文档库 最新最全的文档下载
当前位置:文档库 › 时间分辨荧光分析技术

时间分辨荧光分析技术

时间分辨荧光分析技术
时间分辨荧光分析技术

1.1 时间分辨荧光分析技术

时间分辨荧光生化分析技术是基于稀土荧光配合物特殊的荧光性质而建立起来的,自1978年提出以来[1],已广泛的应用于免疫分析、核酸测定、荧光显微镜成像、细胞识别、单细胞原位测定、生物芯片等生化领域,并发展出了相应的时间分辨荧光免疫测定法、时间分辨荧光DNA 杂交测定法、时间分辨荧光显微镜成像测定法、时间分辨荧光细胞活性测定法及时间分辨荧光生物芯片测定法等分支。

本节主要对稀土荧光配合物的发光机理、荧光性质,时间分辨荧光测定的原理,时间分辨荧光免疫分析技术,时间分辨荧光显微镜成像技术的研究进展等加以介绍。

1.1.1 稀土荧光配合物的发光机理及荧光性质

稀土元素指的是元素周期表中IIIB 族的镧系元素以及钪和钇,共17种元素。其中镧系元素的外层电子结构为4f 0-145d 0-106s 1-2,由于5s 和5p 电子对4f 电子的屏蔽作用,导致这些金属及其离子的性质十分相似。图1.1给出了四种三价稀土离子的基态及激发态电子能级图[2]。

1020

152530355

E N E R G Y ,103c m -1

6

H 5/2

G 5/2

6

H 15/2

7

F 0

F 2D 0

5D

1

7F 6

F 5

4

5D

3

13/2

4

9/2

Sm 3+

Eu 3+

Tb 3+

Dy 3+

H 9/2

图1.1 部分三价稀土离子的电子能级图

Fig. 1.1 Electronic energy levels of certain lanthanide(III) ions

大部分稀土离子本身是不具有荧光性质的,只有Sm 3+、Eu 3+、Tb 3+和Dy 3+的水溶液在紫外光或可见光的激发下能够发出微弱的荧光。当Sm 3+、Eu 3+、Tb 3+和Dy 3+与某些有机配位体形成配合物时其荧光强度会显著增强,这种发光是基于配合物由配位体到中心稀土离子的能量转移所产生的[3-8]。以铕(III)配合物为例,其荧

光发光机理如图1.2所示[9],包括三线态发光机理和单线态发光机理。当铕(III)配合物受光激发后,配体分子吸收激发光能量由基态S 0跃迁至第一单线激发态S 1,处于此激发态的分子不稳定,可以通过辐射跃迁的方式返回基态,发出配体荧光(S 1→S 0),也可以通过系间窜跃(非辐射跃迁方式)将能量传递至配体的第一三线激发态T 1。处于T 1能级的配体分子可以通过辐射跃迁的方式回到基态,发出配体磷光(T 1→S 0);当T 1能级高于Eu 3+的共振能级时,能量就可以进一步传递给Eu 3+使之激发至共振能级,并在由共振能级跃迁回基态的过程中发出Eu 3+的特征荧光,此即三线态发光机理。而上述处于S 1激发态的配体分子如果不经过T 1激发态,直接将能量传递给Eu 3+使之激发至共振能级,然后由共振能级跃迁回基态发出Eu 3+的特征荧光,此即单线态发光机理。到目前为止,绝大多数的Eu 3+配合物的荧光发光都遵循三线态发光机理,只有极个别的遵循单线态发光机理。

Eu 3+

ligand

S

1

S

7F

F

2D 0

D

1

F 6

Eu 3+

ligand

S

S F 0

F 2D 0

D 1

F 6D 3

D 2

(a) (b)

图1.2 铕(III)配合物发光机理示意图:(a )三线态发光机理;(b )单线态发光机理 Fig. 1.2 Schematic diagrams of the radiative processes of the chelate leading to Eu 3+

fluorescence by (a) triplet excited state mechanism and (b) singlet excited

state mechanism

不同于有机荧光化合物,稀土配合物的荧光性质,一方面取决于有机配位体的三重态能级T 1的位置,另一方面取决于配位体与稀土离子处于激发态时的能量匹配程度。荧光发光的波长和强度,均随稀土离子的不同而不同。Sm 3+、Eu 3+、Tb 3+、Dy 3+等稀土离子的配合物属于镧系元素荧光配合物中的强荧光物质。激发这些离子所需能量较低,同时由于这些离子的激发态和基态能量相差较大,非放射迁移较小,因此它们的荧光量子产率相对较高。

