文档库 最新最全的文档下载
当前位置:文档库 › 实时以太网EtherCAT的技术和应用

实时以太网EtherCAT的技术和应用

实时以太网EtherCAT的技术和应用
实时以太网EtherCAT的技术和应用

实时以太网EtherCAT的技术和应用

目录

摘要: (3)

关键词: (3)

前言 (3)

一.实时以太网 (3)

1.1 实时以太网的发展历史 (3)

1.2 实时以太网的发展现状 (4)

1.2.1 通信确定性与实时性 (4)

1.2.2 稳定性与可靠性 (4)

1.2.3 安全性 (4)

1.2.4 总线供电问题 (5)

1.3 实时以太网的技术优势 (5)

1.3.1 应用广泛 (5)

1.3.2 通信速率高 (5)

1.3.3 成本低廉 (5)

1.3.4 资源共享能力强 (5)

1.3.5 可持续发展潜力大 (6)

1.4 实时以太网的关键技术 (6)

1.4.1 实时通信技术 (6)

1.4.2 总线供电技术 (6)

1.4.3 远距离传输技术 (6)

1.4.4 网络安全技术 (6)

1.4.5 可靠性技术 (6)

1.5 实时以太网的未来技术 (7)

1.5.1 工业以太网的防爆保护 (7)

1.5.2 未来的网络拓扑结构 (7)

1.5.3 让交换机学习自动化语言 (7)

1.5.4 安全增长的重要性 (7)

1.5.5 无线网络提供新的应用可能 (7)

1.5.6 更高的网络带宽 (7)

1.6 实时以太网的主流五种标准 (8)

1.6.1 EtherCAT标准 (8)

1.6.2 Ethernet/IP标准 (8)

1.6.3 PowerLink标准 (8)

1.6.4 Profinet标准 (9)

1.6.5 Sercos-III标准 (9)

1.7 实时以太网的五种标准比较 (9)

1.7.1 硬件和软件的差异 (9)

1.7.2 实现确定性的方案 (10)

1.7.3 实现实时性的异同 (11)

1.7.4 纵向IT集成的实现 (11)

二.EtherCAT实时以太网技术 (11)

2.1 传统现场总线及以太网的实时能力 (11)

2.2 EtherCAT运行原理 (12)

2.3 EtherCAT技术特征 (14)

2.3.1 协议 (14)

2.3.2 帧结构 (15)

2.3.3 拓扑 (16)

2.3.4 分布时钟 (17)

2.3.5 实时性 (17)

2.3.6 故障诊断 (18)

2.3.7 可靠性 (19)

2.3.8 安全性 (19)

2.3.9 EtherCAT实现CANopen(CoE) (19)

2.3.10 EtherCAT实现伺服驱动(SoE) (20)

2.3.11 EtherCAT实现以太网(EoE) (20)

2.3.12 EtherCAT实现文件读取(FoE) (21)

2.4 EtherCAT成本 (21)

2.5 EtherCAT实施 (21)

2.5.1 主站 (22)

2.5.2 主站实施 (22)

2.5.3 从站 (23)

2.5.4 从站控制器 (23)

2.6 EtherCAT总结 (24)

三.基于EtherCAT的多轴运动控制卡实现 (25)

3.1 系统概述 (25)

3.2 EtherCAT主站程序 (26)

3.3 EtherCAT从站结构 (26)

3.4 数据通信 (27)

结语 (28)

摘要:分析了实时以太网技术的发展现状和发展趋势,并比较了当前主流

的五种以太网标准的技术特点。针对EtherCAT实时以太网技术进行了细致的介绍和分析,并介绍了一种基于EtherCAT技术构建的多轴运动控制卡的实现。

关键词:以太网 Ethernet EtherCAT 运动控制

前言

长期以来,现场总线技术争论不休,工业网络通信的互连、互通与互操作问题很难解决,严重阻碍了现场总线技术的发展和推广应用,于是现场总线开始转向三十年来最成功的以太网网络技术。经过近几年的努力,以太网技术已经被工业自动化系统广泛接受。为了满足高实时性能应用的需要,各大公司和标准组织纷纷提出各种提升工业以太网实时性的技术解决方案,以太网的实时响应时间可以提高到低于1ms,从而产生了实时以太网(RealTime Ethernet,简称RTE)。经过多年的努力,实时以太网已经取得了多项关键技术的突破,可以通过实时以太网对底层的控制器和传感器进行操作,实现E网到底。

一.实时以太网

按照国际电工委员会IEC/sc65的定义,实时以太网是建立在IEEE802.3标准的基础上,通过对其和相关标准的实时扩展提高实时性,并且做到与标准以太网完全无缝连接的工业以太网。

1.1 实时以太网的发展历史

以太网(Ethernet)这个名字来自于无线电技术。19世纪时,很多科学家认为电磁波的传输需要一种媒介,这种媒介被称为”Ether”。在20世纪70年代中期,美国XEROX公司提出了以太网这个新概念,采用了CSMA/CD (载波侦听多路存取/冲突检测)的访问方法。第一个以太网系统,能够通过1000多米的同轴电缆,连接超过100个站点,实现3Mbps的数据传输速率。

70年代后期,由DEC、Intel和XEROX公司组成的DIX工作组将以太网的传输速率提高到了10MB/s。1995年,IEEE正式通过802.3u快速以太网标准。快速以太网仍然采用CSMA/CD协议,但物理层则提供1OOM/s传输速率。随后以太网技术进一步发展到1000MB/s(千兆网)和l0000MB/s(万兆网)。在这些网络中,不仅仅使用同轴电缆,也可采用双绞线电缆、光纤以及无线传输。传输速度高达100GB/s及以上的以太网网络也正在规划中。

2003年5月,为了规范RTE的工作,1EC/sc65c专门成立了WG11实时以太网工作组,负责制定IEC61784—2“基于ISO/lEC8802.3的实时应用系统中工业通信网络行规”国际标准,该标准包括l1种实时以太网行规集。

1.2 实时以太网的发展现状

Ethernet过去被认为是一种“非确定性”的网络,作为信息技术的基础,是为IT领域应用而开发的,在工业控制领域只能得到有限应用,这是由于:

(1)Ethernet的介质访问控制(MAC)层协议采用带碰撞检侧的载波侦听多址访问(CSMA/CD)方式,当网络负荷较重时,网络的确定性不能满足工业控制的实时性要求;(2)Ethernet所用的接插件、集线器、交换机和电缆等是为办公室应用而设计的,不符合工业现场亚劣环境要求;(3)在工厂环境中,Ethernet抗干扰(EMI)性能较差,若用于危险场合,以太网不具备本质安全性能;(4)Ethernet不能通过信号线向现场设备供电问题。

随着IT技术和总线技术的发展,上述问题在实时以太网中正在迅速得到解决,并使Ethernet全面应用于工业控制领域成为可能。

1.2.1 通信确定性与实时性

快速以太网、交换式以太网技术和全双工通信的发展给解决以太网的非确定性和非实时性问题提供了契机和可能。

首先,Ethernet的通信速率从1OM、100M增大到如今的1000M、10G,在数据吞吐量相同的情况下,通信速率的提高意味着网络负荷的减轻和网络传输延时的减小,即网络碰撞机率大大下降。其次,采用星型网络拓扑结构,交换机将网络划分为若干个网段。Ethernet交换机由于具有数据存储、转发的功能,使各端口之间输入和输出的数据帧能够得到缓冲,不再发生碰撞。再次,全双工通信又使得端口闻两对双绞线(或两根光纤)上分别同时接收和发送报文帧,也不会发生冲突。

1.2.2 稳定性与可靠性

由于工业现场的机械、气候、尘埃等条件非常恶劣,因此对设备的工业可靠性提出了更高的要求。在工厂环境中,工业网络必须具备较好的可靠性、可恢复性及可维护性。为了解决在不间断的工业应用领域,在极端条件下网络也能稳定工作的问题,德国Hirschmann等公司专门开发和生产了工业以太网交换机等产品,安装在标准DIN导轨上,并有冗余电源供电。

1.2.3 安全性

工业系统的网络安全是工业以太网应用必须考虑的另一个安全性问题。工业以太网可以将企业传统的三层网络系统,即信息管理层、过程监控层、现场设备层,合成一体,使数据的传输速率更快、实时性更高,并可与Internet无缝集成,实现数据的共享,提高工厂的运作效率。但同时也引入了一系列的网络安全问题,工业网络可能会受到包括病毒感染、黑客的非法入侵与非法操作等网络安全威胁。一般情况下,可以采用网关或防火墙等对工业网络与外部网络进行隔离,还

可以通过权限控制、数据加密等多种安全机制加强网络的安全管理。

1.2.4 总线供电问题

总线供电(或称总线馈电)是指连接到现场设备的线缆不仅传输数据信号,还能给现场设备提供工作电源。对于现场设备供电可以采取以下方法:

(1) 在目前以太网标准的基础上适当地修改物理层的技术规范,将以太网的曼彻斯特信号调制到一个直流或低频交流电源上,在现场设备端再将这两路信号分离开来。

(2) 不改变目前物理层的结构,而通过连接电缆中的空闲线缆为现场设备提供电源。

1.3 实时以太网的技术优势

1.3.1 应用广泛

以太网是应用最广泛的计算机网络技术,几乎所有的编程语言如Visual

C++、Java、Visual Basic等都支持以太网的应用开发。

1.3.2 通信速率高

目前,10、100Mb/s的快速以太网已开始广泛应用,1Gb/s以太网技术也逐渐成熟,而传统的现场总线最高速率只有12Mb/s。显然,以太网的速率要比传统现场总结要快的多,完全可以满足工业控制网络不断增长的带宽要求。

