了质量要求。 注浆效果检查主要采用分析法,即根据压力-注浆量-时间曲线,结合

盾构注浆施工工艺工法

盾构注浆施工工艺工法 1 前言 1.1 工艺工法概况 盾构注浆通过盾体及管片上的预留注浆孔向有盾体和管片背后注入水泥浆液、化学浆液、混合浆液等,以达到填充空隙、控制地层沉降、堵水或加固地层作用的施工技术,主要包含同步注浆和二次注浆。盾构注浆施工技术是盾构工法中必不可少的关键性辅助工法,是控制地表沉降、确保管线及建构筑物安全的关键,亦是确保隧道防水质量及成型隧道线型质量的关键。 1.2 工艺原理 盾构注浆施工主要包括同步注浆和二次注浆。 1.2.1 同步注浆工艺原理 在盾构掘进的同时利用注浆泵,在管片背部和刀盘开挖轮廓面之间形成空隙的同时,用具有长期稳定性及一定流动性、微收缩性,并能保证适当初凝时间的浆液,在盾尾空隙形成的短时间内将其充填密实,从而使围岩土体获得及时支撑,可有效的防治土体坍塌,控制地表沉降,原理如图1所示。

图1 同步注浆原理图 1.2.2 二次注浆工艺原理 以水泥浆液(或水泥浆、水玻璃混合浆液)为介质,通过在管片吊装孔安装注浆管,注浆填充管片背后的孔隙,达到控制地表下沉、阻断隧道漏水通道的目的。 2 工艺工法特点 2.1 通过注浆压力、注浆量、注浆速度的控制可有效的降低对于地层的扰动,并可以促进管片及隧道的早期稳定,避免了地表沉降破坏、隧道线型超限等。 2.2 从材料选择到浆液配比优选、拌浆、运输、注浆全过程,工艺简单、可操作性强,可形成标准化作业,安全、质量受控。 3 适用范围 本工法适用于土压平衡盾构掘进过程中盾尾同步注浆、盾构隧道的二次注浆施工。 4 主要引用标准 4.1《盾构法隧道施工与验收规范》(GB50446); 4.2《地下铁道工程施工及验收规范》(GB50299); 4.3《地下防水工程质量验收规范》(GB50208); 4.4《通用硅酸盐水泥检测标准》(GB175); 4.5《用于水泥和混凝土中的粉煤灰》(GB1956);

盾构注浆施工技术

3-2-31盾构注浆施工技术 1. 刖言 1.1盾构注浆施工原理 盾构注浆分同步注浆和二次注浆两种。盾构推进中的同步注浆和衬砌壁后二次注浆是充填土体与管片圆环间的建筑间隙和减少后期沉降的主要手段,也是盾构推进施工中的一道重要工序。 盾构推进过程中,盾尾脱离管片后管片外出现超挖空隙,若不即时回填,扰动地层产生变形、沉降。进而影响其稳定性和地面建筑物,甚至灾难性的破坏。所以盾尾同步注浆显得格外重要。 盾尾注浆(同步注浆)就是在盾构机掘土推进的同时,向盾尾超挖间隙以一定压力注入适量的浆液以填充空隙,最大限度的避免对围岩土的扰动,控制沉降和变形。同步注浆使管片和周围土体形成一个整体,有效的控制了隧道在地层中的稳定性,特别是在小半径曲线时还可以防止隧道外移和变形。二次注浆主要是对同步注浆进行辅助和补充。1.2盾构注浆施工特点 盾构注浆施工因土质条件、推进速度等确定其浆液材料、注入时期和注入量、注入压力等,需要严格控制各参数以达到预期效果。同步注浆强调的是同步和足量性,二次注浆则根据需要进行施工,是对同步注浆效果不好或者没有填充到位的部分进行注浆,主要使用水泥灰浆进行注入。 由于采用泵压注浆,对浆液的流动性要求较高,所以在浆液的配合比选择上须在考虑土质条件、浆液填充效果的同时考虑浆液粘稠度,以达到浆液能迅速、完好的充填盾尾空隙中去的目的。 1.3适用范围 适用于盾构同步注浆、二次注浆施工。 2. 同步注浆施工工艺 2.1工艺流程图 同步注浆施工工艺流程见图2-1 图2-1 同步注浆工艺流程图 2.2浆液选择 2.2.1浆液分类及主要特点