由于稀土荧光配合物特殊的发光机理,使其相对于常规有机荧光化合物,像荧光素和罗丹明等而言具有以下特点:

(1)荧光发射的特征峰波长主要与中心离子有关,而与配位体结构关联不大。稀土配合物发光是基于配合物由配位体到中心金属离子的能量转移所产生的,配位体吸收激发光能量后转移到中心稀土离子,然后再通过中心稀土离子的4f轨道能量跃迁而发出荧光,即接受激发光能量和发射荧光是由不同的部分所完成的,因此同一种稀土离子与不同配位体形成的配合物的荧光发射峰波长基本不变。

(2)荧光寿命非常长,通常在10 μs(Sm3+、Dy3+)或100 μs(Eu3+、Tb3+)以上。这是由于稀土配合物的发光是经过配位体的三重态的能量转移所致,所产生的荧光是延迟荧光,其寿命比配位体的磷光寿命还要长。从表1.1可以看出,Eu3+配合物的荧光寿命比普通荧光化合物的荧光寿命要长大约105倍。利用这种长荧光寿命,就可进行百微秒级的时间分辨荧光测定。

(3)稀土配合物所发荧光的Stokes位移 (最大发射峰与最大吸收峰之间的波长差) 非常大,大部分在200 nm以上,对克服因激发光而导致的散乱光对测定的干扰很有利。

(4)荧光激发谱带较宽,有利于增高激发能,而发射峰非常尖锐,半峰宽通常在10~15 nm,为类线性光谱,有利于降低本底,提高分辨率。

稀土荧光配合物与常规荧光化合物的性质比较[10-12]见表1.1。

表1.1 稀土荧光配合物与常规荧光化合物的性质

Tab. 1.1 Fluorescence properties of lanthanide complex and conventional

organic compounds

Compound Lifetime

(ns)

λex,max

(nm)

λem,max

(nm)

Stokes

shift

(nm)

Quantum

yields (Q)

ε

(mol-1Lcm-1)

FITC 4.5 492 518 26 0.85 7.0 x 104 RBITC 3 550 585 35 0.70 1.2 x 104 Cy5 ---- 650 667 17 0.27 2.5 x 105 Eu(--NTA)7 x 105340 613 273 0.209 3.6 x 104 FITC: Fluorescein isothiocyanate; RBITC: Rhodamine-B200-isothiocyanate; Cy5: Cyanine dye; --NTA: 2-naphthoyltrifluorobutanedione.

1.1.2 时间分辨荧光测定原理

时间分辨荧光测定技术是利用稀土配合物具有长寿命荧光这一特点,在样品被脉冲光激发后、荧光信号采集前,根据样品中所包含的荧光物质荧光寿命的不同引入一定的延迟时间 (delay time),待短寿命的背景荧光完全淬灭后,再对长寿命的特异性荧光信号进行测定,原理如图1.3所示。采用时间分辨荧光测定

技术可以有效消除来自样品、试剂、仪器等的短寿命非特异性荧光的干扰,从而极提高荧光检测的灵敏度。

Time (μs)

F l u o r e s c e n c e i n t e n c i t y

图1.3 时间分辨荧光测定的原理

Fig. 1.3 Principle of time-resolved fluorescence measurement

1.1.3 时间分辨荧光免疫分析技术

时间分辨荧光免疫分析技术是采用具有超长荧光寿命的稀土荧光配合物作为标记物的时间分辨荧光生化分析技术。详细容将在1.2.4.5节进行叙述。 1.1.4 时间分辨荧光显微镜生物成像技术

荧光显微镜生物成像技术因其具有可视化特点,已成为不同生物环境中生物分子的可视化及生物功能的阐述等方面的一种强有力的工具[13,14]。然而对于一些复杂生物体系来讲,体系本身的自发荧光及仪器背景荧光会对荧光成像产生严重干扰。在过去十年中逐渐发展起来的时间分辨荧光显微镜生物成像技术是基于长寿命稀土荧光标记物而建立起来的,目前被广泛应用于免疫组织化学[15-17]、免疫细胞化学

