文档库 最新最全的文档下载
当前位置:文档库 › 精密计量泵的基本原理及其控制方法

精密计量泵的基本原理及其控制方法

精密计量泵的基本原理及其控制方法
精密计量泵的基本原理及其控制方法

精密计量泵的基本原理及其控制方法

一、概述

作为流体精密计量与投加的理想设备,计量泵如今已被广泛地应用于包括制、食品饮料和石油化工行业在内的各个领域,在工艺过程担负着强腐蚀性、毒害性、高粘性和高压介质的计量添加任务。经过超过半个世纪的实践应用和技术改进,现在计量泵已经进入其高速增长期。现在,成熟的动力驱动方式和液体输送端(泵头)材料技术使得新型计量泵几乎可以完成输送任何常规和特殊介质的要求,其工作压力和容量亦能满足工业生产的绝大多数要求。随着人们对生产工艺过程指标和自动化程度要求的普遍提高,作为化学药剂计量和添加环节的最终执行机构,计量泵的安全性和可控制性变得日益重要起来。石油化工等行业向来以生产过程的高度自动化而著称,也是集散式、分布式和智能式计算机控制系统应用最广泛的领域之一,因而要求与之相配套的执行器——计量泵亦要具备灵活多样的控制模式,可以方便地与计算机系统构成各种控制回路,实现更复杂更精确的过程控制。为顺应这一新的趋势,国际上著名的计量泵制造商如德国普罗名特公司在保证其产品传统性能继续领先世界的同时,借助于嵌入式微处理器系统,将多种调节控制功能和数据通讯协议整合到计量泵中,真正实现了从冲程频率到冲程长度的双维调节,使其产品成为世界首创的智能精密计量泵。

二、计量泵的基本工作原理

众所周知,计量泵主要由动力驱动、流体输送和调节控制三部分组成。动力驱动装置经由机械联杆系统带动流体输送隔膜(活塞)实现往复运动:

隔膜(活塞)于冲程的前半周将被输送流体吸入并于后半周将流体排出泵头;所以,改变冲程的往复运动频率或每一次往复运动的冲程长度即可达至调节流体输送量之目的。精密的加工精度保证了每次泵出量进而实现被输送介质的精密计量。

因其动力驱动和流体输送方式的不同,计量泵可以大致划分成柱塞式和隔膜式两大种类。

2.1、柱塞式计量泵

主要有普通有阀泵和无阀泵两种。柱塞式计量泵因其结构简单和耐高温高压等优点而被广泛应用于石油化工领域。针对高粘度介质在高压力工况下普通柱塞泵的不足,一

种无阀旋转柱塞式计量泵受到愈来愈多的重视,被广泛应用于糖浆、巧克力和石油添加剂等高粘度介质的计量添加。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式计量泵在高防污染要求流体计量应用中受到诸多限制。

2.2、隔膜式计量泵

顾名思义,隔膜式计量泵利用特殊设计加工的柔性隔膜取代活塞,在驱动机构作用下实现往复运动,完成吸入-排出过程。由于隔膜的隔离作用,在结构上真正实现了被计量流体与驱动润滑机构之间的隔离。高科技的结构设计和新型材料的选用已经大大提高了隔膜的使用寿命,加上复合材料优异的耐腐蚀特性,隔膜式计量泵目前已经成为流体计量应用中的主力泵型。在隔膜式计量泵家族成员里,液力驱动式隔膜泵由于采用了液压油均匀地驱动隔膜,克服了机械直接驱动方式下泵隔膜受力过分集中的缺点,提升了隔膜寿命和工作压力上限。为了克服单隔膜式计量泵可能出现的因隔膜破损而造成的工作故障,有的计量泵配备了隔膜破损传感器,实现隔膜破裂时自动连锁保护;具有双隔膜结构泵头的计量进一步提高了其安全性,适合对安全保护特别敏感的应用场合。

作为隔膜式计量泵的一种,电磁驱动式计量泵以电磁铁产生脉动驱动力,省却了电机和变速机构,使得系统小巧紧凑,是小量程低压计量泵的重要分支。

现在,精密计量泵技术已经非常成熟,其流体计量输送能力最大可达0-100,000l/h,工作压力最高达4000 bar,工作范围覆盖了工业生产所有领域的要求。

三、计量泵的控制

计量泵每一次的流体泵出量决定了其计量容量。在一定的有效隔膜面积下,泵的输出流体的体积流量正比与冲程长度L和冲程频率F:V∝A*F*L

在计量介质和工作压力确定情况下,通过调节冲程长度L和冲程频率F即可实现对计量泵输出的双维调节。

尽管冲程长度和频率都可以作为调节变量,但在工程应用中一般将冲程长度视为粗调变量,冲程频率为细调变量:调节冲程长度至一定值,然后通过改变其频率实现精细调节,增加调节的灵活性。在相对简单的应用场合,亦可以手动设置冲程长度,仅将冲程频率作为调节变量,从而简化系统配置。

3.1、常规模拟/开关信号调节方式

过程控制应用中广泛采用0/4-20mA模拟电流信号作为传感器、控制器和执行机构间信号交换的标准,具有外控功能的计量泵亦主要采用这种方式,实现对冲程频率和冲程频率的外部调节。

位置式伺服机构是实现冲程长度调节的最普遍方法。一体化的伺服机构被设计成能够直接接受来自调节器或计算机的0/4-20mA控制信号,从而自动调节冲程长度在0-100%范围内变化。

相对而言实现冲程频率调节的方法比较多样,主要有变频电机控制和直接继电触点控制两种。经由0/4-20mA电流信号控制的变频调速器驱动计量泵电动机按所需速度运行,从而实现冲程频率的调节。对于电磁驱动和部分电机驱动的计量泵,亦可以利用外部触点信号来调节冲程频率