盾构推进施工中的注浆应选择具有和易性好、泌水性小,且具有一定强度的浆液进行及时、均匀、足量压注,确保其建筑空隙得以及时和足量的充填。 浆液根据实际情况的需要有惰性浆液、可硬性浆液及其他形式的浆液。惰性浆液多为非活性材料配合而成,注入后一定时间内不会凝结产生较大强度,其性质一般与隧道周围土体相似为好;可硬性浆液区别与惰性浆液在与添加了一些活性材料,在注入后产生物理、化学反应凝结后有一定强度。另外,根据特殊用途有瞬凝砂浆、加气砂浆等。 1、惰性浆液 主要由粉煤灰、膨润土、砂、水组成,主要用于粉质黏土、细粉质砂土等含水量较高的软土层注浆。由于惰性浆对沉降控制等效果不佳,故现采用较少。 2、可硬性浆液 主要由粉煤灰、少量水泥、砂、水(根据实际情况加入减水剂、缓凝剂等添加剂)组成,主要用于粉质黏土、细粉质砂土等含水量较高的软土层注浆。可硬性浆液对沉降控制良好,在软土地层中得到大量应用。 3、其他浆液 根据特殊用途有瞬凝砂浆、加气砂浆等。 2.2.2浆液类型选择 浆液的选择受土质条件、盾构工法、施工条件、造价等因素等影响,选择浆液的原则是在掌握浆液特性的基础上按实际情况选择最适合条件的浆液。 2.2.3常见的浆液配合比 常见的浆液配合比见表2-1 2.2.4浆液配合比优选试验 浆液实验主要有重度、标准块(70 mM 70mm强度实验、稠度实验等。通过实验调整浆液配合 比。 2.3 浆液拌制、运输、转驳 2.3.1 拌浆场地布置浆液拌制系统布置在端头井顶板上,拌浆场地的布置应该以方便施工为宜,拌浆搅拌机应设置在不影响其他施工作业的同时尽量在水平转浆车能到达位置的上方,以便放浆;同时应尽量靠近材料堆放场。 2.3.2 浆液运输、转驳拌浆系统由拌浆机及操作平台组成。浆液拌好后用输送管道输送到自制的储料罐内,通过管片平板车将储料罐运至作业面,随后将浆液泵入盾构机拖车上的储料罐中并立即进行搅拌。储料罐带有卧式搅拌轴,以防止运输时间过长浆液长时间静止而发生初凝;若浆液发生沉淀、离析,则进行二次搅拌;浆液储存设备要经常清洗。

同步注浆及二次注浆方案

目录 1 编制依据 (1) 2 工程概况 (1) 3 施工机具及劳动力配备 (1) 3.1 施工机具 (1) 3.2 劳动力配备 (1) 4 同步注浆和二次注浆的目的和原理 (1) 4.1 同步注浆和二次注浆的目的 (1) 4.2二次注浆的目的 (2) 4.3 注浆原理 (2) 4.4 同步注浆工艺注意事项 (2) 5 施工工艺及主要技术措施 (2) 5.1 施工工艺及流程 (2) 5.2 同步注浆技术参数 (4) 5.3 注浆材料及浆液配比 (4) 5.4同步注浆流程 (5) 5.5二次注浆流程 (5) 6 施工中常见问题及主要对策 (6) 6.1 漏浆现象的处理 (6) 6.2 同步注浆浆液堵管原因分析及主要对策 (6) 6.3 地面沉降超限的原因分析及主要对策 (6) 7、注浆质量保证措施 (6) 8 安全措施及安全注意事项 (7) 9 环境保护措施 (7)

1 编制依据 (1)沈阳地铁十号线土建施工第二十合同段理工大学站~张沙布站区间隧道工程施工图纸; (2)《岩土工程勘察报告》; (3)《混凝土结构工程施工质量验收规范》(GB-50204-2002); (4)《地下工程防水技术规范》(GB50108-2001); (5)《地下防水工程质量验收规范》(GB 50208-2011); (6)《普通混凝土配合比设计规程》(JGJ 55-2011); (7)同步注浆浆液及二次注浆浆液配合比实验情况; (8)本工程合同及招标技术文件要求。 2 工程概况 本工程范围为沈阳地铁十号线土建施工第二十合同段理工大学站~张沙布站区间,起止里程K25+798.72~K27+116.722,左线全长1311.909m,右线全长1318m,采用盾构法施工。其中包括(1)区间正线结构;(2)区间联络通道兼泵站。 理工大学站~张沙布站区间自理工大学站起,经由长青南街过南屏路,后经绕城高速公路三环桥,进入沈李公路,穿过张沙布村,到达张沙布站,起止里程为K25+798.72~K27+116.722(其中左HZK26+311.736=右K26+317.515,短链5.779m;左HZK26+609.511=右K26+609.863,短链0.312m),线间距15~21m,隧道拱顶覆土厚度约9.3~17.6m;最小曲线半径450m,纵向呈“V”型坡,最大坡度24.028‰;在K26+098.865~K26+148.42(单线44环)下穿沈阳绕城高速三环桥。 区间正线采用盾构法施工,盾构机采用一台土压平衡盾构机。区间盾构施工方向:从张沙布站左线始发,至理工大学站接收、调头,右线始发,掘进至张沙布站右线接收、解体、吊出;最后施工区间附属结构。 3 施工机具及劳动力配备 3.1 施工机具 3.2 劳动力配备 4.1 同步注浆和二次注浆的目的