[18]

、原位核酸杂交

[15,16]

、生物分子可视化和定量测定

[19,20]

、细胞中特定

离子检测[21]及环境微生物检测[22,23]等方面。该技术的最大优点是能够在脉冲激发和荧光成像检测之间引入适当的延迟时间,从而消除常规荧光显微镜测定时生物样品的短寿命本底荧光对测定的干扰,使得影像具有更高的灵敏度和信噪比。

1992年,Soini 等以4-(4’-异硫氰基苯乙炔基)-2,6-二(胺甲基-N,N-二乙酸基)-吡啶-Eu 3+配合物标记的抗体或SA 为探针,用于与人结肠恶性粘膜癌相关的C242抗原、人软骨性生长II 类胶原质mRNA 、人宫颈扁平上皮细胞中的HPV 特异基因的时间分辨荧光显微镜成像定位[15]。实验结果表明通过时间分辨荧光成像方法

可以有效消除免疫组织化学及核酸原位杂交反应中的样品自发荧光对测定的干扰,从而实现在细胞和组织水平上的高对比度成像测定。使用Eu3+荧光标记物的时间分辨荧光显微镜测定技术还被用于人类血清中胰岛细胞自身抗体的定量测定 [20]。该方法首先在载片表面将血清和胰腺组织反应,然后载片再与铕配合物标记的抗人IgG抗体反应,最后进行时间分辨荧光显微镜测定。该法的信噪比要比常规测定法大12倍。1999年,Lilja等人将铕荧光配合物标记的SA用于前列腺组织中前列腺特异抗原的免疫组织化学测定[17]。比起使用过氧化物酶标记SA的测定法,时间分辨荧光显微镜成像测定法具有高信噪比和高灵敏度的优点,可用于替代所有使用过氧化物酶标记SA的测定法。2001年,L?vgren等人以铕纳米微粒作为荧光标记物,采用时间分辨荧光成像方法实现了对单个前列腺特异抗原分子的可视化检测[19]。2004年,Piper等人报道了利用时间分辨荧光显微镜成像技术检测浓缩水样中的病源微生物Cryptosporidium和Giardia。他们首先将BHHST-Eu3+配合物分别标记上抗Cryptosporidium单抗和羊抗鼠二次抗体,然后分别与浓缩水样中的Cryptosporidium和经单抗预处理过的Giardia共同孵育,最后进行时间分辨荧光成像检测。结果显示水样中杂质的强背景荧光被完全消除,检测信噪比增强了10倍[22]。2007年,Nagano等开发出一种基于铕配合物的Zn2+选择性化学传感器,将其注射进入活Hela细胞,利用时间分辨荧光显微镜能够监测出细胞Zn2+浓度的变化[21]。

铽配合物用于时间分辨荧光显微镜成像测定也有报道[24]。Saavedra等合成出一种可直接标记细胞的铽荧光配合物,其配位体是由三种化合物组成的结合体,其中一部分用来与Tb3+形成荧光配合物,一部分用于与细胞膜的结合,该配合物被用于全反射时间分辨荧光显微镜成像以用于培养细胞的形态学研究[25]。

随着具有更优异的荧光性能如高量子产率、可见光激发和良好细胞通透性等的长寿命稀土荧光标记物被开发出来,以及时间分辨荧光显微镜系统的改进,相信时间分辨荧光显微镜成像技术必将会在更为广泛的研究领域中得到应用。

