文档库 最新最全的文档下载
当前位置:文档库 › LFA447 接触热阻计算

LFA447 接触热阻计算

LFA447 接触热阻计算
LFA447 接触热阻计算

LFA447接触热阻计算方法

一、概述

对于LFA双层复合材料的测试,若上下两层的厚度、密度、比热与热扩散系数均为已知,可以直接计算得到两层之间的接触热阻(contact resistance)。

二、测量

在LFA447测量软件中,使用双层模式对样品进行设定:

Layer列表中包含样品上(面向红外检测器)、下(面向激光源)两层的属性定义,其中厚度与密度两项需输入准确数值,比热与热扩散系数因均随温度而变,对于多温度点测试此处可暂写为1,留待分析软件中另作链接设定。由于测量软件中限定双层模式测量必须包含一

个已知层和一个未知层,此处可将任意一层作为未知层(diffusivity留空)处理。

随后编辑温度程序,设定amplifier、duration等参数并进行测试:

三、分析计算

1.在LFA数据库中导入测量得到的LFA447数据文件。在出现的材料设定对话框中对各层材料的比热与热扩散系数进行链接设定。对于接触热阻的计算,需要上下两层的热扩散系数均为已知(均需链接相应的热扩散系数表)。若测试温度较高,因样品膨胀而导致的厚度与密度变化不可忽略,则还需链接线膨胀系数表。

2.将导入的数据载入分析界面,当出现提示进行多层模式计算的对话框时可跳过不计算(点击“否”。此处的计算为根据已知层来计算未知层的热扩散系数,因现在两层事实上均为已知,实验目的是为了得到两层之间的接触热阻,再做“未知层”的计算并无意义):

3.点击“测量”-->“计算接触热阻”

在出现的对话框中选择基线类型(推荐“线性”,具体请参考“LFA数据分析向导”),“强制重新计算”选不选都没关系,随后点击“确定”:

随后即在“结果”窗口中出现接触热阻的数据点,或对于多温度点测试出现类似下图的接触热阻随温度的变化曲线:

点击“结果”-->“打印图谱”,可打印结果窗口中的图谱;点击“结果”-->“打印测量报告”,可打印测量报告。

附:附加接触热阻

对于LFA双层复合材料的测试,若其中一层为未知层(热扩散系数未知,厚度、密度、比热等其他参数仍需为已知),则通过双层模式测试并选用“双层热损耗+脉冲修正+接触热阻”特定模型进行计算,除得到未知层的热扩散系数以外,还可计算得到两层之间的接触热阻(软件中称其为“附加接触热阻”(combined contact resistance),意为与热扩散系数同时计算得到的接触热阻,以与单独的接触热阻计算作区分)。

关于双层模式测量、计算模型选择(“双层热损耗+脉冲修正+接触热阻”)以及附加接触热阻数据/曲线的调出参见“LFA447双层样品测量与数据分析”。

事实上,在计算得到未知层的热扩散系数、并将计算结果使用“工具”-->“保存热扩散系数表”导出并链接到材料属性之中后,还可将该样品作为两层均为已知的情况处理、即使用“测量”-->“计算接触热阻”重新计算接触热阻(由于此时上下两层均为已知层,计算值会比“附加接触热阻”更精确一些)。计算完成后在“信号与曲线”对话框中会多出一项“接触热阻”:

可在此对话框中切换常规数据(α、Cp、λ)、附加接触热阻与接触热阻的显示(后两项均需在其他各项全部取消选择后方可选中)。

耐驰仪器(上海)有限公司应用实验室

徐梁

2006.3.

Flotherm中的接触热阻的设置与验证

Flotherm中的接触热阻的设置与验证 相信大家在使用Flotherm时都会碰到如何设置固体与固体之间的接触热阻的问题,软件对此也给出了非常方便的设置。下面给出了设置的过程与验证结果。 首先以软件自带的Tutorial 1作为研究对象,然后分别对模型中的Large Plate 和Heated Block取Monitor(位于对象的中心)。测量Heated Block的尺寸,Length=40mm,后面将会用到该参数。