1.3.3 成本低廉

以太网网卡的价格较之现场总线网卡要便宜得多(约为1/10);另外,以太网已经应用多年,人们对以太网的设计、应用等方面有很多经验,具有相当成熟的技术。大量的软件资源和设计经验可以显著降低系统的开发和培训费用,降低系统的整体成本,并大大加快系统的开发和推广速度。

1.3.4 资源共享能力强

随着Internet/Intranet的发展,以太网已渗透到各个角落,网络上的用户已解除了资源地理位置上的束缚,在联人互联网的任何一台计算机上就能浏览工业控制现场的数据,实现“控管一体化”,这是其他任何一种现场总线都无法比拟的。

1.3.5 可持续发展潜力大

以太网的引人将为控制系统的后续发展提供可能性,用户在技术升级方面无需独自的研究投入,对于这一点,任何现有的现场总线技术都是无法比拟的。

1.4 实时以太网的关键技术

针对工业现场设备间通信具有实时性强、数据信息短、周期性较强等特点和要求,经过认真细致的调研和分析,以下技术基本解决了以太网应用于现场设备间通信的关键技术。

1.4.1 实时通信技术

其中采用以太网交换技术、全双工通信、流量控制等技术,以及确定性数据通信调度控制策略、简化通信站软件层次、现场设备层网络微网段化等针对工业过程控制的通信实时性措施,解决了以太网通信的实时性。

1.4.2 总线供电技术

采用直流电源耦合、电源冗余管理等技术,设计了能网络代电或总线供电的以太网集线器,解决了以太网总线的供电问题。

1.4.3 远距离传输技术

采用网络分层、控制区域微网段化、网络超小时滞中继以及光纤等技术解决以太网的远距离传输问题。

1.4.4 网络安全技术

采用控制区域微网段化,各控制区域通过具有网络隔离和安全过滤的现场控制器与系统主干相连,实现各控制区域与其他区域之间的逻辑上的网络隔离。

1.4.5 可靠性技术

采用分散结构化设计、EMC设计、冗余、自诊断等可靠性设计技术等,提高基于以太网技术的现场设备可靠性,经实验室EMC测试,设备可靠性符合工业现场控制要求。

1.5 实时以太网的未来技术

1.5.1 工业以太网的防爆保护

目前工业以太网的本质安全的问题还没有很好解决。未来这个技术解决后,第一台用双绞线连接的本质安全的以太网交换机的问世将具有重大意义。

1.5.2 未来的网络拓扑结构

现在大部分的工业网络都支持菊花链型的拓扑结构,但是这个存在安全隐患的不稳定。同时,当流量突发时,以句话两式连接的交换机在吞吐量和带宽将受到限制。

而环形拓扑结构就可以很好的解决这个问题,当其中一个节点失效时,不影响其他节点的正常工作。

1.5.3 让交换机学习自动化语言

大型的自动化厂商都有自己定义的工业以太网协议,因此交换机学习自动化语言后,就可以用自己熟悉的自动化工具配置网络。

1.5.4 安全增长的重要性

工业以太网能够实现从管理级到现场级的数据传输,因此用户只需要掌握一种网络技术即可。但是网络的透明度的增加也同时带来了安全隐患。分布式安全体系的建立,能够将内部网络分为一个个独立的安全单元,通过相应的协议规则通信。

1.5.5 无线网络提供新的应用可能

如今的无线网络技术WLAN(Wireless LAN)被广泛的应用于办公环境中。移动性、灵活性、易于安装、低成本,无线通信的这些优点渐渐被应用于工业环境中。无线网络有很多不同技术特点的技术标准,WiMAX技术的传输距离在70公里以内,适合于大厂区范围内的数据通信,通信速率可达到640 Mb/s。BlueTooth技术的传输半径在10m以内,适合于办公环境内的通信。ZigBee技术是一种超低功耗的无线通信标准,很灵活,可以用于传感器级别的数据通信。

1.5.6 更高的网络带宽

随着互联网技术的发展,网络带宽将会越来越大,现在千兆以太网技术已经

比较成熟并应用广泛,万兆以太网技术也正在完善和普及,十万兆以太网技术也开始崭露头角。随着以太网速率的增加,将来可能更多的设备和信息都会连接到以太网上,真正实现E网通天下。

1.6 实时以太网的主流五种标准

2005年IEC标准化组织公布了11种实时以太网标准,这11种实时以太网标准成为当前获得国际承认的标准,每个标准都有自己的公司联盟和组织提供技术制定、推广、开发等支持。这11种标准分别为Ethernet/IP、Profinet、P-Net、InterBus、Vnet/IP、TCnet、EtherCAT、PowerLink、EPA、Modbus-RTPS、Sercos-III。下面只选择市场及技术较成熟的5种主流实时以太网标准分别介绍。

1.6.1 EtherCAT标准

EtherCAT(Ethernet for Control Automation Technology)由德国Beckhoff 公司开发,并得到ETG(EtherCAT Technology Group)国际组织的支持。EtherCAT 是一个可用于现场级的超高速I/O网络,它使用标准的以太网物理层和常规的以太网卡,传输媒体可为双绞线或光纤。

传统以太网技术用于现场级的最大问题是通信效率低,仅为0.77%,为了提高通信效率,EtherCAT采用了类似Interbus现场总线的集总帧等时通讯原理。EtherCAT开发了专用ASIC芯片FMMU (现场总线内存管理单元)用于I/0模块,这样一来,EtherCAT可采用标准以太网帧,并以特定的环状拓扑发送数据,在FMMU 单元的控制下,网络上的每个站(或I/O单元)均从以太网帧上取走与该站有关的数据,或者插入该站要输出的数据。EtherCAT还通过内部优先级系统,使实时以太网帧比其它数据帧有较高的优先级。EtherCAT几乎支持任何拓扑结构,包括线性、树型与星型等,在l00Mbps时允许两个设备之间最大电缆长度为100米,可连接多至65535个设备。

1.6.2 Ethernet/IP标准

2000年3月,ControlNet国际组织(ControlNet International,CI)和DeviceNet供应商协会(Open Device Vendor Association,ODVA)共同开发了Ethernet/IP实时以太网,IP代表是工业协议(Industrial Protoco1)。

Ethernet/IP是一种开放的工业网络标准,它充分采用现成商用的Ethernet TCP/IP芯片、物理媒体和协议组,支持显性和隐性报文。

作为实时控制网络,Ethernet/IP在TCP/IP之上附加一个公共的应用层CIP(Common Industrial Protoco1),CIP的控制部分用于实时I/O报文,信息部分用于报文交换。

1.6.3 PowerLink标准

ETHERNET Powerlink(简称EPL)实时以太网标准是由奥地利贝加莱公司(B&R)

于2001年11月创议和开发的,得到了EPSG (EPL标准化)协会的支持。世界上已有300多个制造厂、供应商和用户使用这项技术。

ETHERNET Powerlink标准是在CANopen协议基础上发展而来的,它基于高速以太网,建立了一种特殊的时序机制SCNM (时间片通信管理机制),因此保证了数据传输的确定性。EPL系统中MN (Managing Node)节点作为主控制器去管理SCNM,CN(Controled Node)由一些现场设备构成,它们通过以太网HUB相连,路由器则负责IP地址转换和IP报文的信息安全。

1.6.4 Profinet标准

Profinet实时以太网是由PI(Profibus Internationa1)组织于2001年8月提出的基于以太网的自动化标准。Profinet将工厂自动化和企业信息管理层IT技术以及有线通信与无线通信技术有机地融为一体,同时又完全保留了Profibus现有的开放性。

Profinet构成从I/O级直至协调管理级的基于组件的分布式自动化系统的体系结构方案。Profinet用于实现基于实时以太网的各种应用集成,Profinet-I/0支持简单分散式现场设备集成,Profinet-IRT支持苛求时间要求的运动控制集成以及Profinet-CBA支持基于组件的分布式自动化系统的集成。

1.6.5 Sercos-III标准

SERCOS(Serial Real time COmmunication System)数字运动控制总线是运动控制领域的专用总线。该总线由SI(SERCOS International)集团提供支持,该集团包括50家控制器生产商和30家驱动器生产商。

Sercos-III是第三代基于以太网的运动控制高速总线接口。它将以太网的物理层和协议与Sercos接口机理有机的结合在一起,该总线采用TDMA时分多路时间片通信机制实现实时性和确定性。

1.7 实时以太网的五种标准比较

1.7.1 硬件和软件的差异

各种实时方案从他们符合或不符合以太网TCP/IP标准来说,是各不相同的。

关于硬件,Profinet-IRT、Sercos-III和EtherCAT(在从站中)的使用不是建立在标准以太网控制器上的,而是需要特殊硬件(专用集成电路或FPGA现场可编订阵列)。这意味着这些实时方案在操作时,依赖于制造商定制的硅器件。相反,PowerLink和Ethernet/IP使用标准的以太网控制器作为硬件平台。

至于网络软件(OSI层3和层4),Profinet-IRT、Sercos-III、EtherCAT和PowerLink使用专门的软件栈。仅Ethernet/IP是完全建立在同时满足硬件和软件两方面的以太网TCP/IP之上的。