自适应控制综述

自适应控制文献综述 卢宏伟 (华中科技大学控制科学与工程系信息与技术研究所 M200971940) 摘要:文中对自适应控制系统的发展、系统类型、控制器类型以及国内外自适应控制在工业和非工业领域的应用研究现状进行了较系统的总结。自适应控制成为一个专门的研究课题已超过50年了,至今,自适应控制已在很多领域获得成功应用,证明了其有效性。但也有其局限性和缺点,导致其推广应用至今仍受到限制,结合神经网络、模糊控制是自适应控制今后发展的方向。 关键字:自适应控制鲁棒性自适应控制器 1.自适应控制的发展概况 自适应控制系统首先由Draper和Li 在1951年提出,他们介绍了一种能使性能特性不确定的内燃机达到最优性能的控制系统。而自适应这一专门名词是1954年由Tsien在《工程控制论》一书中提出的,其后,1955年Benner 和Drenick也提出一个控制系统具有“自适应”的概念。 自适应控制发展的重要标志是在1958午Whitaker“及共同事设计了一种自适应飞机飞行控制系统。该系统利用参考模型期望特性和实际飞行特性之间的偏差去修改控制器的参数,使飞行达到最理想的特性,这种系统称为模型参考自适应控制系统(MRAC系统)。此后,此类系统因英国皇家军事科学院的Parks利用李稚普诺夫(Lyapunov)稳定性理论和法国Landau利用Popov 的超稳定性理论等设计方法而得到很大的发展,使之成为—种最基本的自适应控制系统。1974年,为了避免出现输出量的微分信号,美国的Monopli 提出了一种增广误差信号法,因而使输入输出信号设汁的自适应控制系统更加可靠地应用与实际工程中。 1960年Li和Wan Der Velde提出的自适应控制系统,他的控制回路中用一个极限环使参数不确定性得到自动补偿,这样的系统成为自振荡的自适应控制系统。 Petrov等人在1963年介绍了一种自适应控制系统,它的控制数如有一个开关函数或继电器产生,并以与参数值有关的系统轨线不变性原理为基础来设计系统,这种系统称为变结构系统。 1960到1961年Bellman和Fel`dbaum分别在美国和苏联应用动态规划原理设计具有随机不确定性的控制系统时,发现作为辨识信号和实际信号的控制输入之间存在对偶特性,因而提出对偶控制。 Astrom和Wittenmark对发展另一类重要的自适应控制系统,即自校正调节器(STR)作出了重要的贡献。这种调节器用微处理机很容易实现。这一有创见的工作得到各国学者普遍的重视,并且把发展各种新型的STR和探索新的应用工作推向新的高潮,使得以STR方法设计的自适应控制系统在数量上迢迢领先。在这些发展中以英国的Clarker和Gawthrop在1976年提出的广义最小方差自校正控制器最受重视。它克服了自校正调节器不能用于非最小相位系统等缺点。为了既保持自校正调节器实现简单的优点,又有拜较好的

计量泵的工作原理

计量泵 众所周知,计量泵主要由动力驱动、流体输送和调节控制三部分组成。动力驱动装置经由机械联杆系统带动流体输送隔膜(活塞)实现往复运动: 隔膜(活塞)于冲程的前半周将被输送流体吸入并于后半周将流体排出泵头;所以,改变冲程的往复运动频率或每一次往复运动的冲程长度即可达至调节流体输送量之目的。精密的加工精度保证了每次泵出量进而实现被输送介质的精密计量。 因其动力驱动和流体输送方式的不同,计量泵可以大致划分成柱塞式和隔膜式两大种类。 2.1、柱塞式计量泵 主要有普通有阀泵和无阀泵两种。柱塞式计量泵因其结构简单和耐高温高压等优点而被广泛应用于石油化工领域。针对高粘度介质在高压力工况下普通柱塞泵的不足,一种无阀旋转柱塞式计量泵受到愈来愈多的重视,被广泛应用于糖浆、巧克力和石油添加剂等高粘度介质的计量添加。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式计量泵在高防污染要求流体计量应用中受到诸多限制。 2.2、隔膜式计量泵 顾名思义,隔膜式计量泵利用特殊设计加工的柔性隔膜取代活塞,在驱动机构作用下实现往复运动,完成吸入-排出过程。由于隔膜的隔离作用,在结构上真正实现了被计量流体与驱动润滑机构之间的隔离。高科技的结构设计和新型材料的选用已经大大提高了隔膜的使用寿命,加上复合材料优异的耐腐蚀特性,隔膜式计量泵目前已经成为流体计量应用中的主力泵型。在隔膜式计量泵家族成员里,液力驱动式隔膜泵由于采用了液压油均匀地驱动隔膜,克服了机械直接驱动方式下泵隔膜受力过分集中的缺点,提升了隔膜寿命和工作压力上限。为了克服单隔膜式计量泵可能出现的因隔膜破损而造成的工作故障,有的计量泵配备了隔膜破损传感器,实现隔膜破裂时自动连锁保护;具有双隔膜结构泵头的计量进一步提高了其安全性,适合对安全保护特别敏感的应用场合。 作为隔膜式计量泵的一种,电磁驱动式计量泵以电磁铁产生脉动驱动力,省却了电机和变速机构,使得系统小巧紧凑,是小量程低压计量泵的重要分支。 现在,精密计量泵技术已经非常成熟,其流体计量输送能力最大可达0-100,000l/h, 工作压力最高达4000bar,工作范围覆盖了工业生产所有领域的要求 计量泵工作原理: 1、传动端采用传统的蜗轮蜗杆减速传动,以曲柄连杆机构将圆周运动转变成十字头的直线往复运动。行程调节采用带斜槽的滑轴的直线位移。 改变偏心轮的旋转半径达到柱塞的行程长度调节。2、柱塞计量泵的柱塞密封采用填料密封,进出口阀采用双层球阀或单层蘑菇阀。 3 、隔膜计量泵的柱塞密封采用活塞环形式。 液压腔设有新型的放气安全阀、限位补偿阀、多向轧制聚四氟乙烯膜片,可配隔膜破裂报警装置。 4、隔膜泵是唯一一种非动密封及柱塞不接触介质的泵。流体通过一个液力驱动机构与介质隔开。这样可以长期工作,减少停车维修时间。 5、液力驱动隔膜的薄膜泵具有抗过载和耐真空性(汽蚀性)。例如,如果泵内压力超过许用压力。 液力端的限压阀自动地打开调节泵内压力。 使泵受到安全保护。 计量泵也叫定量泵或比例泵,英文名字:metering pump 。计量泵是作为流体精密计量与投加的理想设备,它可以满足各种严格的工艺流程需要,工作流量在1-100%范围内可以无级调节,是用来输送液体的一种特殊容积泵,特别是输送腐蚀性液体。目前计量泵被广泛在应用到各个领域,如制药,食品加工,