成都地铁盾构同步注浆及其材料的研究

成都地铁盾构同步注浆及其材料的研究【内容提要】成都地铁1号线一期工程盾构施工2标为成都地铁试验段,该工程采用加泥式土压平衡盾构机施工,成都地区地层为砂卵石地层,粒经大、水位高,为了有效解决同步注浆的效果,我项目部和同济大学、西南交通大学进行了相关的试验研究,拟采用惰性浆液(以黄泥粉、粉煤灰为主剂)为同步注浆材料,期望其达到不易被水稀释、较好的流动性、较好的早期强度和较低的成本。 【关键词】高富水土压盾构同步注浆惰性浆液 1. 概况 成都地铁1号线一期工程盾构施工2标人天盾构区间,主要穿越砂卵石地层,地层高富水,含水量大,地下水位高。采用了加泥式土压平衡式盾构机进行施工。盾构机配备了盾尾同步注浆系统,可在盾构掘进的同时进行背后注浆。在盾构掘进施工中,当管片刚脱离盾尾时即可对管片外侧的空隙进行填充,从而起到控制地表沉降、提高隧道的抗渗能力、预防盾尾水源流入密封土舱而造成的喷涌和稳定成型隧道的作用。 2. 盾构法施工背后注浆技术 2.1.同步注浆原理 在盾构机推进过程中,保持一定压力(综合考虑注入量)不间断地从盾尾直接向背后注浆,当盾构机推进结束时,停止注浆。这种方法是在环形空隙形成的同时用浆液将其填充的注浆方式。如图2-1所示。 图2-1 同步注浆系统示意图 2.2. 注浆材料和配比的选择 2.2.1. 注浆材料应具备的基本性能 根据成都地区的地质条件、工程特点以及现有盾构机的型式,浆液应具备以下性能:

1)具有良好的长期稳定性及流动性,并能保证适当的初凝时间,以适应盾构施工以及远距离输送的要求。 2)具有良好的充填性能,不流窜到尾隙以处的其他地域。。 3)在满足注浆施工的前提下,尽可能早地获得高于地层的早期强度。 4)浆液在地下水环境中,不易产生稀释现象。 5)浆液固结后体积收缩小,泌水率小。 6)原料来源丰富、经济,施工管理方便,并能满足施工自动化技术要求。 7)浆液无公害,价格便宜。 2.2.2. 注浆材料 为了保证背后注浆的填充效果,施工中结合现场条件和盾构机自身注浆系统的配置,选取了两种液浆组成以便进行对比优选: 1)以水泥、粉煤灰为主剂的常规单液浆A 成分:水泥、粉煤灰、细砂、膨润土和水; 2)以黄泥粉、粉煤灰为主剂的惰性浆液B 成分:黄泥粉、粉煤灰、细砂、膨润土和水。 浆液组成A以水泥作为提供浆液固结强度和调节浆液凝结时间的材料,浆液组成B以粉煤灰作为提供浆液固结强度和调节浆液凝结时间的材料。其中浆液组成B中使用的粉煤灰可以改善浆液的和易性(流动性),黄泥粉能增加浆液的粘度,并有一定的固结作用,膨润土用以减缓浆液的材料分离,降低泌水率,还具有一定的防渗作用。砂在两种浆液中都作为填充料。 2.2. 3. 浆液配比及性能测试 在确定浆液配比时,先根据相关资料,确定了两种浆液的各种材料的基本用量,然后结合浆液站调试,每种配比生产一定方量,并对浆液性能进行相关的性能测试,从而对配比单进行筛选,保留能够生产出合格浆液的配比,以便今后用于施工。 根据测试结果还可得知,与水泥浆液相比,以黄泥粉、粉煤灰为主剂的浆液的凝结时间较长,在10~12小时左右。考虑到盾构掘进过程中一些不可避免的停机(如管片拼装、连接电缆、风管安装、机器维护保养、盾构机临时停机、电路故障等),若浆液的初凝时间较短,则增加了停机期间发生堵管的可能性,增加额外的清洗工作,并影响盾构的继续掘进。因此,浆液合理的初凝时间应与盾构掘进施工一个工班的时间接近,这样可以在每班结束时再安排浆液输送管路的清理工作,既不影响盾构连续施工,又保证能及时清理管路,避免堵管现象的发生,选用惰性浆液更为可靠。 惰性浆液在主要成分加量不变的情况下,只需调节添加剂的加量就能有效地控制、调节浆液的

盾构法隧道施工同步注浆技术

盾构法隧道施工同步注浆技术 1 盾构法隧道施工 1.1盾构法隧道施工历史回顾 盾构法是在软土地基中修建隧道的一种先进的施工方法,用此法修建隧道在欧洲、美国己有160年的历史。盾构机最早是由法国工程师M.I.Brunel 于1825年从观察蛀虫在木头中钻洞,并从体内排出粘液加固洞穴的现象,从仿生学角度研制发明的。并于1843年由改进的盾构在英国伦敦泰晤士河下修建了世界上第一条矩形盾构(宽11.4m,高6.8m )隧道,全长458m。其后,P. W.Bahow于1865年用直径2.2m圆形盾构又在泰晤士河下修建一条圆形截面隧道。1874年,J.H.Greathead第一次采用气压盾构,并第一次开始在衬砌背后进行压浆,修建了伦敦城南线地铁。1880~1890年间,用盾构法在美国和加拿大的圣克莱( St.Clair)河下建成一条直径6.4m,长1870m的Sarnia 水底隧道。仅在纽约,从1900年后,使用气压盾构法先后成功地修建了25条重要的水底隧道。 盾构隧道在用于修建地下铁道,污水管道时,得到了广泛的应用。前苏联自1932年开始用直径6.0m及直径9.5m的盾构前后在莫斯科、列宁格勒等地修建地下铁道的区间隧道及车站。在德国慕尼黑和法国的巴黎的地下铁道修建中,均使用了盾构掘进法。日本于1922年开始用盾构法修建国铁羽线折渡隧道。从六十年代起,盾构法在日本得到了飞速发展,土压平衡盾构就是七十年代发明的。 我国第一个五年计划期间,在东北阜新煤矿,用直径2.6m的盾构进行了疏水巷道的施工。1957年起在北京市区的下水道工程中采用过直径2.0m 及直径2.6m的盾构。上海从1960年起开始了用盾构法修建黄浦江水底隧道及地下铁道的实验研究,从1963年开始在第四纪软弱饱和地层中先后用直径4.2m、5.6m、10.0m、3.6m、3.0m、4.0m、6.2m等十一台盾构机进行了实验隧道,地铁区间隧道扩大实验工程、地下人防通道、引水及排水隧道工程等的施工。近年来又用国际上先进的土压平衡盾构(EPB)修建了地铁一、二