为了使以太网具有实时性能,它必须以一种确定性的方法进行响应。为此,各种基于以太网实时方法采用了不同的机制。

●Powerlink是一种基于循环的实时系统。它在CSMA/CD机制中叠加了一个

时间槽机制。主站(控制器)在一段分配的通讯循环时期内,连续轮询从

站(驱动器)。其剩余的循环时间是留为异步数据的传输,如设备的配置。

通过一个标准以太网报文,传输数据对PowerLink,实时数据采用

Ethertype,普通数据采用I P。通过标准以太网网络集线器,在一个实

时段相互连接所有站点(主站与从站)。

●Profinet-IRT,为了达到硬实时,也可使用时间槽机制。因此,某带宽

保留以用于实时数据传输(IRT=等时实时同步),并且异步通讯也可使用

保留的带宽。通过优于标准集成在现场设备的专用交换机来连接站点,

而不是通过标准的以太网交换机。这些专用集成交换机包含一个专用集

成电路,以100Mbps的数据速率控制或四个端口。

●Sercos-III使用以太网物理层(1OO Mbps)和以太网报文,同时,保留现

有的Sercos机制。同样的,Sercos-III是基于带宽,用于等时同步(实

时信道)和异步(1P信道)数据传输的时间空挡机制。Sercos-III运行无

需网络集线器或交换机。每个站点都具有专用的集成电路或带有两个通

讯端口的FPGA,使它能够通过线形或环形拓扑图进行连接。

●EtherCAT使用以太网报文结构,但是采用一种完全不同的基本运行模式。

在一个通讯循环内,报文不会分别发送到每个站点,而是一个单一以太

网报文贯穿所有站点/从站。以太网报文中的数据区分为若干实时和普

通数据段。在实时数据区,连续的子报文定义了所有站点的首部及过程

数据,从而增加了协议中的用户数据率(在运动控制应用中,64字节最

短的以太网结构的用户数据率通常低于1 5%)。从站具有专用集成电路

或FPGA,可将输入的以太网格式数据转换为一个内部名为E总线。由于

EtherCAT从站仅能够解释EtherCAT帧,为了能够引导通用数据通过从

站,故将通用数据封装在EtherCAT帧中。如果通用数据包太大,无法在

一个循环中传输,则将被分别传送,从而通过多个EtherCAT帧。封装信

道及打开封装信道采用网关功能,发生在主站(虚拟以太网交换机)或从

站中。整个协议处理是基于硬件的。从站不会以常规模式处理输入的以

太网报文一一揭示其内容,之后为转发而复制过程数据。取而代之的是,

在报文通过从站的同时,EtherCAT从站在读写报文中来自和到达预定站

点的过程数据。EtherCAT机制允许执行非常短的循

●Ethernet/IP是完全基于以太网标准仅有的一个实时方案。和其他协议相

比,Ethernet/IP并不是基于循环,而是基于时间,这意味着它仅需要

通过现场站点及时接收指令,还意味着整个系统的性能能够独立于网络

性能来完成。通过这三个均基于标准的机制:UDP,服务品质QoS(优先

站点)和IEEE 1588来保证实时传送。

下表对比五种标准在一个需要同步控制1OO根轴的应用的实时行为。依照性能测试的两个分析标准为响应时间(循环时间)和抖动(也就是响应时间钟的变化)。

以太网方案响应时间(100轴)抖动数据速率

Ethernet/IP =1 ms <1 ms 100 Mbps

PowerLink <1 ms <1 ms 100 Mbps

Profinet-IRT <1 ms <1 ms 100 Mbps

Sercos-III <0.5 ms <0.1 ms 100 Mbps

EtherCAT =0.1 ms <0.1 ms 100 Mbps

通过观察此表,首先是感叹这五个实时方案强大的性能,它们都具有较短的响应时间,或达到1ms。Ethernet/IP、Powerlink和Profinet-IRT在数量级上相似;在数量级上,Sercos-III和EtherCAT同其他三个实时方案相比则更快和更精确。

1.7.4 纵向IT集成的实现

Ethernet/IP和Profinet是通用的通讯系统,并且它们的专用附件分别为ClPsvnc和Profinet-IRT可用于运动控制应用。基于Powerlink和Sercos-III的系统特别适合多轴应用。EtherCAT提供一个高效的路径,可实现极速的I/O传送和操作。这五个基于以太网的实时方案优于传统的运动控制现场总线,具有一个决定性的优势:即它们支持互联网技术,因而允许纵向IT集成,特别是Web技术在自动化行业中起到越来越重要的作用。

二.EtherCAT实时以太网技术

2.1 传统现场总线及以太网的实时能力

现场总线已成为自动化技术的集成组件,通过大量的实践试验和测试,如今已获得广泛应用。正是由于现场总线技术的普及,才使基于PC的控制系统得以广泛应用。然而,虽然控制器CPU的性能(尤其是IPC的性能)发展迅猛,但传统的现场总线系统正日趋成为控制系统性能发展的“瓶颈”。急需技术革新的另一个因素则是由于传统的解决方案并不十分理想。传统的方案是,按层划分的控制体系通常都由几个辅助系统所组成(周期系统):即实际控制任务、现场总线系统、I/O系统中的本地扩展总线或外围设备的简单本地固件周期。正常情况下,系统响应时间是控制器周期时间的3-5倍。在现场总线系统之上的层面(即网络控制器)中,以太网往往在某种程度上代表着技术发展的水平。该方面目前较新的技术是驱动或I/O级的应用,即过去普遍采用现场总线系统的这些领域。这些应用类型要求系统具备良好的实时能力、适应小数据量通讯,并且价格经济。EtherCAT

可以满足这些需求,并且还可以在I/O级实现因特网技术(参见图1)。

图1:传统现场总线系统响应时间

目前,有许多方案力求实现以太网的实时能力。例如,CSMA/CD介质存取过程方案,即禁止高层协议访问过程,而由时间片或轮循方式所取代的一种解决方案;另一种解决方案则是通过专用交换机精确控制时间的方式来分配以太网包。这些方案虽然可以在某种程度上快速准确地将数据包传送给所连接的以太网节点,但是,输出或驱动控制器重定向所需要的时间以及读取输入数据所需要的时间都要受制于具体的实现方式。

如果将单个以太网帧用于每个设备,那么,理论上讲,其可用数据率非常低。例如,最短的以太网帧为84字节(包括内部的包间隔IPG)。如果一个驱动器周期性地发送4字节的实际值和状态信息,并相应地同时接收4字节的命令值和控制字信息,那么,即便是总线负荷为100%(即:无限小的驱动响应时间)时,其可用数据率也只能达到4/84= 4.8%。如果按照10 μs的平均响应时间估计,则速率将下降到1.9%。对所有发送以太网帧到每个设备(或期望帧来自每个设备)的实时以太网方式而言,都存在这些限制,但以太网帧内部所使用的协议则是例外。

2.2 EtherCAT运行原理

EtherCAT技术突破了其他以太网解决方案的系统限制:通过该项技术,无需接收以太网数据包,将其解码,之后再将过程数据复制到各个设备。EtherCAT 从站设备在报文经过其节点时读取相应的编址数据,同样,输入数据也是在报文经过时插入至报文中(参见图2)。整个过程中,报文只有几纳秒的时间延迟。

图2:过程数据插入至报文中

由于发送和接收的以太网帧压缩了大量的设备数据,所以有效数据率可达90%以上。100 Mb/s TX的全双工特性完全得以利用,因此,有效数据率可大于100 Mb/s(即大于2 x 100 Mb/s的90%)(参见图3)。

图3:带宽利用率的比较

符合IEEE 802.3标准的以太网协议无需附加任何总线即可访问各个设备。耦合设备中的物理层可以将双绞线或光纤转换为LVDS(一种可供选择的以太网物理层标准[4,5]),以满足电子端子块等模块化设备的需求。这样,就可以非常经济地对模块化设备进行扩展了。之后,便可以如普通以太网一样,随时进行从底板物理层LVDS到100 Mb/s TX物理层的转换。

2.3 EtherCAT技术特征

2.3.1 协议

EtherCAT是用于过程数据的优化协议,凭借特殊的以太网类型,它可以在以太网帧内直接传送。EtherCAT帧可包括几个EtherCAT报文,每个报文都服务于一块逻辑过程映像区的特定内存区域,该区域最大可达4GB字节。数据顺序不依赖于网络中以太网端子的物理顺序,可任意编址。从站之间的广播、多播和通讯均得以实现。当需要实现最佳性能,且要求EtherCAT组件和控制器在同一子网操作时,则直接以太网帧传输就将派上用场。

然而,EtherCAT不仅限于单个子网的应用。EtherCAT UDP将EtherCAT协议封装为UDP/IP数据报文(参见图4),这就意味着,任何以太网协议堆栈的控制均可编址到EtherCAT系统之中,甚至通讯还可以通过路由器跨接到其它子网中。显然,在这种变体结构中,系统性能取决于控制的实时特性和以太网协议的实现方式。因为UDP数据报文仅在第一个站才完成解包,所以EtherCAT网络自身的响应时间基本不受影响。

图4:EtherCAT:符合IEEE 802.3 [3]的标准帧

另外,根据主/从数据交换原理,EtherCAT也非常适合控制器之间(主/从)的通讯。自由编址的网络变量可用于过程数据以及参数、诊断、编程和各种远程控制服务,满足广泛的应用需求。主站/从站与主站/主站之间的数据通讯接口也相同。

从站到从站的通讯则有两种机制以供选择。一种机制是,上游设备和下游设备可以在同一周期内实现通讯,速度非常快。由于这种方法与拓扑结构相关,因此适用于由设备架构设计所决定的从站到从站的通讯,如打印或包装应用等。而对于自由配置的从站到从站的通讯,则可以采用第二种机制—数据通过主站进行中继。这种机制需要两个周期才能完成,但由于EtherCAT的性能非常卓越,因此该过程耗时仍然快于采用其他方法所耗费的时间。

EtherCAT仅使用标准的以太网帧,无任何压缩。因此,EtherCAT 以太网帧可以通过任何以太网MAC发送,并可以使用标准工具(如:监视器)。

2.3.2 帧结构

EtherCAT以标准以太网技术为基础,在MAC(媒体访问层)增加了一个确定性调度的软件层,实现了通信周期内的数据帧的传输。EtherCAT采用标准的IEEE802.3以太网帧,帧结构如图5,各部分含义见表1.