自适应控制原理及应用-陈明

中国矿业大学2015 级硕士研究生课程考试 题目自适应控制原理及应用 学生姓名陈明 学号TS15060128A3 所在院系信息与电气工程学院 任课教师郭西进 中国矿业大学研究生院培养管理处印制

目录 1 自适应控制概述 (1) 1.1 自适应控制系统的功能及特点 (1) 1.2自适应控制系统的分类 (1) 1.2.1前馈自适应控制 (1) 1.2.2反馈自适应控制 (1) 1.2.3 模型参考自适应控制(MRAC) (2) 1.2.4自校正控制 (2) 1.3 自适应控制系统的原理 (3) 1.4 自适应控制系统的主要理论问题 (3) 2 模型参考自适应控制 (4) 2.1 模型参考自适应控制的数学描述 (4) 2.2 采用Lyapunov稳定性理论的设计方法 (4) 3 自校正控制 (7) 4 自适应控制在电梯门机系统中的应用 (7) 4.1电梯门机控制系统的关键技术 (7) 4.1.1 加减速过程的S曲线 (8) 4.1.2 系统的自适应控制 (8) 4.3 系统的控制策略 (8) 4.3.1 加减速过程的S曲线 (8) 4.3.2 控制系统模型 (9) 4.4 门机开关的运行曲线 (10) 4.5 系统的实现 (11) 5 结论与展望 (12)

1 自适应控制概述 1.1 自适应控制系统的功能及特点 在日常生活中,所谓自适应是指生物能改变自己的习性以适应新的环境的一种特征。因此,直观地说,自适应控制器应当是这样一种控制器,它能修正自己的特性以适应对象和扰动的动态特性的变化。 自适应控制的特点:研究具有不确定性的对象或难以确知的对象;能消除系统结构扰动引起的系统误差;对数学模型的依赖很小,仅需要较少的验前知识;自适应控制是较为复杂的反馈控制。 1.2自适应控制系统的分类 1.2.1前馈自适应控制 借助于过程扰动信号的测量,通过自适应机构来改变控制器的状态,从而达到改变系统特性的目的。前馈自适应结构图如图1.1所示。 图1.1前馈自适应结构图 由图1.1可知,当扰动不可测时,前馈自适应控制系统的应用就会受到严重的限制。 1.2.2反馈自适应控制 除原有的反馈回路之外,反馈自适应控制系统中新增加的自适应机构形成了另一个

计量泵的基本工作原理

计量泵的基本工作原理 众所周知,计量泵主要由动力驱动、流体输送和调节控制三部分组成。动力驱动装置经由机械联杆系统带动流体输送隔膜实现往复运动: 隔膜(活塞)于冲程的前半周将被输送流体吸入并于后半周将流体排出泵头;所以,改变冲程的往复运动频率或每一次往复运动的冲程长度即可达至调节流体输送量之目的。精密的加工精度保证了每次泵出量进而实现被输送介质的精密计量。 因其动力驱动和流体输送方式的不同,计量泵可以大致划分成柱塞式和隔膜式两大种类。 1、 主要有普通有阀泵和无阀泵两种。柱塞式计量泵因其结构简单和耐高温高压等优点而被广泛应用于石油化工领域。针对高粘度介质在高压力工况下普通柱塞泵的不足,一种无阀旋转柱塞式计量泵受到愈来愈多的重视,被广泛应用于糖浆、巧克力和石油添加剂等高粘

度介质的计量添加。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式计量泵在高防污染要求流体计量应用中受到诸多限制。 2、 顾名思义,隔膜式计量泵利用特殊设计加工的柔性隔膜取代活塞,在驱动机构作用下实现往复运动,完成吸入-排出过程。由于隔膜的隔离作用,在结构上真正实现了被计量流体与驱动润滑机构之间的隔离。高科技的结构设计和新型材料的选用已经大大提高了隔膜的使用寿命,加上复合材料优异的耐腐蚀特性,隔膜式计量泵目前已经成为流体计量应用中的主力泵型。在隔膜式计量泵家族成员里,液力驱动式隔膜泵由于采用了油均匀地驱动隔膜,克服了机械直接驱动方式下泵隔膜受力过分集中的缺点,提升了隔膜寿命和工作压力上限。为了克服单隔膜式计量泵可能出现的因隔膜破损而造成的工作故障,有的计量泵配备了隔膜破损,实现隔膜破裂时自动连锁保护;具有双隔膜结构泵头的计量进一步提高了其安全性,适合对安全保护特别敏感的应用场合。