对模型不做任何更改,直接进行计算。下图是模型的表面温度云图,从Table 里可以知道Monitor的最终温度值。 THeated-Block=78.8552, TLarge-Plate=77.9205 接下来,开始设置接触热阻。对Heated Block进行Surface操作,在Surface Finish对话框中新建一个Surface属性22,然后在Surface Attribute里的Rsur-solid 中进行设置。这里,希望在Heated Block和Large Plate之间的添加一个1°C/W的接触热阻,而Rsur-solid的单位是Km^2/W,其实就是(K/W)×(m^2),即所需热阻值与接触面的面积。前面知道,Heated Block是一个边长为40mm的正方形,面积即为0.0016m^2,所以,这里需要输入的值就是: 1°C/W×0.0016m^2=0.0016Km^2/W。 Heated Block与Large Plate的接触面出现在Heated Block的Xo-Low面上,就需要在Surface Finish对话框中的Attachment的下拉菜单中选择Xo-Low。

热阻计算

热阻计算 一般,热阻公式中,Tcmax =Tj - P*Rjc的公式是在假设散热片足够大而且接触足够良好的情况下才成立的,否则还应该写成Tcmax =Tj - P*(Rjc+Rcs+Rsa)。Rjc表示芯片内部至外壳的热阻,Rcs表示外壳至散热片的热阻,Rsa表示散热片的热阻。没有散热片时,Tcmax =Tj - P*(Rjc+Rca)。Rca 表示外壳至空气的热阻。 一般使用条件用Tc =Tj - P*Rjc的公式近似。厂家规格书一般会给出,Rjc, P等参数。一般P是在25度时的功耗。当温度大于25度时,会有一个降额指标。 一、可以把半导体器件分为功率器件和小功率器件。 1、大功率器件的额定功率一般是指带散热器时的功率,散热器足够大时且散热良好时,可以认为其表面到环境之间的热阻为0,所以理想状态时壳温即等于环境温度。功率器件由于采用了特殊的工艺,所以其最高允许结温有的可以达到175度。但是为了保险起见,一律可以按150度来计算。适用公式:Tc =Tj - P*Rjc。设计时,Tj最大值为150,Rjc已知,假设环境温度也确定,根据壳温即等于环境温度,那么此时允许的P也就随之确定。 2、小功率半导体器件,比如小晶体管,IC,一般使用时是不带散热器的。所以这时就要考虑器件壳体到空气之间的热阻了。一般厂家规格书中会给出Rja,即结到环境之间的热阻。(Rja=Rjc+Rca)。 同样以三级管2N5551为例,其最大使用功率1.5W是在其壳温25度时取得的。假设此时环境温度恰好是25度,又要消耗1.5W的功率,还要保证结温也是25度,唯一的可能就是它得到足够良好的散热!但是一般像2N5551这样TO-92封装的三极管,是不可能带散热器使用的。所以此时,小功率半导体器件要用到的公式是: Tc =Tj - P*Rja Rja:结到环境之间的热阻。一般小功率半导体器件的厂家会在规格书中给出这个参数。 2N5551的Rja,厂家给的值是200度/W。已知其最高结温是150度,那么其壳温为25度时,允许的功耗可以把上述数据代入Tc =Tj - P*Rja 得到: 25=150-P*200,得到,P=0.625W。事实上,规格书中就是0.625W。因为2N5551不会加散热器使用,所以我们平常说的2N5551的功率是0.625W而不是1.5W! 还有要注意,SOT-23封装的晶体管其额定功率和Rja数据,是在焊接到规定的焊盘(有一定的散热功能)上时测得的。

散热器的选型与计算

散热器的选型与计算 以7805为例说明问题. 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出. 正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-T a)/Pd Tjmax :芯组最大结温150℃ Ta :环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率-输出功率 ={24×0.75+(-24)×(-0.25)}-9.8×0.25×2 =5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d:散热器厚度cm A:散热器面积cm2 C:修正因子取1 按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13 算得散热器热阻RQd-a=4.1℃/W, 散热器选择及散热计算 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散