图5:EtherCAT帧结构

表1:帧结构定义

名称含义

目的地址接收方MAC地址

源地址发送方MAC地址

以太类型0x88A4

EtherCAT头:长度数据区长度,即子报文长度加和

EtherCAT头:类型 1 代表与从站通信,其余保留

CRC 循环冗余校验和

一个EtherCAT帧中可以包含若干个EtherCAT子报文,报文结构如图6,各部分含义见表2。每个报文都服务于一块逻辑过程映像区的特定内存区域,由FMMU(Fieldbus Memory Management Unit,负责逻辑地址与物理地址的映射)寄存器和SM(Sync Manager,负责对通信数据内存的读写)寄存器定义,该区域最大可达4GB字节。EtherCAT报文由一个16位的WKC结束,其数据区最大长度可达1486个字节。在报文头中由8位命令区数据决定主站对从站的寻址方式。

图6:子报文的帧结构

表2:子报文的帧结构含义

名称含义

命令寻址方式及读写方式

索引号帧编码代号

子报文地址从站地址

长度报文数据区长度

M 此报文后是否还有报文

状态位中断到来标志

数据区子报文数据结构,用户定义

WKC Working count工作计数器,报文寻址次数2.3.3 拓扑

EtherCAT几乎支持任何拓扑类型,包括线型、树型、星型等(参见图7)。通过现场总线而得名的总线结构或线型结构也可用于以太网,并且不受限于级联交换机或集线器的数量。

图7:灵活的拓扑结构:线型、树型或星型拓扑

最有效的系统连线方法是对线型、分支或树叉结构进行拓扑组合。因为所需接口在I/O 模块等很多设备中都已存在,所以无需附加交换机。当然,仍然可以使用传统的、基于以太网的星型拓扑结构。

还可以选择不同的电缆以提升连线的灵活性:灵活、经济的标准超五类以太网电缆可采用100BASE-TX模式传送信号;塑封光纤(PFO)则可用于特殊应用场合;还可通过交换机或介质转换器实现不同以太网连线(如:不同的光纤和铜电缆)的完整组合。

快速以太网的物理层(100BASE-TX )允许两个设备之间的最大电缆长度为100米。由于连接的设备数量可高达65535,因此,网络的容量几乎没有限制。

2.3.4 分布时钟

精确同步对于同时动作的分布式过程而言尤为重要。例如,几个伺服轴同时执行协调运动时,便是如此。

最有效的同步方法是精确排列分布时钟(IEEE 1588标准[6])。与完全同步通讯中通讯出现故障会立刻影响同步品质的情况相比,分布排列的时钟对于通讯系统中可能存在的相关故障延迟具有极好的容错性。

采用EtherCAT,数据交换就完全基于纯硬件机制。由于通讯采用了逻辑环结构(借助于全双工快速以太网的物理层),主站时钟可以简单、精确地确定各个从站时钟传播的延迟偏移,反之亦然。分布时钟均基于该值进行调整,这意味着可以在网络范围内使用非常精确的、小于1 微秒的、确定性的同步误差时间基(参见图8)。而跨接工厂等外部同步则可以基于IEEE 1588 标准。

图8:同步性与一致性:相距电缆长度为有120米的两个分布系统,

带有300个节点的示波器比较

此外,高分辨率的分布时钟不仅可以用于同步,还可以提供数据采集的本地时间精确信息。当采样时间非常短暂时,即使是出现一个很小的位置测量瞬时同步偏差,也会导致速度计算出现较大的阶跃变化,例如,运动控制器通过顺序检测的位置计算速度便是如此。而在EtherCAT中,引入时间戳数据类型作为一个逻辑扩展,以太网所提供的巨大带宽使得高分辨率的系统时间得以与测量值进行链接。这样,速度的精确计算就不再受到通讯系统的同步误差值影响,其精度要高于基于自由同步误差的通讯测量技术。

2.3.5 实时性

EtherCAT使网络性能达到了一个新境界。借助于从站硬件集成和网络控制器主站的直接内存存取,整个协议的处理过程都在硬件中得以实现,因此,完全独立于协议堆栈的实时运行系统、CPU 性能或软件实现方式。1000个I/O的更新时

间只需30 μs,其中还包括I/O周期时间(参见图9)。单个以太网帧最多可进行1486字节的过程数据交换,几乎相当于12000个数字输入和输出,而传送这些数据耗时仅为300 μs。

图9:EtherCAT性能概貌

100个伺服轴的通讯也非常快速:可在每100μs中更新带有命令值和控制数据的所有轴的实际位置及状态,分布时钟技术使轴的同步偏差小于1微秒。而即使是在保证这种性能的情况下,带宽仍足以实现异步通讯,如TCP/IP、下载参数或上载诊断数据。

超高性能的EtherCAT技术可以实现传统的现场总线系统无法迄及的控制理念。EtherCAT使通讯技术和现代工业PC所具有的超强计算能力相适应,总线系统不再是控制理念的瓶颈,分布式I/O可能比大多数本地I/O接口运行速度更快。EtherCAT技术原理具有可塑性,并不束缚于100 M bps的通讯速率,甚至有可能扩展为1000 M bps的以太网。

2.3.6 故障诊断

现场总线系统的实际应用经验表明,有效性和试运行时间关键取决于诊断能力。只有快速而准确地检测出故障,并明确标明其所在位置,才能快速排除故障。因此,在EtherCAT的研发过程中,特别注重强化诊断特征。

试运行期间,驱动或I/O 端子等节点的实际配置需要与指定的配置进行匹配性检查,拓扑结构也需要与配置相匹配。由于整合的拓扑识别过程已延伸至各个端子,因此,这种检查不仅可以在系统启动期间进行,也可以在网络自动读取时进行(配置上载)。

可以通过评估CRC校验,有效检测出数据传送期间的位故障——32 位CRC多项式的最小汉明距为4。除断线检测和定位之外,EtherCAT系统的协议、物理层和拓扑结构还可以对各个传输段分别进行品质监视,与错误计数器关联的自动评估还可以对关键的网络段进行精确定位。此外,对于电磁干扰、连接器破损或电缆损坏等一些渐变或突变的错误源而言,即便它们尚未过度应变到网络自恢复能力的范围,也可对其进行检测与定位。

2.3.7 可靠性

选择冗余电缆可以满足快速增长的系统可靠性需求,以保证设备更换时不会导致网络瘫痪。您可以很经济地增加冗余特性,仅需在主站设备端增加使用一个标准的以太网端口(无需专用网卡或接口),并将单一的电缆从总线型拓扑结构转变为环型拓扑结构即可(如图10所示)。当设备或电缆发生故障时,也仅需一个周期即可完成切换。因此,即使是针对运动控制要求的应用,电缆出现故障时也不会有任何问题

图10:带标准从站的低耗费电缆冗余

2.3.8 安全性

不管是使用硬件还是使用专用的安全总线系统,传统观念总是认为,自动化网络应与安全功能相分离。但EtherCAT所实现的安全功能可以在同一网络中将安全相关的通讯和控制通讯融合为一体。安全协议基于EtherCAT应用层,不受低层协议的影响,并遵循IEC61508 标准认证,满足安全集成级(SIL)4的要求。数据长度可以变化的,因此该协议既完全适合于安全 I/O 数据,也适合于安全驱动技术。和其它EtherCAT数据一样,安全数据可以通过无安全功能的路由器或网关实现路由。

2.3.9 EtherCAT实现CANopen(CoE)

CANopen设备和应用行规广泛用于多种设备类别和应用,如I/O组件、驱动、编码器、比例阀、液压控制器,以及用于塑料或纺织行业的应用行规等。EtherCAT 可以提供与CANopen机制[7]相同的通讯机制,包括对象字典、PDO(过程数据对象)、SDO(服务数据对象),甚至于网络管理。因此,在已经安装了CANopen的设备中,仅需稍加变动即可轻松实现EtherCAT,绝大部分的CANopen固件都得以重复利用。并且,可以选择性地扩展对象,以便利用EtherCAT所提供的巨大带宽。

2.3.10 EtherCAT实现伺服驱动(SoE)

SERCOS interface TM是全球公认的、用于高性能实时运行系统的通讯接口,尤其适用于运动控制的应用场合。用于伺服驱动和通讯技术的SERCOS框架属于IEC 61491标准[8] 的范畴。该伺服驱动框架可以轻松地映射到 EtherCAT中,嵌入于驱动中的服务通道、全部参数存取以及功能都基于EtherCAT邮箱(参见图11)。在此,关注焦点还是EtherCAT与现有协议的兼容性(IDN的存取值、属性、名称、单位等),以及与数据长度限制相关的扩展性。过程数据,即形式为AT和MDT的SERCOS数据,都使用EtherCAT从站控制器机制进行传送,其映射与SERCOS 映射相似。并且,EtherCAT从站的设备状态也可以非常容易地映射为SERCOS协议状态。

图11:同时并存的多个设备行规和协议

2.3.11 EtherCAT实现以太网(EoE)

EtherCAT技术不仅完全兼容以太网,而且在“设计”之初就具备良好的开放性特征——该协议可以在相同的物理层网络中包容其它基于以太网的服务和协议,通常可将其性能损失降到最小。对以太网的设备类型没有限制,设备可通过交换机端口在EtherCAT段内进行连接。以太网帧通过EtherCAT协议开通隧道,这也正是VPN、 PPPoE (DSL) 等因特网应用所普遍采取的方法。EtherCAT网络对以太网设备而言是完全透明的,其实时特性也不会发生畸变(参见图12)。

工业以太网交换机应用解决方案

工业以太网交换机应用解决方案

目录 前言 (3) 应用解决方案 (4) 数字化变电站S OLUTION (4) 电力信息采集S OLUTION (5) 高速公路隧道监控系统S OLUTION ..................................................................... 错误!未定义书签。高速公路通信系统S OLUTION.. (9) 智能轨道监控系统S OLUTION (10)