PID控制的基本原理

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是:做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术飞速发展的今天,在工业过程控制中95%以上的控制回路都具有PID 结构,而且许多高级控制都是以PID 控制为基础的。 PID 控制器由比例单元(P)、积分单元(I)和微分单元(D)组成,它的基本原理比较简单,基本的PID 控制规律可描述为: G(S ) = K P + K1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数(K P ,K I和K D )即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1)原理简单,使用方便,PID 参数K P、K I和K D 可以根据过程动态特性变化,PID 参数就可以重新进行调整与设定。 (2)适应性强,按PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其基本控制功能也仍然是PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行PID 控制了。 (3)鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。但不可否认PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但PID 仍因其自身的优点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多,其中绝大部分都采用PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述PID 控制。 1.1.1 比例(P)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中,K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band,PB),来取代比例系数K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号R0 1(t)的稳态误差与其开环增益K 近视成反比,即: t→∞

FMI计量泵

新型电机无阀计量泵支持微调精密步进 专为集成配送系统(IntegratedDispensingSystems)定制的Vmp,是目前世界上最先进的精密步进电机驱动无阀计量泵。 Vmp计量泵由一套FMI和一个第二步进电机级联而成,FMI是一种目前已得到广泛认可的精密步进电机驱动无阀计量泵。由于采用了这种结构,用户可通过电子方式改变泵的行程,从而根据实际需要,对泵的流量进行高精度微调。该产品无须任何外部电源和空气,完全自成一体,既可独立工作,也可方便地与现有系统集成。流量调节通过两个独立控制步进电机的巧妙配合实现。无须工具也没有刻度盘,减少了出错的可能性。其中级联的一个步进电机通过改变泵头的角度来增大或减小泵的冲程,从而调节流量。对于标准的FMI泵,则只能通过手动调节导螺杆来实现。第二个步进电机控制FMI无阀泵,用于调节注料速度和注料频率。 该产品包括以下特性:高精度步进调节(每步0.0144ul);较高的化学兼容性(采用陶瓷和碳氟化合物构成流体通道);高负载周期(经测试可达八千四百万个周期);电子控制器易于学习和掌握;内存100组工作程序;支持脚开关和遥控;支持独立运行和面板安装;支持系统集成、仪表集成和多头配送。内建XL控制器,使产品设置更加方便。产品提供了友好的触摸屏界面,用户可以方便地对流量、注料速度和完成注料所需的周期数进行调节。利用内建的100组程序,用户可根据需要随时在线修改工作方式。 此外,用户还可通过一部PalmZire对单个或全部计量泵进行编程,该设备提供了更为丰富、直观的图形界面。泵的运行数据可传回Palm,再通过Palm传送至计算机长期保存。为了避免操作者不当地修改运行程序,产品提供了密码功能。即将上市的OEM版本还将集成丰富的接口,这意味着用户可以更灵活地通过Palm,PLC或计算机对计量泵进行编程,还可将多个计量泵联结起来,通过局域网进行控制和编程

计量泵的结构及工作原理

计量泵的结构及工作原理 计量泵由动力端和液力端两部份组成。动力端通过曲柄连杆机构促使柱塞作往复运动,通过N形轴调节机构来改变行程流量大小;液力端通过吸入、排出阀组起到输送液体的作用。 1). 动力端结构: 动力端传动机构由电动机、电机托架、传动箱 (内含蜗轮付、N形轴曲柄连杆机构、行程调节机构) 、泵头托架等组成。 N形轴曲柄连杆机构传动平稳、可靠、结构紧凑、精度高、承载能力强,而且是闭式全封闭结构,在室内、外的条件下均能正常工作。 蜗杆轴上装有螺旋油轮,其排出的润滑油流入上套筒,润滑N形轴、调节螺母、端面轴承和偏心块等。 2). N形轴工作原理: 柱塞的往复运动是由电机带动蜗杆旋转,通过蜗杆、下套筒,将动力传动给N形轴,N形轴与偏心块所形成的偏心,带动曲柄连杆机构和十字头运动。当N形轴在下限位置时行程为0%,当N形轴在上限时行程为100% N形轴与偏心块的中心轴线与斜轴线呈同一夹角,其偏心值为S/4(全行程S的1/4),当N型轴与偏心块的中心轴线重合时(此时N轴处于下限位置),其偏心量为0;当N型轴被提升处于上限位置时,N型轴与偏心块的偏心量处于最大值(S/2),其行程长度为2倍偏心值,即全行程S。随着N形轴位置从下限向上限位置提升(调节),柱塞行程将从0~100%呈线性变化。 3). 行程调节机构及调量表的使用: 泵的行程调节机构用于调节N形轴的上下移动,位于传动箱的上部。 当调节转盘顺时针旋转时,小螺旋齿轮带动大螺旋齿轮、调节螺杆转动,拖动调节螺母和N 形轴上下移动,改变了偏心距,从而达到流量调节的目的。 4). 液力端结构: 液力端是计量泵的重要部件之一,根据输送液体性质及使用工况要求,该泵头结构分为柱塞式和隔膜式两种:泵头部件的主要结构由液缸体、柱塞、吸入和排出阀组以及填料箱等组成;隔膜式计量泵还有隔膜及安全阀、补油阀等组件。 计量泵泵头吸入、排出阀组主要采用球阀结构,随着球阀的启闭运动,球体不断旋转,从而实现了阀组接触面的自洁,保证了计量泵在较长时间内有较高的计量精度。

加药计量泵型号概述及工作原理

加药计量泵型号概述及工作原理 一、加药计量泵概述 作为流体精密计量与投加的理想设备,加药计量泵如今已被广泛地应用于包括制药、食品饮料和石油化工行业在内的各个领域,在工艺过程担负着强腐蚀性、毒害性、高粘性和高压介质的计量添加任务。 报告经过超过半个世纪的实践应用和技术改进,现在加药计量泵已经进入其高速增长期。 现在,成熟的动力驱动方式和液体输送端(泵头)材料技术使得新型加药计量泵几乎可以完成输送任何常规和特殊介质的要求,其工作压力和容量亦能满足工业生产的绝大多数要求。 随着人们对生产工艺过程指标和自动化程度要求的普遍提高,作为化学药剂计量和添加环节的最终执行机构,加药计量泵的安全性和可控制性变得日益重要起来。 石油化工等行业向来以生产过程的高度自动化而著称,也是集散式、分布式和智能式计算机控制系统应用最广泛的领域之一,因而要求与之相配套的执行器——加药计量泵亦要具备灵活多样的控制模式,可以方便地与计算机系统构成各种控制回路,实现更复杂更精确的过程控制。 二、加药计量泵的基本工作原理 众所周知,加药计量泵主要由动力驱动、流体输送和调节控制三部分组成。动力驱动装置经由机械联杆系统带动流体输送隔膜(活塞)实现往复运动:

隔膜(活塞)于冲程的前半周将被输送流体吸入并于后半周将流体排出泵头;所以,改变冲程的往复运动频率或每一次往复运动的冲程长度即可达至调节流体输送量之目的。精密的加工精度保证了每次泵出量进而实现被输送介质的精密计量。 因其动力驱动和流体输送方式的不同,机械加药计量泵可以大致划分成柱塞式和隔膜式两大种类。 2.1、柱塞式加药计量泵 主要有普通有阀泵和无阀泵两种。柱塞式加药计量泵因其结构简单和耐高温高压等优点而被广泛应用于石油化工领域。针对高粘度介质在高压力工况下普通柱塞泵的不足,一种无阀旋转柱塞式加药计量泵受到愈来愈多的重视,被广泛应用于糖浆、巧克力和石油添加剂等高粘度介质的计量添加。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式加药计量泵在高防污染要求流体计量应用中受到诸多限制。 2.2、隔膜式加药计量泵

矢量控制系统(FOC)基本原理

矢量控制(FOC)基本原理 2014.05.15 duquqiubai1234163. 一、基本概念 1.1模型等效原则 交流电机三相对称的静止绕组 A 、B 、C ,通以三相平衡的正弦电流时,所产生的合成磁动势是旋转磁动势F ,它在空间呈正弦分布,以同步转速ω1(即电流的角频率)顺着 A-B-C 的相序旋转。这样的物理模型如图1-1a 所示。然而,旋转磁动势并不一定非要三相不可,单相除外,二相、三相、四相…… 等任意对称的多相绕组,通以平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。 图1 图1-1b 中绘出了两相静止绕组α 和 β ,它们在空间互差90°,通以时间上互差90°的两相平衡交流电流,也产生旋转磁动势F 。再看图1-1c 中的两个互相垂直的绕组M 和 T ,通以直流电流M i 和T i ,产生合成磁动势F ,如果让包含两个绕组在的整个铁心以同步转速旋转,则磁动势F 自然也随之旋转起来,成为旋转磁动势。把这个旋转磁动势的大小和转速也控制成与图 1-1a 一样,那么这三套绕组就等效了。

三相--两相变换(3S/2S 变换) 在三相静止绕组A 、B 、C 和两相静止绕组α、β之间的变换,简称3S/2S 变换。其电流关系为 111221022A B C i i i i i αβ????-- ???????=?????????-????? () 两相—两相旋转变换(2S/2R 变换) 同步旋转坐标系中(M 、T 坐标系中)轴向电流分量与α、β坐标系中轴向电流分量的转换关系为 cos sin 2sin cos M T i i i i αβ??????????=??????-???? ?? () 1.2矢量控制简介 矢量控制是指“定子三相电流矢量控制”。 矢量控制理论最早为解决三相异步电机的调速问题而提出。交流矢量的直流标量化可以使三相异步电机获得和直流电机一样优越的调速性能。将交流矢量变换为两相直流标量的过程见图2。

模型参考自适应控制

10.自适应控制 严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。 所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。 10.1模型参考自适应控制 10.1.1模型参考自适应控制原理 模型参考自适应控制系统的基本结构与图10.1所示: 10.1模型参考自适应控制系统 它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。

在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。 在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。于是,系统的自适应机构再次发生作用调整控制器的参数,使得受控对象的输出再一次趋近于参考模型的输出(即与理想的希望输出相一致)。这就是参考模型自适应控制的基本工作原理。 模型参考自适应控制设计的核心问题是怎样决定和综合自适应律,有两类方法,一类为参数最优化方法,即利用优化方法寻找一组控制器的最优参数,使与系统有关的某个评价目标,如:J=? t o e 2(t)dt ,达到最小。另一类方法是基于稳 定性理论的方法,其基本思想是保证控制器参数自适应调节过程是稳定的。如基于Lyapunov 稳定性理论的设计方法和基于Popov 超稳定理论的方法。 系统设计举例 以下通过一个设计举例说明参数最优化设计方法的具体应用。 例10.1设一受控系统的开环传递函数为W a (s)=) 1(+s s k ,其中K 可变,要求 用一参考模型自适应控制使系统得到较好的输出。 解:对于该系统,我们选其控制器为PID 控制器,而PID 控制器的参数由自适应机构来调节,参考模型选性能综合指标良好的一个二阶系统: W m (d)= 1 414.11 2 ++s s 自适应津决定的评价函数取 minJ =?t e 2 (t)dt ,e(t)为参考模型输出与对象输出的误差。 由于评价函数不能写成PID 参数的解析函数形式,因此选用单纯形法做为寻优方法。(参见有关优化设计参考文献)。 在上述分析及考虑下,可将系统表示具体结构表示如下图10.2所示。