三维荧光光谱分析法

三维荧光光谱分析法 荧光强度与激发波长Kex、发射波长Kem、衰变时间( t)、荧光寿命(S)、吸光系数(E)、偏振度(P ) 及待测组分浓度(c) 等因素有关。若主要研究荧光强度与Kex 和Kem 的关系, 就构成了Kex2K em2F 三维荧光光谱(EEM ) , EEM 光谱技术简化了复杂组分繁琐的分离过程, 提高了荧光分析的灵敏度、选择性和实用性, 还可进行指纹分析和技术鉴定。许金钩小组应用EEM 技术和方法,获得了生物大分子、有机小分子荧光探针、以及荧光探针分子与生物大分子相互作用的大量信息, 并运用Mon te2Carlo 数学模型对EEM 进行总体积分,建立了EEM 总体积分方法, 用于样品中有机物质和药物分子的定量分析, 获得满意的结果。除了使用EEM 技术和方法外, 还可以根据实际需要, 选择荧光衰变时间( t)、偏振度(P )、荧光寿命(S) 等参数,构成Kex2K em2x (待定参数) 三维荧光光谱, 从不同的角度出发来提高荧光分析的灵敏度、选择性。这种分析技术不仅被用来进行物质的定性和定量分析,而且被用于测定生物大分子的形状、大小、构象, 以及固态物质、生物大分子与有机分子和金属离子相互作用等的研究, 在临床医学、环境检测、法医鉴定、生命科学以及有序介质中生物大分子荧光探针光谱特性的研究等方面, 发挥着极为重要的作用。但由于多维荧光光谱技术中需要处理大量的实验数据,因此在研制仪器的同时, 还要开发许多有实用价值的数学处理方法和多维光谱软件120 世纪70 年代发展起来的同步导数荧光技术在混合物的连续测定中发挥着重要作用, 这一方法的特点是同时扫描激发波长和发射波长, 并对得出的图谱进行微分处理, 使容易重叠的波峰彼此完全分开, 便于得出可靠的测量结果。有人对人血尿中temopo rt in2po lyethylene glyno l 共轭物分别用HPLC、C I 和荧光光谱分析法进行测定, 发现荧光光谱分析法是其中最简便、迅速、灵敏的分析方法, 新一代荧光指示剂如酪氨

时间分辨荧光免疫分析仪特点及性能

时间分辨荧光免疫分析仪特点及性能 时间分辨荧光免疫分析仪采用现代光学、机械、计算机等先进技术,通过标记离子螯合物产生的特异性荧光寿命长、强度高,消除本底干扰荧光;利用激发光波谱宽、荧光发射波谱窄,增强荧光强度,提高分辨率的原理,对临床免疫血样进行定量分析,为临床血样提供灵敏、准确、可靠的数据。 概述 时间分辨荧光免疫法所用的标记物是镧系元素螯合物,利用这类荧光物质荧光寿命长等特点,通过波长和时间两种分辨技术,有效排除了非特异本底荧光的干扰。 特点 1、灵敏度高; 2、标记物制备简单; 3、稳定性好; 4、标准曲线线性范围宽; 5、操作方便。 技术性能 电源:210~240V,50~60Hz;外型尺寸:550mm×600mm×270mm;重量:25 kg;灵敏度:10-13 mol/L;线性度:10-12~10-8 mol/L;快速测试:1秒/样;高稳定性:< ±1 %;工作制:连续运行;安全分类:I类;防电击程度:B型;熔断器:Φ5×20 5A。 应用领域 主要用于对人的血液和其它体液中的各种免疫检测项目进行定量分析,它可以适用与传染病检查、内分泌科检查、细胞学检查、肿瘤科检查等。随着检验医学的发展,对微量、超微量的测定会越来越多,同时RIA的污染问题会越来越被重视,因此,时间分辨荧光分析法具有越来越大的应用空间。 产品特性产品参数 产品特点: 1) 采用进口光源、光学镜片及光电倍增管,保证检测结果的稳定性及可靠性; 2) 测试速度快,1秒/样本; 3) 标本灵活,适合任意份标本量; 4) 全中文软件,操作界面简便; 5) 是国内首家研发出成功,填补国内空白,并获得国家科技进步二等奖。 技术参数: 1) 测定原理:时间分辨 2) 激发光源:进口氙灯 3) 灵敏度: 10 -17 mol/孔(Eu 3+) 4) 线性范围:10 -13 mol/孔~10 -17 mol/孔 5) 高稳定性:<5 % 6) 电源:AC 198~242V 50~60Hz 7) 外型尺寸:710mm×520mm×320mm