前言 早期的工业网络,大部分注重的是工业交换机的电气、物理、结构等特性。现在的工业网络,除了对以往硬件条件的规范外,随着其向智能、灵活、高效的方向发展,对网管、环网切换、冗余、QoS、路由等软件特性也越来越看重。 上海数据通信有限公司所推出的系列工业交换机产品,不仅在产品元器件、原材料的选择上严格遵照工业级标准,而且在软件功能的丰富性、完善性上面确立了诸多优势。 公司成立于1994年,十多年来一直致力于传统商用及军用路由交换机等产品的自主研发生产。产品涵盖接入、汇聚、核心全系列路由器和交换机、工业/电力EPON、无线AP 及AC控制等领域,主要应用在金融、政府、军队、运营商等行业。依托公司在数据通信产品方面多年的开发经验,我司的工业交换机产品系列传承了丰富的技术积累,主要体现在功能完善、稳定,网络管理软件界面友好、功能强大、自动检测二层环路拓扑、环网切换等功能。 作为一个在通信领域耕耘数十年、以产品开发和产品质量见长的通信公司,我们根据工业领域的应用特征,针对一系列用户所关注的技术问题进行了仔细的研究和攻关,如环网切换时间确保小于50ms、有效的组播转发、广播风暴的抑制、准确的流量控制、长时间的工作在宽温范围、防电磁干扰、防尘防震等等。 工业交换机在电力、交通、能源等工业领域提供了完善的解决方案。未来,我们将继续专注于工业自动化领域,不断延伸产品研发和应用,努力向技术深度、应用广度两个方面发展。

万兆技术及万兆网络设计

万兆技术及万兆网络设 计 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

万兆技术及万兆网络设计 摘要:本文主要参考了万兆技术的发展,万兆技术的优势和应用特点,分析了万兆技术在校园网网络建设中的需求,阐述了构建万兆园区网的主要架构,并描述和万兆网络布线相关的经验。 关键词:万兆万兆网络 一、万兆技术的出现 目前应用最为广泛的以太网技术最早出现于1973年,当初的速率只有3M,后来陆续出现了10M、100M、1000M、10G的以太网技术,在30多年的时间里,以太网技术得到了飞速的发展,增长了3千多倍,推动了各行业信息化的突飞猛进。 2002年6月份,万兆以太网技术基于光纤传输的第一个标准IEEE 获得了通过。这个统一的标准,使用户在选择时不必再担心厂商之间的产品不能兼容的问题,大大规范了产商之间的竞争。其最终对万兆以太网技术发展的促进意义,是显而易见的。目前,包括锐捷网络、Cisco、华为3Com等公司在内的多家厂商已推出多款万兆以太网交换机产品,成就了今天以太网技术的全新局面。万兆以太网采用了以太网媒体访问控制(MAC)协议、以太网帧格式,保留以太网的最大帧长和最小帧长。万兆以太网是以太网在速度和距离方面的进化,定义了广域网和局域网两种物理层,是一种只采用全双工的技术。 二、万兆以太网的技术特色和应用特征 1、从技术角度分析,万兆以太网具有以下特色: 首先,万兆以太网相对于以往代表最高适用度的千兆以太网拥有着绝对的优势和特点。其技术特色首先表现在物理层面上。万兆以太网是一种只采用全双工与光纤的技术,

其物理层(PHY)和OSI模型的第一层(物理层)一致,它负责建立传输介质(光纤或铜线)和MAC层的连接,MAC层相当于OSI模型的第二层(数据链路层)。 其次,万兆以太网技术基本承袭了以太网、快速以太网及千兆以太网技术,因此在用户普及率、使用方便性、网络互操作性及简易性上皆占有极大的引进优势。在升级到万兆以太网解决方案时,用户不必担心既有的程序或服务是否会受到影响,升级的风险非常低,同时在未来升级到100G都将是很明显的优势。 第三,万兆标准意味着以太网将具有更高的带宽(10GB)和更远的传输距离(最长传输距离可达80公里)。 第四、在企业网中采用万兆以太网可以最好地连接企业网骨干路由器,这样大大简化了网络拓扑结构,提高网络性能。 第五、万兆以太网技术提供了更多的更新功能,大大提升QoS,具有相当的革命性,因此,能更好的满足网络安全、服务质量、链路保护等多个方面需求。 最后,随着网络应用的深入,WAN/MAN与LAN融和已经成为大势所趋,各自的应用领域也将获得新的突破,而万兆以太网技术让工业界找到了一条能够同时提高以太网的速度、可操作距离和连通性的途径,万兆以太网技术的应用必将为三网发展与融和提供新的动力。 2、万兆以太网还有十分明显的应用特征: 1、万兆以太网结构简单、管理方便、价格低廉。由于没有采用访问优先控制技术,简化了访问控制的算法,从而简化了网络的管理,并降低了部署的成本,因而得到了广泛的应用。

工业以太网的意义和应用分析

以太网技术在工业控制领域的应用及意义 随着计算机和网络技术的飞速发展,在企业网络不同层次间传送的数据信息己变得越来越复杂,工业网络在开放性、互连性、带宽等方面提出了更高的要求。现场总线技术适应了工业网络的发展趋势,用数字通信代替传统的模拟信号传输,大量地减少了仪表之间的连接电缆、接线端口等,降低了系统的硬件成本,被誉为自动化领域的计算机局域网。 现场总线的出现,对于实现面向设备的自动化系统起到了巨大的推动作用,但现场总线这类专用实时通信网络具有成本高、速度低和支持应用有限等缺陷,以及总线通信协议的多样性使得不同总线产品不能直接互连、互用和互可操作等,无法达到全开放的要求,因此现场总线在工业网络中的进一步发展受到了限制。 随着Internet技术的不断发展,以太网己成为事实上的工业标准,TCP/IP 的简单实用已为广大用户所接受,基于TCP/IP协议的以太网可以满足工业网络各个层次的需求。目前不仅在办公自动化领域,而且在各个企业的上层网络也都广泛使用以太网技术。由于它技术成熟,连接电缆和接口设备价格较低,带宽也在飞速增加,特别是快速Ethernet与交换式Ethernet的出现,使人们转向希望以物美价廉的以太网设备取代工业网络中相对昂贵的专用总线设备。 Ethernet通信机制 Ethernet是IEEE802. 3所支持的局域网标准,最早由Xerox开发,后经数字仪器公司、Intel公司和Xerox联合扩展,成为Ethernet标准。Ethernet采用星形或总线形结构,传输速率为10Mb/s,100 Mb/s,1000 Mb/s或是更高,传输介质可采用双绞线、光纤、同轴电缆等,网络机制从早期的共享式发展到目前盛行的交换式,工作方式从单工发展到全双工。 在OSI/ISO 7层协议中,Ethernet本身只定义了物理层和数据链路层,作为一个完整的通信系统,它需要高层协议的支持。自从APARNET将TCP/IP和Ethernet捆绑在一起之后,Ethernet便采用TCP/IP作为其高层协议,TCP用来保证传输的可靠性,IP则用来确定信息传递路线。 Ethernet的介质访问控制层协议采用CSMA/CD,其工作原理如下:某节点要

万兆以太网规范

百度文库-让每个人平等地提升自我 10GBase-ER 5.5.1万兆以太网规范 5.5.1万兆以太网规范 从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002 年的IEEE ,2004 年的IEEE ,2006 年的IEEE、IEEE 和2007 年的IEEE ;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。在这 10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线 (或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予 以介绍。 1 ?基于光纤的局域网万兆以太网规范 就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR 和10GBase-LX4 这六个规范。 10GBase-SR 10GBase-SR中的"SR"代表”短距离”(short range)的意思,该规范支持编码方式为 64B/66B的短波(波长为850nm)多模光纤(MMF ),有效传输距离为2?300m,要支持300m 传输需要采用经过优化的50艸线径0M3 (Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50 ^m光纤称为OM2光纤,而线径为叩的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 10GBase-LR 10GBase-LR中的"LR"代表"长距离”(Long Range)的意思,该规范支持编码方式为 64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 10GBase-LRM 10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode ),对应的标准为2006年发布的IEEE。在1990年以前安装的FDDI ?m多模光纤的FDDI网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。

以太网的技术

以太网的技术 1以太网的发展 以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。由于其简单、成本低、可扩展性强、与IP网能够很好地结合等特点,以太网技术的应用正从企业内部网络向公用电信网领域迈进。以太网接入是指将以太网技术与综合布线相结合,作为公用电信网的接入网,直接向用户提供基于IP的多种业务的传送通道。以太网技术的实质是一种二层的媒质访问控制技术,可以在五类线上传送,也可以与其它接入媒质相结合,形成多种宽带接入技术。以太网与电话铜缆上的VDSL相结合,形成EoVDSL技术;与无源光网络相结合,产生EPON 技术;在无线环境中,发展为WLAN技术。 以太网技术作为数据链路层的一种简单、高效的技术,以其为核心,与其它物理层技术相结合,形成以太网技术接入体系。EoVDSL方式结合了以太网技术和VDSL技术的特点,与ADSL和(五类线上的)以太网技术相比,具有一定的潜在优势。WLAN技术的应用不断推广,EPON技术的研究开发正取得积极进展。随着上述“可运营、可管理”相关关键技术问题的逐步解决,以太网技术接入体系将在宽带接入领域得到更加广泛的应用。 同时,以太网技术的应用正在向城域网领域扩展。IEEE802.17RPR技术在保持以太网原有优点的基础上,引入或增强了自愈保护、优先级和公平算法、OAM等功能,是以太网技术的重要创新。对以太网传送的支持,成为新一代SDH设备(MSTP)的主要特征。10G以太网技术的迅速发展,推动了以太网技术在城域网范围内的广泛应用,WAN接口(10Gbase-W)的引入为其向骨干网领域扩展提供了可能。 随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mbps光缆的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BASE-TX、100BASE-T4、MⅡ、中继器、全双工等标准进行了研究。1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。 快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双