齿轮计量泵操作说明及工作原理

齿轮计量泵操作说明及工作原理 齿轮计量泵是齿轮泵一种,只有特定的齿轮泵才能称为齿轮计量泵,同时齿轮计量泵又是计量泵的一种,所以齿轮计量泵又具有了计量特性。 齿轮计量泵是经过了特殊设计,选用了特殊材料,用了特殊的工艺,使用特殊设备,经过特殊的处理,而加工成的。越来越多的应用在齿轮泵设备上。 齿轮计量泵最早应用于国外的设备。跟着进口设备进入中国市场,经过这么多年的发展,优科的齿轮计量泵不论是从性能还是从加工精度上都可以和进口产品站在一条线上。同时,部分国产齿轮计量泵已经成功的替代了某些进口设备上的齿轮计量泵,实现了齿轮计量泵产品的国产化。 齿轮计量泵工作原理 齿轮计量泵是通过一对相互啮合的齿轮,其中一个是主动齿轮,另外一个是被动齿轮,由主动齿轮带动啮合旋转。齿轮于泵的壳体直接留有较小的间隙。当齿轮旋转时,在轮齿逐渐脱离啮合的吸液腔中,齿间密闭容积增大,形成局部真空,液体在压差作用下吸入吸液室,随着齿轮旋转,液体分两路在齿轮与壳体之间被齿轮推动前进,送到排液腔,在排液腔中两齿轮逐渐啮合,容积减少,齿轮间的液体被挤压至排液口。 因为齿轮计量泵的加工精度要求非常高,不论是齿轮的齿面精度,还是齿轮和壳体,齿轮和齿顶的配合精度都要求非常高,因此齿轮计量泵的但转排量是一定的。换言之,齿轮每旋转一圈,排出的液体的体积是一定的,因此随着调整齿轮计量泵的转速,齿轮计量泵就能够排出相应数量的液体。 一般,我们是通过测算齿轮计量泵的转速,从而得到齿轮计量泵的流量。 齿轮计量泵优点 齿轮计量泵具有精度高,在各种温度、粘度、压力的条件下,可保证稳定的可重复流量,计量精度高达0.3%。无脉冲输出,重复性能好等优势特点。 齿轮计量泵操作说明 齿轮计量泵快速操作的说明 1、接通电源,操控盘上将显示转速设定值。 2、如在操控盘上调控转速,可用▲▼键改变数值的大小,启动时可在操控盘上通过RUN和STOP 键直接操作。其他键基本不需使用。 3、如已安装远控开关,启动时接通远控开关,停止时断开远控开关或按操控盘上的STOP键。 4、如采用模拟信号调速,请接通信号源,并进行调节。

计量泵检修规程(2016)

(E-P0126)mRoyB型隔膜计量泵 维护检修规程 2015年5月

1.总则 本规程适用于Milroyal B 型计量泵的维护、检修。 1.1工作原理概述 驱动装置带动泵柱塞,通过柱塞的往返行程,将液体吸入和排出。在吸入行程,柱塞在泵头腔中产生负压,将液体经入口止回阀吸入泵头腔;在排出行程,柱塞前移,在液体上加压,经出口止回阀排出。 1.2设备结构简介 MilroyalB 型计量泵为往复型容积控制泵计量泵由下列部件组成: 1电动机 2机械传动部分(驱动端) 3液力端部件(液力端) 1.3设备技术性能 结构特性及技术性能见表 2. 设备完好标准 2.1零部件。 2.1.1机组零部件齐全,质量符合要求。

2.1.2电器、仪表、计量齐全,灵敏准确。 2.1.3泵的连接、过流部件蜗杆、蜗轮、连杆、十字头、隔膜等装配质量符合技术要求。 2.1.4泵壳体、泵体无明显擦伤及冲刷、腐蚀。 2.1.5油位指示清晰、润滑、冷却、介质管路畅通,阀门灵活好用。 2.1.6轴承装配符合技术要求。 2.2设备性能。 2.2.1运行平稳、无振动、摩擦和异常响声。 2.2.2压力、流量稳定、设备生产能力达到铭牌要求。 2.2.3隔膜无异常破损或严重泄漏。 2.2.4润滑系统畅通,油质符合要求。 2.2.5泵座、地脚螺栓无松动现象。 2.3技术资料。 2.3.1设备档案齐全、准确。档案包括: (1)目录。 (2)安装使用说明书,设备制造合格证,设备调试记录等。 (3)设备履历卡片。 (4)设备结构及易损件图样。 (5)设备运行累计时间记录。 (6)历年设备缺陷及事故情况记录。 (7)设备检修,试验与技术签定记录。

计量泵的工作原理及特点

计量泵的工作原理及特点 计量泵是往复泵的一种,利用往复泵流量固定的特点而发展起来的。可以用电动机带动偏心轮从而实现柱塞的往复运动。计量泵主要应用在一些要求地输送液体至某一设备的场合,或将几种液体按的比例输送。用于石油工业中添加剂的投加以及天然气的开采;化工工业用于投加有比例的化学介质;用于环保上工业水处理的投加泵;用于热电厂的锅炉作净化水处理的加药泵等等. 产品图片; 工作原理: 电机经联轴器带动蜗杆并通过蜗轮减速使主轴和偏心轮作回转运动,由偏心轮带动弓型连杆的滑动调节座内作往复运动。当柱塞向后死点移时,泵腔内逐渐形成真空,吸入阀打开,吸入液体;当柱塞向前死点移动时,此时吸入阀关闭,排出阀打开,液体在柱塞向进一步运动时排出。在泵的往复顺还工作形成连续有压力、定量的排放液体。 泵的特点: ⒈该泵性能优越,其中隔膜式计量泵不泄露,安全性能高,计量输送,流量可以从零到定额值范围能任意调节,压力可从常压到允许范围内任意选择。 ⒉调节直观清晰,工作平稳、无噪声、体积小、重量轻、维护方便,可并联使用。 ⒊该泵品种多、性能全、适用输送-30度到450度,粘度为0-800mm/s,排出压力可达64Mpa,流量范围在0.1-20000L/h,计量精度在±1%以内。 ⒋根据工艺要求该泵可以手动调节和变频调节流量,亦可实现遥控和计算机自动控制。 适用范围; 适用于高压、低压、强(弱)腐蚀性且计量度高的场合; 比如,用于石油工业中添加剂的投加以及天然气的开采;化工工业用于投加有比例的化学介质;用于环保上工业水处理的投加泵;用于热电厂的锅炉作净化水处理的加药泵等等.