荧光分析技术新进展

第27卷第5期 唐山师范学院学报 2005年9月 Vol. 27 No.5 Journal of Tangshan Teachers College Sep. 2005 ────────── 收稿日期:2005-04-02 作者简介:孙继红(1969-),男,河北丰南人,唐山第九中学中教一级教师。 - 19 - 荧光分析技术新进展 孙继红1,钱丹青2 (1.唐山第九中学,河北 唐山 063000;2.唐山学院 机电系,河北 唐山 063000) 摘 要:荧光分析法因具有灵敏度高,线性范围宽等优点。综述了近年来荧光分析技术的发展情况,并对各种荧光分析新技术的特点和应用进行了归纳。 关键词:荧光分析;HPLC ;离子色谱 中图分类号:O657.3 文献标识码:B 文章编号:1009-9115(2005)05-0019-02 近年来荧光分析研究发展迅速,年文献量不断增加。主要应用领域有中西药、临床、生物大分子、食品营养和添加剂等试样。激光诱导荧光法诊断恶性肿瘤,显微荧光法研究药物与细胞的相互,DNA 编序及含量的荧光法测定均是目前受到关注的热点问题。 1 荧光分析新技术 近些年更多的研究者转向充分利用或开发仪器软件技术,以期提高发光分析的选择性和灵敏度,这方面年均论文数量增长了约两倍。刘绍璞先生等率先研究了分子二级散射光谱、共振荧光光谱、共振瑞利散射光谱的分析应用并取得了丰硕成果。郑飞跃等利用解卷积法、黄俊利用相调制技术研究了荧光寿命的测量。潘利华等[1-3]研究了激光诱导荧光寿命测量以及在稀土元素测定中的应用。其它关于金属配合物及镁、铝测定[4][5]及塑封料中铀的测定也有报道[6]。 导数光谱、多维光谱、偏振光谱、磁效应、时间分辨技术、恒能量、固定波长或可变角荧光法等,单独或几种方法的结合并借以化学计量学手段,在提高分析选择性方面具有很大的优越性,而且论文日趋增多,在医药临床、环境检测、石油勘探等领域得到广泛应用。吡哌酸的固体表面延迟荧光测定具有较好的灵敏度[7]。高灵敏检测器以及荧光成像技术对提高分析灵敏度、从有限样品中获取更丰富的化学信息显 示出大的威力。电感偶合检测器件(CCD )[8-10]、增强型CCD (ICCD )[11][12]结合毛细管电泳及激光诱导荧光技术,使得分析检出限显著降低。荧光成像技术[13]可望获得单细胞的化学信息。国外单细胞或单分子检测的研究非常活跃,而上述技术的联合应用对此是必不可少的。 荧光免疫及生化分析持续好的势头。赵启仁等[14]研究了铕标记抗癌胚抗原单克隆抗体C17的应用。周四元等[15]提出对氟苯酚2过氧化氢2辣根过氧化物酶体系酶联荧光免疫法,并用于人血清中乙肝表面抗原和表面抗体测定。姚凤姬等[16]用非标记铕络合物荧光免疫法测定了血清中金属硫蛋白。王敏灿等[17]合成了荧光免疫分析中增强22萘甲酰三氟 丙酮。李建中等用新合成的荧光标记试剂KLUK 标记靶细胞K562,采用时间分辨技术,测量了NK 细胞毒性,具有很好的应用前景。 2 荧光检测技术与其它仪器联用 荧光分析法因具有灵敏度高,线性范围宽等优点,愈来愈引起人们的重视,尤其是近年来激光、计算机、电子学等新技术的飞速发展,加速了荧光分光光度计与其它技术的结合而形成多种多样的新型荧光分析。 荧光分光光度计的联用技术与紫外可见分光光度计的联用技术有许多相似之处。首先它可以作为一种仪器的检测器,其次可以作为一个独立的主体与其它附件相连接,形成一种新的测试系统,最后它还可以与其它分析技术相结合构成一种新型的分析仪器。 2.1 荧光检测与HPLC 联用 液相色谱检测器种类很多,灵敏度较高、选择性较好的荧光检测器在进行微量分析中经常使用。如许多芳香族化合物如蒽、菲、芴等在特定条件下发出特征荧光,利用HPLC 的荧光检测器可以同时测定上述物质。Tanabe 等[18]设计一种供HPLC 用的多波长荧光检测系统,有4个干涉滤光片和光电倍增管通道;Gluckman 等[19]研制的荧光检测器,流通池为150μL ,可用于毛细管HPLC 和超临界色谱,其最小检测量为0.2pg 。 2.2 荧光检测与离子色谱联用 Mho 等人[20]研制一套供离子色谱用的双光束激光激发间接荧光检测器,它用具有荧光的淋洗离子维持恒定背景信号,当待测离子淋出时,信息观测信号减少。这种荧光检测器可以检测纳克级阴离子,方法灵敏度非常高。 2.3 激光光源引入荧光分光光度计 激光光源引入荧光计在我国开发较早,也是目前应用比较成熟的仪器之一,如测铀仪就是其中的代表[21]。时间分辨激光荧光分光光度计的研制成功,大大改善了荧光仪器的性能,这类仪器已广泛应用于环境监测、稀土分析、冶金、化