同步注浆

同步注浆技术 一、注浆目的及方式 1.盾构机的刀盘直径为6180mm,因此,当盾构机盾尾脱出管片后,在全体与管片之间将形成一道宽度为9mm的空隙。为及时的充填管片与地层间的环形间隙,控制地层变形,稳定管片结构,控制盾构掘进方向,并有利于加强管片隧道结构的防水能力,管片背后环向间隙采用同步注浆。 2.采用盾尾同步注浆方式。在盾尾内侧沿周围布置了4条内置式注浆管。每条管上设有压力表和手动阀门。盾尾通过软管与四台砂浆泵分别相连。砂浆泵可以手动控制,砂浆泵上方设置了一个带搅拌器的砂浆罐(容积为83)。 二、注浆材料及配比设计 (1)注浆材料 采用水泥砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。 (2)浆液配比及主要物理力学指标 根据地铁施工经验,同步注浆拟采用表2-1所示的配合比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定最合理的配合比。同步注浆浆液的主要物理力学性能应满足下列指标: ①胶凝时间:一般为3~10h,根据地层条件和掘进速度,通过现场试验加入促凝剂及变更配比来调整胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比和加入早强剂,进一步缩短胶凝时间。 ②固结体强度:一天不小于0.2MPa,28天不小于2.0MPa。

③浆液结石率:>95%,即固结收缩率<5%。 ④浆液稠度:8~12cm ⑤浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5%。 2-1 同步注浆材料初步配比表 三、同步注浆主要技术参数 (1)注浆压力 为保证达到对环向空隙的有效充填,同时又能确保管片结构不因注浆产生变形和损坏,根据计算和经验,注浆压力取值为:0.2~0.5MPa。 (2)注浆量 根据经验公式计算和类似施工的经验,注浆量取环形间隙理论体积的1.3~1.8倍,则每环(1.5m)注浆量Q=3.1~4.3m3。 (3)注浆速度 同步注浆速度应与掘进速度相匹配,按盾构完成一环1.5m掘进的时间内完成当环注浆量来确定其平均注浆速度。 (4)注浆结束标准 采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的90%以上时,即可认为达到了质量要求。 四、同步注浆方法、工艺与设备 (1)同步注浆方法与工艺 同步注浆与盾构掘进同时进行,通过同步注浆系统及盾尾的内置注浆管,在

31盾构注浆施工技术

3-2-31盾构注浆施工技术 1.前言 1.1 盾构注浆施工原理 盾构注浆分同步注浆和二次注浆两种。盾构推进中的同步注浆和衬砌壁后二次注浆是充填土体与管片圆环间的建筑间隙和减少后期沉降的主要手段,也是盾构推进施工中的一道重要工序。 盾构推进过程中,盾尾脱离管片后管片外出现超挖空隙,若不即时回填,扰动地层产生变形、沉降。进而影响其稳定性和地面建筑物,甚至灾难性的破坏。所以盾尾同步注浆显得格外重要。 盾尾注浆(同步注浆)就是在盾构机掘土推进的同时,向盾尾超挖间隙以一定压力注入适量的浆液以填充空隙,最大限度的避免对围岩土的扰动,控制沉降和变形。同步注浆使管片和周围土体形成一个整体,有效的控制了隧道在地层中的稳定性,特别是在小半径曲线时还可以防止隧道外移和变形。二次注浆主要是对同步注浆进行辅助和补充。 1.2盾构注浆施工特点 盾构注浆施工因土质条件、推进速度等确定其浆液材料、注入时期和注入量、注入压力等,需要严格控制各参数以达到预期效果。同步注浆强调的是同步和足量性,二次注浆则根据需要进行施工,是对同步注浆效果不好或者没有填充到位的部分进行注浆,主要使用水泥灰浆进行注入。 由于采用泵压注浆,对浆液的流动性要求较高,所以在浆液的配合比选择上须在考虑土质条件、浆液填充效果的同时考虑浆液粘稠度,以达到浆液能迅速、完好的充填盾尾空隙中去的目的。 1.3适用范围 适用于盾构同步注浆、二次注浆施工。 2.同步注浆施工工艺 2.1工艺流程图 同步注浆施工工艺流程见图2-1 图2-1 同步注浆工艺流程图