工业以太网的特色技术及其应用选择

工业以太网的特色技术及其应用选择 发布时间:2007-05-15 浏览次数:105 | 我要说几句 | ?? 用户解决方案2012优秀论文合订本 ?? NIDays2012产品演示资料套件 ?? 《提高测量精度的七大技巧》资源包 ?? LabVIEW 2012评估版软件 关键词:工业以太网实时特色技术 编者按:工业以太网成为自动化领域业界的技术热点已有时日,其技术本身尚在发展之中,还没有走向成熟,还存在许多有待解决的问题。究竟什么是工业以太网,它有哪些特色技术,如何应用与选择适合自己需求的工业以太网技术与产品,依然是今天人们所关心的问题。 一什么是工业以太网 工业以太网技术,是以太网或者说是互联网系列技术延伸到工业应用环境的产物。前者源于后者又不同于后者。以太网技术原本不是为工业应用环境准备的。经过对工业应用环境适应性的改造,通信实时性改进,并添加了一些控制应用功能后,形成了工业以太网的技术主体。因此,工业以太网是一系列技术的综称。 二工业以太网涉及企业网络的各个层次

企业网络系统按其功能划分,一般称为以下三个层次:企业资源规划层(Enterprise Resource Plan NI ng, ERP)、制造执行层(Manufacturing Excurtion System, MES)和现场控制层(Field Control System,FCS)。通过各层之间的网络连接与信息交换,构成完整的企业信息系统。( 见图1) 图中的ERP与MES功能层属于采用以太网技术构成信息网络。这个层次的工业以太网,其核心技术依然是信息网络中原本的以太网以及互联网系列技术。工业以太网在该层次的特色技术是对其实行的工业环境适应性改造。而现场控制层FCS中,基于普通以太网技术的控制网络、实时以太网则属于该层次中工业以太网的特色技术范畴。可以把工业以太网在该层的特色技术看作是一种现场总线技术。除了工业环境适应性改造的内容之外,通信实时性、时间发布与同步、控制应用的功能与规范,则成为工业以太网在该层次的技术核心。

关于万兆以太网标准

万兆以太网标准 关于万兆以太网标准 万兆以太网物理层规格 在IEEE 802.3ae中定义了万兆以太网物理层规格(PHY)和支持光模块,如下图所示(左)。在以太网标准中,光模块被正式定义为一种物理媒体依赖接口(PMD)。右图显示了PMD、PHY和MAC(媒体访问控制)在交换路由器板卡上的逻辑设计。万兆以太网MAC(右图)在服务接口(向PHY)以 10Gb/s的速率运行,在MAC PHY层之间适应速率,通过调试Inter-Packet Gaps (IPG)以适应LAN PHY和WAN PHY的略有不懂的数据速率。速率适应机制在IEEE 802.3ae中叫做Open Loop Control。 Stack Diagram of 10GE PHYS & PMDs Typical Switch Card Layout 万兆以太网物理层规格(PHY)为: 连续LAN PHY 连续物理层由64b/66b多媒体数字信号编解码器(译码/解码)配置和serializer/deserializer (SerDes)组成。64b/66b多媒体数字信号编解码器配置是执行包描绘的块状编码配置。SerDes为连续光模块或PMD,在传送器上将16- bit并行数据路径(每个644 Mb/s)排序到一个10.3Gb/s的连续数据流,并将一个10.3Gb/s的连续数据流去序列化到16-bit并行数据路径(每个 644Mb/s)。 连续WAN PHY 连续WAN PHY由WAN接口子层(WIS)、64b/66b多媒体数据信号编解码器配置(与上文描述一样)、和SerDes组成,SerDes也与上文描述一样,除了连续数据流的速度为9.95Gb/s(OC-192),每个16-bit并行数据路径为622Mb/s。WIS为SONET framing和X7+ X6 + 1 scrambling专门设计。与SONET OC-192

千兆以太网技术与应用

千兆以太网技术与应用 1. 简介 于1998年6月通过的IEEE 802.3z千兆比以太网标准描述了用于一个通用链路编码且可进行1000Mb/s 传输的3个物理层接口(1000BASE-SX、1000BASE-LX和1000BASE-CX)。1000BASE-SX、 1000BASE-LX接口采用光纤作为介质时,最远传输距离可达5000米,因而可应用于建筑物内或校园主干网络。 1000BASE-CX接口计划用于限制在25米内的计算机房内的连接。 IEEE 802.3ab千兆比以太网标准于1999年6月通过认证,它描述了用于不同线路编码的附加物理层接口(1000BASE-T)。 1000BASE-T接口通过5类非屏蔽双绞线(UTP)介质传输的最远距离可达100米,并主要应用于面向桌面的网络连接。 在1999年3月,一个IEEE 802.3研究小组正式成立,主要致力于发展通过光纤介质传输万兆比以太网的标准。 2. 铜缆布线系统 事实上,所有采用结构化综合布线系统的建筑物都有双绞线铜缆水平子系统,用于连接每一层的通讯配线间和墙上的信息出口。而这些布线系统的安装大部分都采用5类产品,所以1000BASE-T是设计应用于5类布线系统的。 1000BASE-T采用一根电缆中的所有4对线来传输,每对线的有效传输速率为250Mb/s,以此完成全双工传输。为了应用于5类带宽的布线系统,1000BASE-T 采用5级编码传输,而接收器采用数字信号处理(DSP)技术以减少来自布线系统中反射和近端串音干扰(NEXT)的影响。 应用于1000BASE-T的布线系统要求包括原5类系统未描述的附加的传输性能,如ELFEXT(等电平远端串扰)和回路损耗。这可由经强力推荐的最新专业测试仪测试、认可,多数已安装的5类布线系统能够支持1000BASE-T来证实。 ---https://www.wendangku.net/doc/7913091534.html,(学电脑) 1000BASE-T布线系统的规范将反馈到随ANSI/TIA/EIA的发展而形成的新的规程中。“4对100欧姆5类布线系统的附加传输性能参数”有望于今年年底由TSB-95颁布。 ANSI/TIA/EIA还发布了一篇说明“4对100欧姆增强型5类布线系统的传输性能参数”的草案,现在已是第12稿,预计作为ANSI/TIA/EIA568A标准的附录5在今年年底颁布。该草案同TSB-95的描述类似,但回路损耗和NEXT性能指标好2dB~3dB。 ANSI建议新的布线安装至少应满足增强型5类布线性能要求。

以太网在传输网络中的应用

以太网在传输网络中的应用 摘要:随着以太网的发展,带宽从最初的2Mbps增长到目前的10Mbp,已经增长了千倍以上,对现有的SDH 网络要求越来越高,如何满足用户带宽和网络稳定性要求成为当务之急。本文阐述了基于SDH的以太网业务的传送方式、传送功能和组网方式,并且举例说明了各种组网方式。针对我公司发展现状,结合实际工作,分析了以太网业务对我们在激烈的电信市场竞争中的重要性。 关键词:以太网业务 SDH VCTRUNK 近年来,通信网络技术因与以因特网为代表的计算机网络技术相结合而飞速发展,随着因特网的发展,电子商务、视频点播、网络生活等的需求不断地增长,使得全球范围内的数据业务量迅猛增长,互联网的用户数呈现指数增长的规律,对带宽的需求永无止境。与此同时,作为基础传送网的SDH,其关键技术也在不断进步,新的SDH设备具有高集成度、对ADM 集成和灵活的业务调度能力、多业务传送能力、智能化管理的特点,它采用灵活可变的带宽来适应以太网业务的实际传送。SDH将在业务汇聚层起到协议透明传输和带宽管理的作用,很好地发挥现有网络的功能,配置和控制带宽,动态地从包交换和TDM业务中直接分配带宽,提供逐渐增长的数据带宽。 一、基于SDH的以太网业务传送 1.基于SDH的以太网业务传送方式 传统的SDH传送网络主要针对语音业务,缺乏面对指数型增长的带宽需求和以IP数据为主流的网络所需的扩展性和灵活性。同时,在可预见的未来,面向TDM业务的SDH传输体制将继续存在。但数据业务的增长使得业务提供商和运营商们正在寻求一种方案,从现有的静态TDM复用时代过渡到动态IP业务网时代。 基于下一代SDH的多业务传输平台灵活可变的带宽来适应以太网业务实际传送带宽变化范围大的需求通常采用的方式有两种:一种是采用ML-PPP,灵活捆绑多个VC-12/VC-3通道传送以太网帧;另一种方式是采用多个VC-12/VC-3、VC-4级联或虚级联通道来传送。因为虚级联可以兼容传统的SDH网络,从而得到广泛的应用。 2.基于SDH的以太网业务传送功能 1.1透明传输功能 以太网业务透明传送功能是指将来自以太网接口的信号不经过以太网交换,直接映射到SDH的虚荣器(VC)中,然后通过SDH设备进行点到点的传送。 基于SDH的具备以太网业务透明传送功能的业务传送设备必须具备以下功能: ⑴链路带宽可配置。 ⑵接收的正常数据帧必须能完整的映射到虚容器中,应保证以太网业务的透明性,包括以太网MAC帧、VLAN标记等的透明传送。 ⑶以太网数据帧的封装应采用PPP协议或者LAPS协议和GFP协议。 ⑷数据帧可以采用ML-PPP协议封装或采用VC通道的连续级联或虚级联映射来保证数据帧在传输过程中的完整性。

万兆以太网技术

万兆以太网技术

目录 1.基于光纤的局域网万兆以太网规范 (1) 2.基于双绞线(或铜线)的局域网万兆以太网规范 (2) 3.基于光纤的广域网万兆以太网规范 (3) 4.万兆以太网物理层规格 (4) 4.1万兆以太网物理层规格(PHY) (4) 4.2相关物理介质层(PMD) (7)