标签: 计量泵

PID控制的基本原理

S lim e (t ) = 1 +RK t →∞ PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关 心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是: 做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术 飞速发展的今天,在工业过程控制中 95%以上的控制回路都具有 PID 结构,而且许多高级控制都是以 PID 控制为 基础的。 PID 控制器由比例单元(P )、积分单元(I )和微分单元(D )组成,它的基本原理比较简单,基本的 PID 控 制规律可描述为: G (S ) = K P + K 1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数( K P , K I 和 K D ) 即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1) 原理简单,使用方便,PID 参数 K P 、K I 和 K D 可以根据过程动态特性变化,PID 参数就可以重 新进行调整与设定。 (2) 适应性强,按 PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其 基本控制功能也仍然是 PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也 可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行 PID 控制了。 (3) 鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。 但不可否 认 PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果 PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但 PID 仍因其自身的优 点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多, 其中绝大部分都采用 PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述 PID 控制。 1.1.1 比例(P )控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输 出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中, K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band , PB ),来取代比例系数 K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号 R 0 1(t)的稳态误差与其开环增益 K 近视成反比,即: t →∞ 对于单位反馈系统,I 型系统响应匀速信号 (1- 3) R 1 (t)的稳态误差与其开环增益 K v 近视成反比, 即: lim e (t ) = R 1 K V (1- 4)

计量泵的结构及工作原理范文

计量泵的结构及工作原理: 众所周知计量泵由动力端和液力端两部份组成。动力端通过曲柄连杆机构促使柱塞作往复运动,通过N形轴调节机构来改变行程流量大小;液力端通过吸入、排出阀组起到输送液体的作用。但是现在还有很多人不懂他的原理今天北瑞泰精密设备服务部小赵为朋友们做了详细的资料,如果还不懂看打电话问一下他本人吧!他电话 1. 动力端结构: 动力端传动机构由电动机、电机托架、传动箱(内含蜗轮付、N形轴曲柄连杆机构、行程调节机构) 、泵头托架等组成。N形轴曲柄连杆机构传动平稳、可靠、结构紧凑、精度高、承载能力强,而且是闭式全封闭结构,在室内、外的条件下均能正常工作。蜗杆轴上装有螺旋油轮,其排出的润滑油流入上套筒,润滑N形轴、调节螺母、端面轴承和偏心块等。 2. N形轴工作原理: 柱塞的往复运动是由电机带动蜗杆旋转,通过蜗杆、下套筒,将动力传动给N形轴,N形轴与偏心块所形成的偏心,带动曲柄连杆机构和十字头运动。当N形轴在下限位置时行程为0%,当N形轴在上限时行程为100% N形轴与偏心块的中心轴线与斜轴线呈同一夹角,其偏心值为S/4(全行程S的1/4),当N型轴与偏心块的中心轴线重合时(此时N轴处于下限位置),其偏心量为0;当N型轴被提升处于

上限位置时,N型轴与偏心块的偏心量处于最大值(S/2),其行程长度为2倍偏心值,即全行程S。随着N形轴位置从下限向上限位置提升(调节),柱塞行程将从0~100%呈线性变化。 3. 行程调节机构及调量表的使用: 泵的行程调节机构用于调节N形轴的上下移动,位于传动箱的上部。当调节转盘顺时针旋转时,小螺旋齿轮带动大螺旋齿轮、调节螺杆转动,拖动调节螺母和N形轴上下移动,改变了偏心距,从而达到流量调节的目的。 4. 液力端结构: 液力端是计量泵的重要部件之一,根据输送液体性质及使用工况要求,该泵头结构分为柱塞式和隔膜式两种:泵头部件的主要结构由液缸体、柱塞、吸入和排出阀组以及填料箱等组成;隔膜式计量泵还有隔膜及安全阀、补油阀等组件。计量泵泵头吸入、排出阀组主要采用球阀结构,随着球阀的启闭运动,球体不断旋转,从而实现了阀组接触面的自洁,保证了计量泵在较长时间内有较高的计量精度。计量泵主要是由动力驱动、流体输送和调节控制这三大部分组成,动力驱动装置经由机械联杆系统带动流体输送隔膜(活塞)实现往复运动。根据过流部分可以分为柱塞式、活塞式、机械隔膜式、液压隔膜式四种类型。根据其驱动方式可以分为电机驱动式、电磁驱动式、气动式三种类型。

新道茨电磁计量泵说明书

新道茨电磁计量泵说明书 DFD、DP、DM、和DC系列 计 量 泵 说 明 书

1.总述 泵已经按照最好状况安装好了。如果它正确的使用和受定期维护,其寿命和它的电气及机械可靠性将会提高。 1.1保证: 保证一年内没有正常磨损部件(如阀门、管、筒网、过滤、喷射阀)。由于使用不当而造成的设备损坏,不在保证之内。如有疑问请咨询山东博川环保科技有限公司,山东博川环保24小时全天候为您解答疑问。 1.2海运泵注意事项: 泵应该总是在动摇时保持储存在一个垂直的位置。任何丢失索赔必须在10天之内申诉。如有疑问请咨询山东博川环保科技有限公司,山东博川环保24小时全天候为您解答疑问。 1.3 泵的正确使用 泵应该用于被明确规定剂量的液体。任何不合理的使用都是不正当的、危险的。如果泵的性质不和液体匹配,泵会损坏甚至对处理器产生损坏。厂商能根据用户所选液体帮助用户选择泵的种类。 制造商对因用户使用不当而对泵造成的损坏不负任何责任。 如有疑问请咨询山东博川环保科技有限公司,山东博川环保24小时全天候为您解答疑问。 1.4 谨记 ◆泵开箱后,确保它是完整的.如有疑问,先不要使用,请和厂商或经销商联系。我们应该充分的认识到包装材料对环境有潜在的污染性。包装材料应放在孩子够不到的地方,禁防误食。 ◆泵连接的电力装置,必须符合当地通用公认的标准。 ◆使用电子设备的一些基本原则: 1. 手或脚潮湿的时候不要触碰泵体; 2. 不要在泵脚未铺垫的情况下进行操作(例如用游泳池器械); 3. 不允许儿童或非技术人员使用。 ◆如果泵的功能不正常或产生故障,请立即切断电源。没有技术人员的帮助,请不要试图对泵进行修理。 ◆当你决定不再使用时,请拔出电源 如有疑问请咨询山东博川环保科技有限公司,山东博川环保24小时全天候为您解答疑问。