2.2浆液选择 2.2.1浆液分类及主要特点 盾构推进施工中的注浆应选择具有和易性好、泌水性小,且具有一定强度的浆液进行及时、均匀、足量压注,确保其建筑空隙得以及时和足量的充填。 浆液根据实际情况的需要有惰性浆液、可硬性浆液及其他形式的浆液。惰性浆液多为非活性材料配合而成,注入后一定时间内不会凝结产生较大强度,其性质一般与隧道周围土体相似为好;可硬性浆液区别与惰性浆液在与添加了一些活性材料,在注入后产生物理、化学反应凝结后有一定强度。另外,根据特殊用途有瞬凝砂浆、加气砂浆等。 1、惰性浆液 主要由粉煤灰、膨润土、砂、水组成,主要用于粉质黏土、细粉质砂土等含水量较高的软土层注浆。由于惰性浆对沉降控制等效果不佳,故现采用较少。 2、可硬性浆液 主要由粉煤灰、少量水泥、砂、水(根据实际情况加入减水剂、缓凝剂等添加剂)组成,主要用于粉质黏土、细粉质砂土等含水量较高的软土层注浆。可硬性浆液对沉降控制良好,在软土地层中得到大量应用。 3、其他浆液 根据特殊用途有瞬凝砂浆、加气砂浆等。 2.2.2浆液类型选择 浆液的选择受土质条件、盾构工法、施工条件、造价等因素等影响,选择浆液的原则是在掌握浆液特性的基础上按实际情况选择最适合条件的浆液。 2.2.3常见的浆液配合比 常见的浆液配合比见表2-1 2.2.4浆液配合比优选试验 浆液实验主要有重度、标准块(70 mm×70mm)强度实验、稠度实验等。通过实验调整浆液配合比。

盾构机同步注浆及二次注浆施工技术总结

盾构机同步注浆及二次注浆施工技术总结 一、同步注浆的作用 二、二次注浆的作用 三、同步注浆操作工艺 四、二次注浆操作工艺 五、注浆效果总体评价

一、同步注浆的作用 由于盾构机刀盘直径为6420㎜,而管片外径6200㎜,所以当管片拼装完成并脱出盾尾后,管片与土体之间形成一个环形间隙,此间隙若不及时填充,可能造成地层变形,致使地表下沉或建筑物下沉。因此,同步注浆填补了这一空白,及时有效的浆液注入施工间隙,抑制了地层变形;也使管片得到部分稳定,防止管片偏移;浆液凝结后具备一定的强度,提高了隧道的抗渗能力;当地下水丰富时,还能预防盾尾水源流入掌子面而造成的喷涌。可以说同步注浆起到了多方面的作用。 二、二次注浆的作用 二次注浆作为盾构施工的一种辅助工法,主要是起到补充的作用。由于同步注浆液凝固后有所收缩,或者是同步注浆没有填充密实,需要二次注浆时补足浆液,同时二次注浆采用双液浆,将衬背的流水通道阻住,防止地下水系统涌入掌子面。但是注浆压力一定不能超过 0.4Mpa,防止击伤管片。 三、同步注浆操作工艺 盾尾同步注浆是利用盾构设备中的同步注浆系统,对随着盾构向前推进、管片衬砌逐渐脱出盾尾所产生的建筑间隙进行及时充填的过程。 1、注浆材料的要求: 同步注浆是保证管片拼装质量的关键所在,其目的在于控制隧道变形,防止管片上浮,提高结构的抗渗能力。良好的浆液性能体现在

一下几个方面:①浆液充填性好;②浆液和易性好;③浆液初凝时间适当,早期强度高,浆液硬化后体积收缩率小;④浆液稠度合适,以不被地下水过度稀释为宜。根据以上几点结合我合同段的地层土质状况,同步注浆采用水泥砂浆。 用于8小时凝固的砂浆配合比如下: 2、注浆压力: 为了使浆液很好的充填于管片的外侧间隙,必须以一定的压力压送浆液。注入压力大小通常选择为地层阻力强度(压力)加上0.1~0.2MPa的和。地层阻力强度是由土层条件及掘削条件决定的,通常在0.1~0.2MPa以下。根据本合同段的地层土质条件,注浆压力初步设定为0.19MPa,现场使用2.5Ba r~3Bar的压力注浆比较合适。 3、注浆量: 同步注浆量的计算:从理论上计算,同步注浆即填充施工间隙。 Q=V a Q-----注浆量 V-----理论填充空隙 a------注入率 地铁规范规定,同步注浆的注入率宜为130%~180%,从施工经验来看,软土地层控制在135%~154%即3.5m3~4m3为宜;硬岩地层