万兆以太网技术 万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq和2007年的IEEE 802.3ap。在规范方面,总共有10多个,总共可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予以介绍。 1. 基于光纤的局域网万兆以太网规范 目前,基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。 (1)10GBase-SR 10GBase-SR中的“SR”代表“短距离”(short range)的意思,该规范支持编码方式为64B/66B 的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 (2)10GBase-LR 10GBase-LR中的“LR”代表“长距离”(Long Range)的意思,该规范支持编码方式为64B/66B 的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 (3)10GBase-LRM 10GBase-LRM中的“LRM”代表“长度延伸多点模式”(Long Reach Multimode),对应的标准为2006年发布的IEEE 802.3aq。在1990年以前安装的FDDI 62.5μm多模光纤的FDDI网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。 (4)10GBase-ER 10GBase-ER中的“ER”代表“超长距离”(Extended Range)的意思,该规范支持超长波(1550nm)单模光纤(SMF),有效传输距离为2m到40km。 (5)10GBase-ZR 几个厂商提出了传输距离可达到80km超长距离的模块接口,这就是10GBase-ZR规范。它使用的也是超长波(1550nm)单模光纤(SMF)。但80km的物理层不在EEE 802.3ae标准之内,是厂商自己在OC-192/STM-64 SDH/SONET规范中的描述,也不会被IEEE 802.3工作组接受。 (6)10GBase-LX4 10GBase-LX4采用波分复用技术,通过使用4路波长统一为1300 nm,工作在3.125Gb/s的分离光源来实现10Gb/s传输。该规范在多模光纤中的有效传输距离为2~300m,在单模光纤下

万兆以太网规范

5.5.1 万兆以太网规范 5.5.1 万兆以太网规范 从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq 和2007年的IEEE 802.3ap;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。在这10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予以介绍。 1.基于光纤的局域网万兆以太网规范 就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。 10GBase-SR 10GBase-SR中的"SR"代表"短距离"(short range)的意思,该规范支持编码方式为 64B/66B的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 10GBase-LR 10GBase-LR中的"LR"代表"长距离"(Long Range)的意思,该规范支持编码方式为 64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 10GBase-LRM 10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode),对应的标准为2006年发布的IEEE 802.3aq。在1990年以前安装的FDDI 62.5?m多模光纤的FDDI 网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。 10GBase-ER

网络技术与应用的作业及答案

《网络技术与应用》第一次作业:(本次作业包括教学大纲的1-2 章) 一、填空题 1. 从逻辑上看,计算机网络是由通信子网和终端系统组成。 2. 通信协议的三要素是语法、语义和同步。 3. 按照网络作用范围,计算机网络分为局域网、城域网、广域网、区域个人 网和因特网。 4. 在OSI 参考模型中,传输的基本单位是帧的层次是数据链路层,该模型的 最高层是应用层。 二、单项选择题 1. 在OSI 参考模型中,自下而上第一个提供端到端服务的层次是( C )。 (A )数据链路层(B)网络层(C)传输层(D)应用层 2. 若网络形状是由站点和连接站点的链路组成的一个闭合环,则称这种拓扑结构为( C )。(A )星形拓扑(B )总线拓扑(C)环形拓扑(D)树形拓扑 3. 在OSI 参考模型中,物理层的主要功能是( B )。 (A )数据链路的访问控制和管理(B )透明地传输比特流 (C )在物理实体间传送数据帧(D )发送和接收用户数据报文 4. 下面关于计算机网络的体系结构和协议的叙述,不正确的是( B )。 (A )计算机网络体系结构是计算机网络及其部件所应完成的功能的精确定义 (B )TCP/IP 体系结构中的应用层对应于OSI 体系结构中的表示层和应用层

(C )网络协议是为进行网络中的数据交换而建立的规则、标准和约定 (D )网络协议是“水平”的概念 5. 下列选项中,不属于网络体系结构中所描述的内容是( A )。 (A )协议内部实现细节(B )网络层次(C)每一层使用协议(D )每层须完成的功能 三、综合题 1. 什么是网络协议?由哪几个基本要素组成? 答:协议是指通信双方必须遵循的、控制信息交换的规则的集合,是一套语义和语法规则, 用来规定有关功能部件在通信过程中的操作,它定义了数据发送和接收工作中必经的过程。 协议规定了网络中使用的格式、定时方式、顺序和检错。 一般说,一个网络协议主要由语法、语义和同步三个要素组成。语义:协议的语义是指对构成协议的协议元素含义的解释。语法:指数据与控制信息的结构或格式。同步:规定了事件 的执行顺序。

万兆以太网技术发展及应用

万兆以太网技术发展及应用摘要:随着互联网技术的更新与发展,万兆以太网(10GBase-T)技术将在不久的将来成为网络应用的主流,本文综合阐述了10GBase-T技术、市场及应用。应用10GBase-T铜缆布线解决方案构建高性能网络核心成为行业发展趋势。 关键字:万兆以太网802.3ae10GE标准10GBase-T铜缆布线线性传输性能 一以太网技术的发展 以太网(Ethernet)技术由施乐公司(Xerox)于1973年提出并实现,它采用“载波监听多路访问/冲突检测CSMA/CD(Carrier Sense Multiple Access/Collision Detection)”的共享访问方案,将多个工作站都连接在一条总线上,所有的工作站都不断向总线发出监听信号。但在同一时刻,只能有一个工作站在总线上传输,其它工作站必须等待传输结束后,再开始自己的传输。由于以太网技术具有共享性、开放性、加上设计技术上的一些优势(如结构简单、算法简洁、良好的兼容性和平滑升级)以及关键的传输速率的大幅提升,它不但在局域网领域站稳了脚跟,而且在城域网甚至广域网范围内都得到了进一步的应用。 最早的以太网传输速率为10Mbps。采用CSMA/CD介质访问控制方式的局域网技术,由Xerox公司于1975年研制成功。而在1979年7月至1982年间,当时的DEC、Intel和Xerox三家公司共同制定了以太网的技术规范DIX。在这个技术规范的基础上,形成了IEEE802.3以太网标准,并在1989年正式成为一种以太网技术的国际标准。在20多年中,以太网

技术经历了不断发展,成为迄今最广泛应用的局域网技术。 千兆以太网技术作为一种高速以太网技术,给用户带来了提高核心网络的有效解决方案。它继承了传统以太网技术价格便宜的特点,采用与10M 以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于这项技术可以不用改变传统以太网的桌面应用和操作系统,因此可与10M或100M的以太网很好地配合工作。在升级到千兆以太网时,不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护用户投资,所以这项技术的市场前景十分被用户看好。 再发展就进入到以太网的万兆时代。万兆以太网使用IEEE 802.3以太网介质接入控制(MAC)协议、IEEE 802.3以太网帧格式和IEEE 802.3帧格式,不需要修改以太网介质接入控制(MAC)协议或分组格式。所以,能够支持所有网络的上层服务,包括在OSI七层模型的第二/三层或更高层次上运行的智能网络服务,具有高可用性、多协议标记交换(MPLS)、含IP语音(VoIP)在内的服务质量(QoS)、安全与策略实施、服务器负载均衡(SLB)和Web高速缓存等特点。 二10GBase-T万兆以太网技术 万兆以太网技术(10GBase-T)始于2002年6月802.3ae10GE标准的正式发布。在物理层,802.3ae大致分为两种类型,一种为与传统以太网连接速率为10Gbps的“LANPHY”,另一种为连接SDH/SONET速率为9.58464Gbps的“WANPHY”;WANPHY与SONETOC-192帧结构的融合,可以与OC-192电路和SONET/SDH设备一起运行,保护了传统基础设施投资,使运营商能够在不同地区中通过城域网提供端到端以太网。

工业以太环网设计方案

工业以太环网设计方案 1.1概述 掌石沟煤业是基本实现机械化生产,具有复杂生产系统的矿井,为提高矿井的生产效率,对矿井综采工作面、顺槽胶带、主运输系统、通风机房、井下变电所等环节实施统一操作、集中监控、统一调度。各矿综合自动化系统,根据管控一体化思想,以三层网络为基础,结合自动化、信息、计算机、网络、通讯的新理论和技术,采用世界先进的自动化产品、网络产品和工业控制软件、数据库软件,将煤矿生产、管理的各个环节,统一在一个网络平台上,形成一个统一、完整的有机整体,使其在系统结构、网络通讯、自动化覆盖范围方面处于同类矿井的领先水平。 1.1.1设计综述 掌石沟煤业综合自动化控制网络系统的建设应遵循数字化、高速化、智能化、标准化、安全可靠、易扩充升级的原则进行设计,同时充分考虑公司综合自动化系统总体规划和综合自动化系统网络建设的现状。 对于掌石沟煤业工业综合自动化平台网络系统,在井上和井下设置的高速以太环网,主链路采用千兆光纤。在核心层采用千兆工业以太网技术,通过千兆链路将各环网的交换设备连接到网络系统的核心层次,同时具备高冗余性能。 各环网结点主要是连接结点交换机附近的工业设备,以达到控制和信息采集的目的信息层:建设信息管理网,采用标准TCP/IP协议和以太网技术。实现矿区各个管理部门的网络连接,实现人、财、物以及工程项目管理的综合自动化,能对煤炭的生产状况进行实时监视,为管理决策提供依据。