接触热阻与接触导热填料 1999

接触热阻与接触导热填料 任红艳胡金刚 (北京空间飞行器总体设计部北京100086) 文摘在调研国内外接触热阻研究的基础上,介绍了关于接触热阻及接触导热填料的研究发展情况。对导热脂及油、金属、导热垫、RTV、镀层等导热填料的性能、应用情况作了简介,提供工程应用参考。 关键词接触热阻,接触热导率,填料 Thermal Contact Resistance and Thermal Conductive Filler Ren Hongyan Hu Jingang (Beijing Insti tute o f Spacecraft System Engineering Beijing100086) Abstract O n the basis investigation of thermal contact resistance developed in the w orld,the development on ther2 mal contact resistance and thermal conductive filler is briefly introduced.The properties and applications of some thermal conductive filler materials such as thermal conductive grease and oil,metal,gasket,RT V,coating etc.are presented here to provide reference to engineering use. Key words Thermal contact resistance,Thermal contac t conductive,Filler 1引言 航天器在其飞行过程中要经历极为恶劣的热环境,其温度可从摄氏零下200多度变至数千度以上。因此,为保证航天器能正常工作,就需要对航天器内外各组件、仪器设备之间的导热过程进行控制,导热过程的控制是以分析和控制导热途径上的热阻为出发点,而影响实际导热过程的一个重要因素就是构件之间的接触热阻。 接触热阻是由于两接触面凹凸不平使得接触不完全而产生的热阻。接触热阻的大小与接触表面的材料、连接方式、表面状况及接触压力大小等多种因素有关。因此,接触热阻就很容易成为卫星热分析中的不确定因素,这种不确定性在极端情况下,甚至会影响卫星热设计的可靠性和卫星运行的可靠性。即使在一般情况下,接触热阻的存在也会增大热流途径上的温降。对航天器热控制来说,过大的接触热阻还可能使其它热控手段(比如热管)失效。 随着科学技术的发展,在工程实践和科学实验中,接触热阻问题愈来愈引起人们的注意。特别是随着空间技术的发展,卫星内大功率组件的热功耗越来越大,为使卫星内部的温度处于适宜的范围之内,就需要对接触热阻问题进行理论和实验研究,以对卫星内部导热过程进行有效的控制。 2接触热阻的理论研究 2.1接触热阻的点理论 如果把离散的局部接触面积称为点,接触热阻点理论的一般方法是:对单接触点接触热阻算法进行研究,再对接触点数目进行研究,从而完成对多接触点接触热阻的计算。对单接触点接触热阻的计算大多将接触点简化为圆台、圆柱及圆盘三种计算模型,这三种模型中,圆台计算模型较其它两种更接近实际情况,因它考虑了锥角H的影响。 收稿日期:1999-03-22 任红艳,1972年出生,主要从事接触热阻方面的研究工作

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻:R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

热传导计算

热传导计算 随着微电子技术的飞速发展,芯片的尺寸越来越小,同时运算速度越来越快,发热量也就越来越大,如英特尔处理器3.6G 奔腾4终极版运行时产生的热量最大可达115W ,这就对芯片的散热提出更高的要求。设计人员就必须采用先进的散热工艺和性能优异的散热材料来有效的带走热量,保证芯片在所能承受的最高温度以内正常工作。 如图 1所示,目前比较常用的一种散热方式是使用散热器,用导热材料和工具将散热器安装于芯片上面,从而将芯片产生的热量迅速排除。本文介绍了根据散热器规格、芯片功率、环境温度等数据,通过热传导计算来求得芯片工作温度的方法。 芯片的散热过程 由于散热器底面与芯片表面之间会存在很多沟壑或空隙,其中都是空气。由于空气是热的不良导体,所以空气间隙会严重影响散热效率,使散热器的性能大打折扣,甚至无法发挥作用。为了减小芯片和散热器之间的空隙,增大接触面积,必须使用导热性能好的导热材料来填充,如导热胶带、导热垫片、导热硅酯、导热黏合剂、相转变材料等。如图2所示,芯片发出的热量通过导热材料传递给散热器,再通过风扇的高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走到周围的空气中,强制将热量排除,这样就形成了从芯片,然后通过散热器和导热材料,到周围空气的散热通路。 表征热传导过程的物理量

在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q="K"·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m)。(T1-T2)为温度差。 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R="R1"+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻。导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为: T2=T1+P×R (6)

接触热阻ansys例子

命令如下:finish /clear /prep7 et,1,solid70 mp,kxx,1,100 mp,dens,1,1000 mp,c,1,2000 ET,2,TARGE170 ET,3,CONTA174 mp,mu,6,0.1 block,0,0.01,0,0.01,0,0.1 block,0,0.01,0,0.01,0.1,0.2 vsel,s,,,1 vatt,1 esize,0.001 vmesh,all vsel,s,,,2 vatt,1 esize,0.002 vmesh,all R,3, RMORE, RMORE,,1000 RMORE,0 keyopt,3,1,2 !temp as DOF KEYOPT,3,9,0 KEYOPT,3,10,1 KEYOPT,2,2,0 KEYOPT,2,3,0 /solu asel,s,,,2 NSLA,S,1 Type,2 Mat,6 Real,3 ESURF allsel ASEL,S,,,7 NSLA,S,1 Type,3 Mat,6 Real,3 ESURF allsel asel,s,loc,z,0 da,all,temp,100 asel,s,loc,z,0.2 da,all,temp,200 alls solve /post1 set,last plns,temp 1