北京地铁盾构新型同步注浆及其材料的研究

北京地铁盾构新型同步注浆及其材料的研究 [摘要]北京地铁五号线盾构试验段工程采用了城建集团自行研制的惰性浆液(已申请专利),其注浆效果非常理想,在施工中有效的控制了地表沉降。 [关键词]盾构北京地铁五号线同步注浆惰性浆液 一、概况 北京地铁五号线试验段工程,采用了土压平衡式盾构机进行施工。盾构机配备了盾尾同步单液注浆系统,可在盾构掘进的同时进行壁后注浆。在盾构掘进施工中,当管片刚脱离盾尾时即可对管片外侧的建筑空隙进行填充,从而起到控制地表沉降和稳定成型隧道的作用。在施工中我们使用的浆液是自行研制的惰性浆液,此浆液通过施工中达到了很好的效果,有效地控制了地表沉降。 二、盾构法施工壁后注浆技术 2.1同步注浆原理 北京地铁五号线盾构试验段工程的施工采取了同步注浆方式。其工作原理是:在盾构机推进过程中,保持一定压力(综合考虑注入量)不间断地从盾尾直接向壁后注浆,当盾构机推进结束时,停止注浆。这种方法是在环形空隙形成的同时用浆液将其填充的注浆方式。 2.2注浆材料和配比的选择 2.2.1注浆材料应具备的基本性能 根据北京地区的地质条件、工程特点以及现有盾构机的型式,浆液应具备以下性能: 1)具有良好的长期稳定性及流动性,并能保证适当的初凝时间,以适应盾构施工以及远距离输送的要求。 2)具有良好的充填性能。

3)在满足注浆施工的前提下,尽可能早地获得高于地层的早期强度。 4)浆液在地下水环境中,不易产生稀释现象。 5)浆液固结后体积收缩小,泌水率小。 6)原料来源丰富、经济,施工管理方便,并能满足施工自动化技术要求。 7)浆液无公害,价格便宜。 2.2.2. 注浆材料 为了保证壁后注浆的填充效果,施工中结合现场条件和盾构机自身注浆系统的配置,选取了两种单液浆组成以便进行对比优选: 1)以水泥、粉煤灰为主剂的常规单液浆a 成分:水泥、粉煤灰、细砂、膨润土(钠土)和水; 2)以生石灰、粉煤灰为主剂的惰性浆液b 成分:生石灰、粉煤灰、细砂、膨润土(钠土)和水。 浆液组成a以水泥作为提供浆液固结强度和调节浆液凝结时间的材料,浆液组成b以粉煤灰作为提供浆液固结强度和调节浆液凝结时间的材料。其中浆液组成b 中使用的粉煤灰可以改善浆液的和易性(流动性),生石灰能增加浆液的粘度,并有一定的固结作用,膨润土用以减缓浆液的材料分离,降低泌水率,还具有一定的防渗作用。砂在两种浆液中都作为填充料。 2.2. 3. 浆液配比及性能测试 在确定浆液配比时,先根据相关资料,确定了两种浆液的各种材料的基本用量,然后结合浆液站调试,每种配比生产一定方量,并对浆液性能进行相关的性能测试,从而对配比单进行筛选,保留能够生产出合格浆液的配比,以便今后用于施工。按测试配比拌制出的浆液送到试验室进行了主要性能指标的测试。根据配比单和浆液配合比试验报告中的测试数据,绘制出浆液流动度、稠度和分层度随时间变化的对比曲线。

盾构法施工同步注浆技术探讨

盾构法施工同步注浆技术探讨 摘要:随着城市地下管廊、地下隧道的兴建,盾构施工技术日趋成熟和完善, 本文结合工程实际,对盾构施工中的同步注浆技术进行分析和探讨,期望对今后 的盾构施工有所帮助和技术发展有所推进。 关键词:盾构;同步注浆;土压平衡;注浆压力 1引言 盾构法隧道具有施工进度快,安全性高,地质适应性强等特点。在适应地质 的各种环境下,盾构机的种类也非常繁多,敞开式,半敞开式,土压平衡式,泥 水平衡式等各种盾构机类型,又有各种刀盘选型。但不管盾构机的种类多少,地 质种类有哪些,所有的盾构施工都是在盾构机在掘进时通过把提前预制好的钢筋 砼管片拼装起来形成隧道。盾构机掘进时刀盘对土体的切削形成一个孔洞,而管 片在尾盾里拼装起来后,管片的外径比刀盘的外径要小,而这个衬砌的建筑空隙,为防止土层的坍塌势必要填充起来,这就是同步注浆。 图1 同步注浆结构示意图 2同步注浆步骤分析 同步注浆,顾名思义就是掘进的同时进行管片壁后注浆,即时的填充管片环 周空隙保证成型隧道特别是覆土地面的安全稳定性。以海瑞克土压平衡式盾构机 为例说明同步注浆方法,此盾构机同步注浆系统由四个液压柱塞泵把台车同步注 浆浆液罐里的砂浆通过尾盾平均分布的四个管路注入到因推进而形成的盾构环型 间隙里。每一个注浆管路各一个压力传感器来监测本管路的注浆压力。 3同步注浆技术参数分析 3.1注浆方量的确定 注浆方量必须根据计算的建筑空隙和地质土层的扩散系数而定了,即: Q=Vλ λ-注浆率/地层注浆扩散系数(根据地质不同一般范围为1.3-2) 理论的环型间隙所占方量根据刀盘外径和管片外径、长度即可算出,公式:V=π(D2-d2)L/4 V-盾构理论空隙(m3) D-刀盘切削外径m d-管片外径m L-管片长度m 在完整性好、自稳定强的硬质地层中,浆液不易渗透到周围的土层里去,可 以取较小的扩散系数甚至不用考虑,但在裂隙发育的岩层或者是以砂、砾为主的 大渗透地层浆液极易渗透到周围的土层中,这样的地层应考虑较大的渗透系数, 可取1.4-1.8。如果这样的地层地下水丰富的话土层的扩散系数还要加大。在以黏土、粉质黏土为主的小渗透系数地层,浆液在有压力的情况下也会对土体产生劈 裂渗透,故应考虑扩散系数为1.2-1.5。超挖系数是正常情况下盾尾建筑空隙的修正,一般只在曲线掘进施工中产生(直线段盾构机盾头与隧道轴线有较大夹角时 也会产生,一般较小不予考虑),其数值可以通过计算得出。 上述的同步注浆量的确定计算公式虽然结合了地质的扩散系数,但还是不能 完全反映实际施工过程中的确定方法。盾构掘进是一个复杂的过程,趋向于设计 轴线前进的同时拼装管片完成隧道衬砌,这个过程中同步注浆液会不会不冲击到