PWM控制的基本原理

PWM控制的基本原理 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 图2 冲量相同的各种窄脉冲的响应波形 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。 图3 用PWM波代替正弦半波 要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。 PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。 PWM波形可等效的各种波形: 直流斩波电路:等效直流波形 SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM 法、随机PWM、SPWM法、线电压控制PWM等,而本文介绍的是在镍氢电池智能充电器中采用的脉宽PWM法。它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 PWM技术的具体应用

自适应控制算法的实现

题目:自适应控制算法的实现 利用FOXBORO控制模块PIDA、FBTUNE、FFTUNE可以构成自适应和自整定控制算法。在电站应用中,这种算法可以用来克服过热、再热系统的纯滞后,实现磨煤系统的模糊控制,在其它行业的先进控制应用中也很具优势。 其基本组态方法如下: 1。建立PIDA模块。 MODOPT ≥ 4。 2。建立FBTUNE 和 FFTUNE 模块,分别将 PIDA.BLKSTA 参数连至 FBTUNE和 FFTUNE的PIDBLK。 3。将扰动量连至 FFTUNE 的LOAD_n (n=1~4)。 说明: 1。使用FBTUNE可以实现对PIDA中 PBAND(比例带)、INT(积分时间)、DERIV (微分时间)、DTIME(纯延迟时间)、SPLLAG(设定值超前-滞后系数)、FILTER (用于克服过程滞后与控制器滞后间不匹配的因子)的自整定。 2。当PIDA在PI或PID方式下,若FBTUNE的DFCT不大于1,如果此时FBTUNE的 PR_FL=0,可以实现控制对象不确定的模糊控制。这种方式不需要预整定。 3。当FBTUNE的 DFCT>1,或 PIDA 在 NIPID、PI_TAU、PID_TAU方式下,或 FBTUNE 的 PR_FL=1,需作预整定。预整定时,PIDA应处于手动状态,在 FBTUNE 的详细画面上置位 PTNREQ。预整定完毕,能确定 FBTUNE 的 PR_TYP (过程类型)、DFCT 及 PIDA 的 PBAND、INT、DERIV、DTIME、 SPPLLAG。 4。在FBTUNE的详细画面上置位STNREQ,若PIDA在自动状态下,FBTUNE将 进入自整定状态。建议将预整定的P、I、D参数或经验的P、I、D参数填入 FBTUNE详细画面的PM、IM、DM中。这样,在自整定不能很好满足控制要 求时,可以在FBTUNE的详细画面上置位 FB_HOLD,并 TOGGLE PIDRCL, 于是 FBTUNE 会将保留在 PM、IM、DM 中的整定参数装入PIDA中。复位 FB_HOLD,FBTUNE仍回到自整定状态。

计量泵工作原理.

众所周知,计量泵主要由动力驱动、流体输送和调节控制三部分组成。动力驱动装置经由机械联杆系统带动流体输送隔膜(活塞实现往复运动:隔膜(活塞于冲程的前半周将被输送流体吸入并于后半周将流体排出泵头;所以,改变冲程的往复运动频率或每一次往复运动的冲程长度即可达至调节流体输送量之目的。精密的加工精度保证了每次泵出量进而实现被输送介质的精密计量。因其动力驱动和流体输送方式的不同,自吸泵厂可以大致划分成柱塞式和隔膜式两大种类。 柱塞阀计量泵 主要有普通有阀泵和无阀泵两种。柱塞式W型单级旋涡泵因其结构简单和耐高温高压等优点而被广泛应用于石油化工领域。针对高粘度介质在高压力工况下普通旋涡泵的不足,一种无阀旋转柱塞式计量泵受到愈来愈多的重视,被广泛应用于糖浆、巧克力和石油添加剂等高粘度介质的计量添加。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式计量泵在高防污染要求流体计量应用中受到诸多限制。 隔膜式计量泵 顾名思义,隔膜式多级泵厂利用特殊设计加工的柔性隔膜取代活塞,在驱动机构作用下实现往复运动,完成吸入-排出过程。由于隔膜的隔离作用,在结构上真正实现了被计量流体与驱动润滑机构之间的隔离。高科技的结构设计和新型材料的选用已经大大提高了隔膜的使用寿命,加上复合材料优异的耐腐蚀特性,隔膜式排污泵厂]目前已经成为流体计量应用中的主力泵型。在隔膜式计量泵家族成员里,液力驱动式隔膜泵由于采用了液压油均匀地驱动隔膜,克服了机械直接驱动方式下泵隔膜受力过分集中的缺点,提升了隔膜寿命和工作压力上限。为了克服单隔膜式计量泵可能出现的因隔膜破损而造成的工作故障,有的计量泵配备了隔膜破损传感器,实现隔膜破裂时自动连锁保护;具有双隔膜结构泵头的计量进一步提高了其安全性,适合对安全保护特别敏感的应用场合。作为隔膜式计量泵的一种,电磁驱动式计量泵以电磁铁产生脉动驱动力,省却了电机和变速机构,使得系统小巧紧凑,是小量程低压计量泵

相关文档