2 图 1 模型网格划分 图 2、模型整体温度云图 图 3、导体整体上的温度分布,可以明显看出在0.1米处,由于接触热阻而引起的温度差。 有问题请联系有问题请联系:: 下天雄 mawb_ihep@https://www.wendangku.net/doc/7a13022468.html,

(精品)热阻及热导率的测量方法

热阻及热导率测试方法 范围 本方法规定了导热材料热阻和热导率的测试方法。本方法适用于金属基覆铜板热 阻和导热绝缘材料热阻和热导率的测试。 术语和符号 术语 热触热阻 contact resistance 是测试中冷热两平面与试样表面相接触的界面产生热流量所需的温差。接触热阻 的符号为R I 面积热流量areic heat flow rate 指热流量除以面积。 符号 下列符号适用于本方法。 λ:热导率,W/(m﹒K); A:试样的面积,m 2 ; H:试样的厚度,m; Q:热流量,W 或者 J/s; q:单位面积热流量,W/ m 2 ; R:热阻,(K﹒m 2 )/W。 原理 本方法是基于测试两平行等温界面中间厚度均匀试样的理想热传导。 试样两接触界面间的温 度差施加不同温度,使得试样上下两面形成温度梯度,促使热流量全部垂直穿过试样测试表 面而没有侧面的热扩散。 使用两个标准测量块时本方法所需的测试: T1=高温测量块的高温,K; T2=高温测量块的低温,K; T3=低温测量块的高温,K; T4=低温测量块的低温,K; A=测试试样的面积,m 2 ; H=试样的厚度,m。 基于理想测试模型需计算以下参数: T H:高温等温面的温度,K; T C:低温等温面的温度,K; Q:两个等温面间的热流量 热阻:两等温界面间的温差除以通过它们的热流量,单位为(K﹒m 2 )/W; 热导率:从试样热阻与厚度的关系图中计算得到,单位为W/(m.K)。

接触热阻存在于试样表面与测试面之间。 接触热阻随着试样表面特性和测试表面施加给试样 的压力的不同而显著变化。因此,对于固体材料在测量时需保持一定的压力,并宜对压力进 行测量和记录。热阻的计算包含了试样的热阻和接触热阻两部分。 试样的热导率可以通过扣除接触热阻精确计算得到。 即测试不同厚度试样的热阻,用热阻相 对于厚度作图,所得直线段斜率的倒数为该试样的热导率,在厚度为零的截取值为两个接触 界面的接触热阻。如果接触热阻相对于试样的热阻非常小时(通常小于1%),试样的热导率 可以通过试样的热阻和厚度计算得出。 通过采用导热油脂或者导热膏涂抹在坚硬的测试材料表面来减小接触热阻。 仪器 符合本测试方法的一般特点要求的仪器见图A.1和图A.2。 该套仪器增加测厚度及压力监测等 功能,加强了测试条件的要求来满足测试精度需要。 仪器测试表面粗糙度不大于0.5μm;测试表面平行度不大于5μm。 精度为1μm归零厚度测试仪(测微计、LVDT、激光探测器等)。 压力监测系统。 图A.1 使用卡路里测量块测试架 图A.2 加热器保护的测量架 热源可采用电加热器或是温控流体循环器。主热源部分必需采用有保护罩进行保护, 保护罩 与热源绝缘,与加热器保持±0.2K的温差。避免热流量通过试样时产生热量损失。无论使用 哪一种热源,通过试样的热流量可以用测量块测得。 热流量测量块由测量的温度范围内已知其热导率的高热导率材料组成。为准确测量热流量, 必须考虑热传导的温度灵敏度。推荐测量块材料的热导率大于50 W/(m.K)。 通过推算测量块温度与测试表面的线性关系(Fourier传热方程),确定测量块的热端和冷端 的表面温度。 冷却单元通常是用温度可控的循环流体冷却的金属块,其温度稳定度为±0.2 K。 试样的接触压力通过测试夹具垂直施加在试样的表面上,并保持表面的平行性和对位。

散热片计算方法

征热传导过程的物理量 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差. 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A(2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系. 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量. 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:

T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2. 实例 下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为: R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W(7) 由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为: R3=R4/60%=1.93℃/W(8) 总热阻R为: R=R1+R2+R3=5.18℃/W (9) 芯片的工作温度T2为: T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃ (10) 可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态. 如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科 )转载