盾构施工与超前注浆加固技术

盾构施工与超前注浆加固技术 填空题 泥水平衡盾构掘进时通过控制单元调节工作舱内的压缩气垫以稳定舱内泥水液位达到平衡开挖舱面水土压力的目的。 盾构施工掘进应根据理论计算结合实际施工效果及监测数据调整施工参数,实施动态参数控制管理。 泥水平衡盾构施工产生地面沉降主要源于正面泥水压力的设定高低、盾尾同步注浆的及时和充分与否及盾体的锥度等原因,地面沉降变化可以直接反映盾构施工参数设定的正确与否。浅埋暗挖隧道施工目前常见的注浆工艺有超前小导管注浆、双重管注浆、水平旋喷注浆和水平袖阀管注浆四种注浆工艺。 判断题 双重管注浆技术采用双重管钻机钻孔至预定深度后,从中空的钻杆内进行后退式注浆,注浆材料一般采用水泥砂浆,该工法的缺点是难以实现长距离的深孔注浆。(×) TGRM分段前进式深孔注浆工艺是钻、注交替作业的一种注浆方式,解决了卵砾石堆积地层的注浆加固问题。(√) 盾构掘进控制“四要素”是开挖控制、线形、注浆、一次衬砌,控制开挖面变形的主要措施是出土量。(√) 泥水式盾构排土量控制方法分为重量控制与容积控制两种。我国目前多采用容积控制方法。(×) 选择题 1.当地层条件差、断面特别大时,浅埋暗挖隧道施工不宜采用( )。 A.全断面法 B.柱洞法 C.洞桩法 D.中洞法 答案:A 2.地铁区间隧道的建筑限界应考虑( )。(11年考题) A.结构沉降 B.施工误差 C.测量误差 D.设备和管线安装尺寸、厚度 答案:D 3.盾构法施工主要步骤为() A 工作井建造 B 掘进出土 C 管片安装 D 地表注浆 E 衬砌背后注浆 答案:A B C E 4.加固地铁盾构进出洞口常用的改良土体方法有( )。 A.小导管注浆 B.搅拌桩

2020年盾构法隧道同步注浆材料开发与应用技术研究

第1题 盾构同步注浆浆液性能试验方法,参照规范不包括()。 A.《建筑砂浆基本性能试验方法》JGJ/T 70 B.《砌筑砂浆配合比设计规程》JGJT98-2011 C.《水泥基灌浆材料应用技术规范》GB/T 50448 D.《预应力孔道灌浆剂》GB/T 25182 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第2题 水泥基同步注浆材料配合比推荐参数中,水泥用量要求为()。 A.≥15 B.≥10 C.≤15 D.≤10 答案:D 您的答案:D 题目分数:5 此题得分:5.0 批注: 第3题 消石灰基同步注浆材料配合比推荐参数,膨润土掺量掺量()。 A.5~10 B.0~10 C.10~15 D.5~15 答案:D 您的答案:D 题目分数:5 此题得分:5.0 批注: 第4题 水泥基注浆材料浆液的力学性能水陆强度比推荐指标为()。 A.≥60 B.≥75 C.≥65

D.≥85 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第5题 消石灰基注浆材料浆液的力学性能表征指标为()。 A.抗压强度 B.24h抗剪屈服强度 C.C.?水陆强度比 D.抗折强度 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第6题 一般地铁工程的沉降控制偏差范围是()。 A.±5cm B.±3cm C.±2cm D.±1cm 答案:D 您的答案:D 题目分数:5 此题得分:5.0 批注: 第7题 关于水泥基单液可硬性浆液,表述错误的是()。 A.主要由水泥、粉煤灰、膨润土、砂等材料组成 B.适用于土体相对稳定的区域或软弱地层等土体环境恶劣的工况,也可用于盐渍土环境。 C.凝结时间较短,强度高,增长快,与双液浆性能相同 D.容易分层、抗水分散较差、注浆材料配合比与施工过程控制要求较高 答案:C 您的答案:C