控制层:建设综合自动化控制网,采用工业以太环网+现场工业总线来实现,实现 将井上和井下区域控制器和设备监控站所采集的信息和控制信号传送给有关系统。 设备层:在设备控制层主要是煤矿各专业控制子系统。 1.2控制层网络设备的技术与产品选型 本方案将采用基于以太网TCP/IP的工业以太网技术,传输介质采用层绞式矿用阻燃型光缆,网络结构采用基于光纤工业以太网的环形架构。 1.2.1技术选择 现代煤矿的生产监控管理系统中往往使用到多家厂商提供的多种不同类型的设备,为 了达到方便管理,保证系统运行稳定的目的,必须选择一个开放的通信平台,并将各种不同类型设备的通信统一到这一标准通信平台之上。为保证良好的兼容性和可扩充性,建议使用以太网TCP/IP技术作为整个系统的通信标准。如有其他类型的通信格式,如RS232 RS485或其他专用通信接口等等,均可通过协议网关转换为以太网信息包,在IP网络上进行传送。以太网TCP/IP技术具有以下的优势: 随着企业的发展、各种新技术的应用,可以预见,对网络的带宽要求也会越来越高, 比如基于网络的视频监控传输应用和井下设备信息数据采集等都需要进行大量数据的传输。 以太网技术具有相当高的数据传输速率(目前已有成功案例应用于井下工业环境下的以太 网交换机),能提供足够的带宽; 能在同一总线上运行不同的传输协议,从而能建立企业的公共网络平台或基础构架; 支持交互式和开放的数据存取技术;沿用多年,已为众多的技术人员所熟悉,市场上能提供广泛的设置、维护和诊断工具,成为事实上的统一标准;

计算机网络 万兆以太网

计算机网络万兆以太网 随着千兆以太网的标准化以及在生产实践中的广泛应用,以太网技术逐渐延伸到城域网的汇聚层。千兆以太网通常用作将小区用户汇聚到城域节点,或者将汇聚层设备连接到骨干层。虽然以太网多链路聚合技术已完成标准化且多厂商互通指日可待,可以将多个千兆链路捆绑使用。但是考虑光纤资源以及波长资源,链路捆绑等因素,它一般只用在点内或者短距离应用环境。 为了解决由带宽及传输距离而导致以太网技术不适于用在城域网骨干/汇聚层的问题,1999年IEEE标准委员会成立了IEEE 802.3ae工作组进行研究。在2002年6月由IEEE正式发布了IEEE 802.3ae 10Gbps以太网标准,自此以太网的发展势头又进一步增强。这标志着万兆位以太网标准的统一,使用户在选择时不必再担心厂商之间的产品不能互相兼容的问题,也规范了各厂商间的竞争。目前包括华为3Com、Cisco、Avaya、Enterasys、Foundry和Riverstone 公司在内的多家厂商已经推出多款万兆位以太网交换机产品,成就了今天以太网技术的全新局面。 网络拓扑结构的设计和操作也随着智能化万兆位以太网多层交换机的推出发生了转变。比如第三层路由和第四层至第七层智能,包括服务质量(QoS)、服务级别(CoS)、高速缓存、服务器负载均衡、安全性和基于策略的网络功能。万兆以太网的主要特点包括以下几个方面。 ●保留802.3以太网帧格式; ●保留802.3以太网的最大帧长和最小帧长; ●只使用全双工工作模式,彻底改变了传统以太网的半双工广播工作模式; ●使用光纤作为传输媒体,已不再适用铜缆; ●使用点对点链路,支持星型结构的LAN; ●数据传输率非常高,不直接和端用户相连; ●制定了新的光物理媒体相关(PMD)子层; ●与SONET OC-192帧结构的融合,可以与OC-192电路和SONET/SDH设备仪器运行。

万兆以太网技术

‘农业网络信息》2007年第11期一蝽与电子商务/政务 万兆以太网技术 王树广 山东理工大学网络中心,山东淄博255049) 摘要:奉文舟绍了当前阿摧电最新技术一万兆旺太厨。文章详细说明了万兆以太两标准lEEE8023鹏的主要内客、万兆以太网的应用以;阿时也介绍7万兆以太网的铜癌标准。 美键词:以太网;万晃以太网;局域网;广蛾网;物理层 中圈分类号:TP399文献标识码:B文章编码:1672-625112007}11—0098—03 10GE山ern“ WANGshu—gIl蛳g (sl画一gu血哪酊0f‰h叫。盯,zib0255049,chiM) ^b咖cl:11liB删cleimrodu哪岫l岫ln咖Ⅲktec洲唧一10cm唧eL‰枷de慨plai哪‰m且in删删0flEEE8023胛,tlleap一;c出∞0f10GElhem吐hd豳吐‰oopp肝c出es诅nd埘面丑l吕oi曲甜u∞也 E时woIds:E山唧H;10GE血唧一;L衄dⅢ札n咖ork;Wide删nn珊Ik;Pll撺i脚hy盯 1IEEE802.3∞标准的诞生 2002年6月12日.IEEEE终于批准了10c以太网的标准802.3ae一万兆位,秒的媒体接人控制参数、 物理层和管理参数。802.3ae的批准进一步确定了以太网在未来局域网的霸主地位。也使得以太网未来在城域网、广域网中将占有重要的一席之地。自1973年施乐公司开发出以太网.以太网从粗缆的10B船e5到细缆的10BaBe2.再到双绞线10B鹳e—T.又到五类线的100B衄e—1x。随后又出现了现在还未来得及大面积使用的千兆以太网1000BaBe_Sx、100Ba8e—u、1000Ba∞一T。以太网在过去的30年中击败了TokenRiIlg和FDDI.成为局域冈的首选。万兆网的出现叉开创了以太网的新纪元。IEEE8023.耻是由3C哪、CiBco、Ex骶Ⅱ坨、Intel、Nonel、slln等组成的10cEA(万兆以太网联盟)创立的。我国的中兴、华为等公司也是10GEA的戚员,这对我国高速局域网的发展起了重要的作用。 2IEEE802.3ae标准的主要内容 2.1万兆以太网的主要技术特点 保留802.3以太网的帧格式;保留802.3以太网的最大帧长和最小帧长;使用光纤作为传输媒体(丽不使用铜线);只使用全双工工作方式,彻底改变了传统以太网的半双工的广播工作方式;使用点对点链路,支持星形结构的局域网;数据率非常高,不直接和端用户相连;创造了新的光物理媒体相关(PMD)子层。 2.2万兆以太网的模型 万兆以太网属于以太网,但它是一种只适用于全双工模式并且只能使用光纤的技术.所以它不需要带有冲突检测的载波侦听多路访问协议(csMA/cD)。除此之外,万兆以太网与原来的噬太网模型完全相同。其模型如图1。在以太网中.PHY表示以太网的物理层设备。它对应于OsI模型的第一层。PHY通过连接介质(光纤或铜线)与MAC层相连,而MAC层对应的是OsI模型中的第二层。在万兆以太网的体系结构中。PHY(第一层)进一步划分为物理介质相关层(PMD)和物理编码子层(PCS)。万兆以太网有两种不同的物理层:局域网物理层和广域网物理层.这两种物理层的数据率并不一样。局域网物理层使用简单的编码机制传送数据。而广域网物理层则需要增加一个s0N明ysDH组帧子层(wIs层),以便利用sONE鹏DH作为第一层来传送数据。 PMD(Phy8icalMediumDependent)子层:PMD子层的功能是支持在PMA子层和介质之间交换串行化的符号代码位,PMD子层将这些电信号转换成适合于在某种特定介质上传输的形式。PMD是物理层的最低子 杖稿日期:2007埘埘 作者筒舟:王树广(1968一),男,工程师,研究方向卅算机罔络和信息系统。 一98—

关于万兆以太网交换机的一些知识

万兆以太网作为最新以太网技术,不仅是以太网的“高速翻版”,更是从私有网 络到公众网络的融合。作为网络的核心设备,万兆以太网交换机需要满足更高的需求。 近年来,从局域网到城域网,从城域网到广域网,以太网技术以惊人的速度正占 据着越来越多的市场,尤其在企业网络和运营商网络中,以太网技术越来越多地成为 毫无争议的选择。从快速以太网到千兆以太网,再到万兆以太网,技术上的更新满足 了新一代互联网技术所带来的高速带宽增长和新一代应用的需求。 应市场及广大用户的需求,丰润达首次推出48口万兆以太网交换机,性能超群,相当于4~6台普通交换机进行集群的容量,并且能够达到更高的可靠性,零延迟、零丢包,无论是大型网吧还是大型企业,均能满足其组网及接入需求。 大家知道,用户购买万兆以太网交换机,是因为需要能够在任何情况下线速处理 数据包的转发,需要能够处理新一代的互联网应用,同时也需要交换机能够提供最好 的投资保护、能够占用最少的机架空间、能够尽量地节省电量、能够看得见用户的流 量等。 很显然,千兆交换机不能容纳大容量万兆端口的线速转发,目前的千兆交换机只 能够提供几十到几百个G的吞吐量,而新一代的万兆交换机能够提供每秒处理一千个 G以上的吞吐。万兆交换机不仅应该提供大容量的背板交换矩阵,还应该提供大容量 的本地交换矩阵,无阻塞的并行交换矩阵是目前最为先进的技术。 衡量万兆以太网交换机时要测试哪些方面 首先是测试它是否能够达到线速转发的吞吐量,同时观察端到端的传输延迟,一 台优秀的万兆交换机应该能够在加载关键应用的前提下(如组播应用、IPv6 应用、大容量访问列表控制),线速无阻塞地转发数据包,并且保证端到端的数据延迟尽可能 地小。 其次,衡量万兆交换机还需通过测试关键协议,如BGP4的容量、路由收敛和路 由震荡来检验,测试针对攻击的防范特性、测试流量管理的关键特性。冗余性的测试 也非常重要,冗余性包含硬件系统的冗余性和软件特性的冗余性。 可以说,选择万兆以太网交换机不仅仅是几个单项功能的选择,更是一项全面评 估的系统选择。丰润达万兆以太网交换机正好满足上面指标,是转发性能优异、且低 碳节能环保全新交换机。

相关文档
相关文档 最新文档