浅谈热力学对流系数与接触热阻

浅谈热力学对流系数与接触热阻 浅谈热力学对流系数与接触热阻 摘要:热流从一个面流入则会从另一个面穿出,净流体积的热量等于从一些面元流入面的减去从其它面元流出面的热量.这里符号规则规定热流流出为正,单位时间内流入小体积元内的总热量和波动方程比较,这三类边界条件虽然是从不同的物理模型中归结出来的,具有不同的物理意义,但它们的数学形式却是相同的,由此说明提出这三类边界条件的普遍意义。 关键词:热力对流系数接触热阻 一、引言 在实际应用中,散热片可以具有不同的横截面面积并且可以连接到圆形表面上。在不同的横截面区域必须要推导一个变量,其基本的解决方案是运用微分方程和数学技术,然而采用微分方程和数学技术会变得更加繁琐,推导出更复杂的情况从而不利于得出结果。热导率的物理意义为:当相距单位长度的两个平行平面间的温度相差一个单位时,在单位时间内通过单位面积所传导的热量。对流传热系数是在对流传热条件下,单位时间内经对流方式从表面S传出的热量与温度差T1-T2和表面积S的比例。 若要测量良导体样品,则样品需做成截面积比较小而传热方向上的长度较大的细长形状。因为良导体的导热性能好,样品只有做的比较长才能在其两端产生比较明显、易于测量的温差,而做的比较细是为了尽可能减小侧面散热的影响。需要热电偶的冷端保持温度恒定,实验中采用冰水混合物来保证热电偶的冷端保持0℃;需要尽可能减小样品侧面散热的影响,因此将样品做成薄圆盘状;需要样品的上、下表面各自温度均匀且易于测量,实验中加热盘和散热盘均为金属盘且各自与样品的上、下表面分别密切接触;需要易于散热,实验中采用风扇对散热盘吹风来保证,等等。理论上对环境温度是先测量还是后测量都是一样的,但是从实际情况分析还是后测量比较准确,这是从减小实验误差的角度考虑的。实验进行前,由于还没有进行实验,

接触热阻与接触导热填料

接触热阻与接触导热填料 任红艳 胡金刚 ( 北京空间飞行器总体设计部 北京 100086 ) 文 摘 在调研国内外接触热阻研究的基础上,介绍了关于接触热阻及接触导热填料的研究发展情况。对导热脂及油、金属、导热垫、RT V、镀层等导热填料的性能、应用情况作了简介,提供工程应用参考。 关键词 接触热阻,接触热导率,填料 Thermal C ontact Resistance and Thermal C onductive Filler Ren H ongyan Hu Jingang ( Beijing Institute of S pacecraft System Engineering Beijing 100086 ) Abstract On the basis investigation of thermal contact resistance developed in the w orld,the development on ther2 mal contact resistance and thermal conductive filler is briefly introduced.The properties and applications of s ome thermal conductive filler materials such as thermal conductive grease and oil,metal,gasket,RT V,coating etc.are presented here to provide reference to engineering use. K ey w ords Thermal contact resistance,Thermal contact conductive,Filler 1 引言 航天器在其飞行过程中要经历极为恶劣的热环境,其温度可从摄氏零下200多度变至数千度以上。因此,为保证航天器能正常工作,就需要对航天器内外各组件、仪器设备之间的导热过程进行控制,导热过程的控制是以分析和控制导热途径上的热阻为出发点,而影响实际导热过程的一个重要因素就是构件之间的接触热阻。 接触热阻是由于两接触面凹凸不平使得接触不完全而产生的热阻。接触热阻的大小与接触表面的材料、连接方式、表面状况及接触压力大小等多种因素有关。因此,接触热阻就很容易成为卫星热分析中的不确定因素,这种不确定性在极端情况下,甚至会影响卫星热设计的可靠性和卫星运行的可靠性。即使在一般情况下,接触热阻的存在也会增大热流途径上的温降。对航天器热控制来说,过大的接触热阻还可能使其它热控手段(比如热管)失效。 随着科学技术的发展,在工程实践和科学实验中,接触热阻问题愈来愈引起人们的注意。特别是随着空间技术的发展,卫星内大功率组件的热功耗越来越大,为使卫星内部的温度处于适宜的范围之内,就需要对接触热阻问题进行理论和实验研究,以对卫星内部导热过程进行有效的控制。 2 接触热阻的理论研究 2.1 接触热阻的点理论 如果把离散的局部接触面积称为点,接触热阻点理论的一般方法是:对单接触点接触热阻算法进行研究,再对接触点数目进行研究,从而完成对多接触点接触热阻的计算。对单接触点接触热阻的计算大多将接触点简化为圆台、圆柱及圆盘三种计算模型,这三种模型中,圆台计算模型较其它两种更接近实际情况,因它考虑了锥角θ的影响。 收稿日期:1999-03-22 任红艳,1972年出生,主要从事接触热阻方面的研究工作