同步注浆及二次注浆方案

同步注浆及二次注 浆方案

目录 1 编制依据................................................................. 错误!未定义书签。 2 工程概况................................................................. 错误!未定义书签。 3 施工机具及劳动力配备 ......................................... 错误!未定义书签。 3.1 施工机具 ....................................................... 错误!未定义书签。 3.2 劳动力配备.................................................... 错误!未定义书签。 4 同步注浆和二次注浆的目的和原理 ...................... 错误!未定义书签。 4.1 同步注浆和二次注浆的目的 ........................ 错误!未定义书签。 4.2二次注浆的目的............................................ 错误!未定义书签。 4.3 注浆原理 ....................................................... 错误!未定义书签。 4.4 同步注浆工艺注意事项 ................................ 错误!未定义书签。 5 施工工艺及主要技术措施...................................... 错误!未定义书签。 5.1 施工工艺及流程............................................ 错误!未定义书签。 5.2 同步注浆技术参数........................................ 错误!未定义书签。 5.3 注浆材料及浆液配比 .................................... 错误!未定义书签。 5.4同步注浆流程................................................ 错误!未定义书签。 5.5二次注浆流程................................................ 错误!未定义书签。 6 施工中常见问题及主要对策.................................. 错误!未定义书签。 6.1 漏浆现象的处理............................................ 错误!未定义书签。 6.2 同步注浆浆液堵管原因分析及主要对策..... 错误!未定义书签。 6.3 地面沉降超限的原因分析及主要对策......... 错误!未定义书签。 7、注浆质量保证措施 .............................................. 错误!未定义书签。

盾构同步注浆

1.1.盾构同步注浆 当盾片脱离盾尾后,在土体与管片之间会形成一道宽度为140mm 左右的环行空隙。同步注浆的目的是为了尽快填充环形间隙使管片尽早支撑地层,防止地面变形过大而危及周围环境安全,同时作为管片外防水和结构加强层。 1.1.1.注浆材料 采用水泥砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。水泥采用普通硅酸盐水泥,以提高注浆结石体的耐腐蚀性,使管片处在耐腐蚀注浆结石体的包裹内,减弱地下水对管片混凝土的腐蚀。 根据盾构施工经验,同步注浆拟采用下表所示的配比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定。 同步注浆浆液的主要物理力学性能应满足下列指标,见表7-6:表7-6 同步注浆材料配比和性能指标表 ⑴胶凝时间:一般为3~10h,根据地层条件和掘进速度,通过现场试验加入促凝剂及变更配比来调整胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比和加入早强剂,进一步缩短胶凝时间; ⑵固结体强度:一天不小于0.2MPa,28天不小于2.5MPa; ⑶浆液结石率:>95%,即固结收缩率<5%; ⑷浆液稠度:8~12cm; ⑸浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5%。 1.1. 2.同步注浆主要技术参数 1.1. 2.1.注浆压力 注浆压力略大于该地层位置的静止水土压力,同时避免浆液进入盾构机的土仓中。 最初的注浆压力是根据理论的静止水土压力确定的,在实际掘进

中将不断优化。如果注浆压力过大,会导致地面隆起和管片变形,还易漏浆。如果注浆压力过小,则浆液填充速度赶不上空隙形成速度,又会引起地面沉陷。一般而言,注浆压力取1.1~1.2倍的静止水土压力,最大不超过3.0~4.0bar。 由于从盾尾圆周上的四个点同时注浆,考虑到水土压力的差别和防止管片大幅度下沉和浮起的需要,各点的注浆压力将不同,并保持合适的压差,以达到最佳效果。在最初的压力设定时,下部每孔的压力比上部每孔的压力略大0.5~1.0bar。 1.1. 2.2.注浆量 盾构掘进注浆采用盾尾同步注浆,随着盾构推进,脱出盾尾的管片与土体间出现“建筑空隙”,该空隙用浆液通过设在盾尾的压浆管予以充填。由于压入衬砌背面的浆液会发生失水收缩固结、部分浆液会劈裂到周围地层中,还有曲线推进、纠偏或盾构机抬头等原因,使得实际注浆量要超过理论建筑空隙体积。 每推进一环的建筑空隙为:π(6.482—6.22)×1/4×1.2=3.35m3 开挖直径:Φ6.48m;管片外径:Φ6.2m 考虑到地层扩散系数,每环的压浆量一般为建筑空隙的150%~200%,即每推进一环同步注浆量为 5.019 m3~6.692 m3,按地层的不同注浆量也要因地制宜,应以注浆压力与数量进行双控来评价注浆最终量。 1.1. 2. 3.注浆时间和速度 在不同的地层中根据需不同凝结时间的浆液及掘进速度来具体控制注浆时间的长短。做到“掘进、注浆同步,不注浆、不掘进”,通过控制同步注浆压力和注浆量双重标准来确定注浆时间。 注浆量和注浆压力均达到设定值后才停止注浆,否则仍需补浆。 同步注浆速度与掘进速度匹配,按盾构完成一环掘进的时间内即完成当环注浆量来确定其平均注浆速度。 1.1. 2.4.注浆结束标准及浆效果检查 采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的85%以上时,即可认为达到了质量要求。

相关文档
相关文档 最新文档