热阻的实际应用

图1

公式(2)则是根据材料特征来计算热阻。利用公式(2),可以不用做实际的测量实验,利用各材料的导热系数和各组成材料的几何形状,就可以计算出热阻。这对做模拟计算是非常好的理论依据。同时,公式(2)更容易让人理解热阻产生的本质。 三、导热系数与热阻的应用问题 采用热阻的概念,只能是两个系统保持不变的情况下来分析、比较系统的热状态。两个系统若有改变,比较的结果可能完全相反。 比如,两种不带铝基板的1W白光LED,见图2和图3,它们的结构尺寸见图4和图5,根据铜底座尺寸,按照公式(2)计算,图3产品的中心轴向热阻应是图2产品的1.54倍。可在实际使用中,图3的芯片温度要低。怎么会这样?因为,它的底板下部的面积大,便于热流横向扩展。上面的计算没有考虑热流横向扩展!它们实际应用时,还必须要加散热器,见图5。通常散热器是铝合金材料,导热系数远小于纯铜材料。图2的LED接触面小,热量在往散热器上传导时,横向的热阻就大了;而图3的产品由于铜底座面积大,热量便于横向散开传导到散热器上,使得热流密度减小,将热量更有效地传导到散热器的外部翅片上。所以,虽然图3的结构纵向路径长了,但由于有了好的横向路径,其实热阻反倒小了。 再比如,两个材料、工艺相同制成的散热器,A表面积比B表面积大一倍,似乎A的热阻比B小,A要好。可是,给B配上风扇,B的热阻就会小于A。事实上是B和风扇形成了系统,是这个系统比A好。并不是A比B的热阻小而最终在使用上A比B系统好。A和B的比较就没有意义,因为B不是单独使用。 这个例子是有实际应用意义的。在设计产品的散热器结构时,我们可能采用两种方案:只用散热器自然散热和散热器加风扇散热。在采用风扇散热时,可以选取一个较小的散热器,其与风扇组合的散热效果可能远优于只采用一个较大的散热器的效果。虽然小散热器的热阻大于大散热器的热阻,但在两个系统中,我们也不能单以两个散热器的热阻大小来说好坏。 在系统构成后,不用热阻的概念,通过温度值就可以知道导热效果的差异。这里“系统的构成后”是指相比较的系统的结构确定,热源确定。可以测试相关点的温度就知道结果。没有必要已经知道了相关点的温度后再去算出个热阻来。通过相关点的温度值已经很明确了哪个好,哪个不好。如果说不是测试,而是要通过模拟计算得到结果的话,在模拟计算中,也是通过导热系数和结构参数,先算出相关点的温度。计算得到了各点的温度,导热好坏也就明了了。也可以不需要再多算一步来算出热阻值。 对于热系统间的比较,仅仅知道各系统的热阻值,也无法比较哪个好坏。 举例说明。两个不同LED灯具,采用相同型号、规格和数量的LED,它们的芯片PN结到灯具最外端的热阻不同。可是这两个灯具设计的芯片工作电流是不同的。一个灯具的工作电流比另一个要小的多,即使这个灯具的热阻大些,它的芯片温度还是要低,它的寿命相对就要好。所以,给出热阻值而不同时了解其它相关条件,单从热阻值来比较这两个灯具,是没有意义的。而若给出灯具在正常工作条件下的温度值,则可以很好低判定它们的热状况好坏了,由此才可以推断哪个灯具的可靠性和寿命会好。

LFA447 接触热阻计算

LFA447接触热阻计算方法 一、概述 对于LFA双层复合材料的测试,若上下两层的厚度、密度、比热与热扩散系数均为已知,可以直接计算得到两层之间的接触热阻(contact resistance)。 二、测量 在LFA447测量软件中,使用双层模式对样品进行设定: Layer列表中包含样品上(面向红外检测器)、下(面向激光源)两层的属性定义,其中厚度与密度两项需输入准确数值,比热与热扩散系数因均随温度而变,对于多温度点测试此处可暂写为1,留待分析软件中另作链接设定。由于测量软件中限定双层模式测量必须包含一

个已知层和一个未知层,此处可将任意一层作为未知层(diffusivity留空)处理。 随后编辑温度程序,设定amplifier、duration等参数并进行测试: 三、分析计算 1.在LFA数据库中导入测量得到的LFA447数据文件。在出现的材料设定对话框中对各层材料的比热与热扩散系数进行链接设定。对于接触热阻的计算,需要上下两层的热扩散系数均为已知(均需链接相应的热扩散系数表)。若测试温度较高,因样品膨胀而导致的厚度与密度变化不可忽略,则还需链接线膨胀系数表。

2.将导入的数据载入分析界面,当出现提示进行多层模式计算的对话框时可跳过不计算(点击“否”。此处的计算为根据已知层来计算未知层的热扩散系数,因现在两层事实上均为已知,实验目的是为了得到两层之间的接触热阻,再做“未知层”的计算并无意义): 3.点击“测量”-->“计算接触热阻” 在出现的对话框中选择基线类型(推荐“线性”,具体请参考“LFA数据分析向导”),“强制重新计算”选不选都没关系,随后点击“确定”:

开关电源热阻计算方法及热管理

开关电源热阻计算方法及热管理 、引言 我们设计的DC-DC电源一般包含电容、电感、肖特基、电阻、芯片等元器件;电源产品的转换效率不可能做到百分百,必定会有损耗,这些损耗会以温升的形式呈现在我们面前,电源系统会因热设计不良而造成寿命加速衰减。所以热设计是系统可靠性设计环节中尤为重要的一面。但是热设计也是十分困难的事情,涉及到的因素太多,比如电路板的尺寸和是否有空气流动。 我们在查看IC产品规格书时,经常会看到R JA、T J、T STG T LEAD等名词;首先R JA是指芯 片热阻,即每损耗1W时对应的芯片结点温升,T J是指芯片的结温,T STG是指芯片的存储温 度范围,T LEAD是指芯片的加工温度。 、术语解释 首先了解一下与温度有关的术语:T J、T A、T C、T T。由“图1 ”可以看出,T J是指芯片 内部的结点温度,T A是指芯片所处的环境温度,T C是指芯片背部焊盘或者是底部外壳温度,T T是指芯片的表面温度。 数据表中常见的表征热性能的参数是热阻R A,R A定义为芯片的结点到周围环境的热阻。 其中T J = T A +(R A *P D) 励国空弐遏度Rji T T R M 图1.简化热阻模型 对于芯片所产生的热量,主要有两条散热路径。第一条路径是从芯片的结点到芯片顶部塑封体(R JT),通过对流/辐射(R TA)到周围空气;第二条路径是从芯片的结点到背部焊盘(R JC),通过对流/辐射(R CA)传导至PCB板表面和周围空气。 对于没有散热焊盘的芯片,RC是指结点到塑封体顶部的热阻;因为R JC代表从芯片内的结点到外界的最低热阻路径。 三、典型热阻值 表1典型热阻

地埋管热阻计算方法

垂直单U 型埋管内流体至井壁总热阻 在忽略轴向导热的条件下,如图3.14所示: 图3.14 垂直单U 管井水平截面图 如果U 型管的两根支管单位长度的热流分别为q 1与q 2,两支管内流体温度分别为T f 1与T f 2,根据线性叠加原理,所讨论的稳态温度场应该是这两个热流作用产生的过余温度场的叠加。如果取钻孔壁的平均温度T b 为过余温度的零点,则有 111122f b T T R q R q -=+ 212122 f b T T R q R q -=+ 其中:R 1和R 2分别为两支管内流体至井壁间的热阻,而R 12是两根管子之间的热阻。对于实际工程,钻孔中的U 型埋管在结构上通常可以假设是对称的,因此有R 1=R 2,又由于没有考虑两支管内流体沿深度方向的变化,无法分析T f 1和T f 2及q 1和q 2的区别,因此只能作进一步的简化假设:T f 1=T f 2= T f ,q 1=q 2=q l /2,以减少未知量的个数,其中T f 为埋管内流体的平均温度,q l 为单位长度U 型埋管总的传热量。根据文献[6]推导公式得: 21222212221ln ln 21ln ln 21 1 ln 2b b s b p b o b s b b b s b b b s b o p p i i d d R R R d d D d d R D d D d R d d h λλπλλλλλπλλλπλπ??????-==+?+?? ? ?+-??????????-??=+??? ? ?++????????= ?+ ??? 则埋管内流体至井壁总热阻为:

444 0.80.4 1111ln ln ln ln 2220.023Re Pr Re b b b s b o b b o b s b p i i fluid i i d d d d R d D d D d d h Nu h d Nu v d λλπλλλπλπλν ??????????-????=++?+?+? ??? ? ? ? ?+-?????????????? ?= =?= 公式适用于埋管内流体处于紊流状态,即Re>2200,其中: s λ——土壤导热系数,W/(m ·℃); b λ——回填土导热系数,W/(m ·℃); p λ——埋管导热系数,W/(m ·℃); fluid λ——埋管内水导热系数,W/(m ·℃); b R ——钻孔内热阻,(m ·℃)/W ; o d 、o r ——埋管的外直、半径,m ; i d 、i r ——埋管的内直、半径,m ; b d 、b r ——钻井的直、半径,m ; D ——埋管管间距,m ; h ——埋管内水的对流换热系数,W/(m 2·℃); Nu ——努塞尔数; Re ——雷诺数; Pr ——普朗特数,其值为/fluid fluid να; v ——埋管内水流速(分子),m/s ; ν——水的运动粘性系数(分母),m 2/s ; (3)垂直双U 型埋管内流体至井壁总热阻 传热分析同垂直单U ,取钻孔孔壁的平均温度为过余温度的零点[6],则有 111122133144 f b T T R q R q R q R q -=+++

计算散热片面积

我用7805 7810如何计算散热片尺寸? 以7805为例说明问题。 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出。 正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出民品7805的最高结温TJMAX=125℃,那么允许的温升是65℃。要求的热阻是65℃/2.45W=26℃/W。再查7805的热阻,TO-220封装的热阻θJA=54℃/W,TO-3封装(也就是大家说的“铁壳”)的热阻θJA=39℃/W,均高于要求值,都不能使用(虽然达不到热保护点,但是超指标使用还是不对的)。所以不论那种封装都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻。 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W。其实这个值非常大,只要是个散热片即可满足。 国产散热器厂家其实就是把铝型材做出来,然后把表面弄黑。热阻这种最基本的参数他们恐怕从来就没有听说过。如果只考虑散热功率芯片的输入输出电压差X电流是芯片的功耗,这就是散热片的散热功率。元器件的面积的1.8倍就可以 三极管散热有关 电力电子有关_网摘 2008-07-12 19:34 阅读96 评论0 字号:大中小 一般,热阻公式中,Tcmax =Tj - P*Rjc的公式是在假设散热片足够大而且接触足够良好的情况下才成立的,否则还应该写成Tcmax =Tj - P*(Rjc+Rcs+Rsa)。Rjc表示芯片内部至外壳的热阻,Rcs表示外壳至散热片的热阻,Rsa表示散热片的热阻。没有散热片时,Tcmax =Tj - P*(Rjc+Rca)。Rca表示外壳至空气的热阻。一般使用条件用Tc =Tj - P*Rjc的公式近似。厂家规格书一般会给出,Rjc,P等参数。一般P是在25度时的功耗。当温度大于25度时,会有一个降额指标。举个实例:一、三级管2N5551 规格书中给出25度(Tc)时的功率是1.5W(P),Rjc是83.3度/W。此代入公式有:25=Tj-1.5*83.3可以从中推出Tj为150度。芯片最高温度一般是不变的。所以有Tc=150-Ptc*83.3,其中Ptc表示温度为Tc时的功耗。假设管子的功耗为1W,那么,Tc=150-1*83.3=66.7度。注意,此管子25度(Tc)时的功率是1.5W,如果壳温高于25度,功率就要降额使用。规格书中给出的降额为12mW/度(0.012W/度)。我们可以用公式来验证这个结论。假设温度为Tc,那么,功率降额为0.012*(Tc-25)。则此时最大总功耗为1.5-0.012*(Tc-

围护结构热阻及保温计算

导热系数、传热系数(热阻值R、导热系数λ、修正系数、厚度---节能计算)概念及热工计算方法 导热系数: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。 传热系数: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻: R=δ/λ 式中:δ—材料层厚度(m) λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中: Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)] Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m.k)] Fp—外墙主体部位的面积 Fb1、Fb2、Fb3—外墙周边热桥部位的面积 4、单一材料热工计算运算式 ①厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)] ②热阻值R(m.k/w) = 1 / 传热系数K [W/(㎡?K)] ③厚度δ(m) = 导热系数λ[W/(m.k)] / 传热系数K [W/(㎡?K)]

相关文档