时间分辨荧光分析技术

1.1 时间分辨荧光分析技术 时间分辨荧光生化分析技术是基于稀土荧光配合物特殊的荧光性质而建立起来的,自1978年提出以来[1],已广泛的应用于免疫分析、核酸测定、荧光显微镜成像、细胞识别、单细胞原位测定、生物芯片等生化领域,并发展出了相应的时间分辨荧光免疫测定法、时间分辨荧光DNA 杂交测定法、时间分辨荧光显微镜成像测定法、时间分辨荧光细胞活性测定法及时间分辨荧光生物芯片测定法等分支。 本节主要对稀土荧光配合物的发光机理、荧光性质,时间分辨荧光测定的原理,时间分辨荧光免疫分析技术,时间分辨荧光显微镜成像技术的研究进展等加以介绍。 1.1.1 稀土荧光配合物的发光机理及荧光性质 稀土元素指的是元素周期表中IIIB 族的镧系元素以及钪和钇,共17种元素。其中镧系元素的外层电子结构为4f 0-145d 0-106s 1-2,由于5s 和5p 电子对4f 电子的屏蔽作用,导致这些金属及其离子的性质十分相似。图1.1给出了四种三价稀土离子的基态及激发态电子能级图[2]。 1020 152530355 E N E R G Y ,103c m -1 6 H 5/2 G 5/2 6 H 15/2 7 F 0 F 2D 0 5D 1 7F 6 F 5 4 5D 3 13/2 4 9/2 Sm 3+ Eu 3+ Tb 3+ Dy 3+ H 9/2 图1.1 部分三价稀土离子的电子能级图 Fig. 1.1 Electronic energy levels of certain lanthanide(III) ions 大部分稀土离子本身是不具有荧光性质的,只有Sm 3+、Eu 3+、Tb 3+和Dy 3+的水溶液在紫外光或可见光的激发下能够发出微弱的荧光。当Sm 3+、Eu 3+、Tb 3+和Dy 3+与某些有机配位体形成配合物时其荧光强度会显著增强,这种发光是基于配合物内由配位体到中心稀土离子的能量转移所产生的[3-8]。以铕(III)配合物为

荧光光谱分析技术概述

荧光光谱分析技术概述....................................................................................................................... 1荧光光谱分析原理.1 ................................................................................................................................... 4荧光分析法.2 ........................................................................................................................ 4定性分析法.2.1 4 ......................................................................................................................... 2.2定量分析法 荧光光谱分析原理1光谱法是辐射能与物质组成和结构的相光学分析法 分为光谱法和非光谱法,不涉及能级跃非光谱法不包含物质内能的变化,互作用,以光谱的出来为基础,迁,而是辐射方向和物理性质的改变。 光学分析方法分类 1表分析法特征具体方法 射线荧光光谱、分子荧X光谱法原子发射光谱、原子荧光光谱、光的发射光光谱、分子磷光光谱、化学发光、电子能谱、俄歇电子能谱射线原子吸收光谱、紫外-可见分光光度法、红外光谱、X光的吸收吸收光谱、核磁共振光谱、电子自旋共振光谱、光声光谱拉曼光谱光的散射 比浊法、散射浊度法光的散射非光谱法 折射法、干涉法光的折射 X射线衍射、电子衍射光的衍射 旋光色散法、偏振法、圆二向色法光的转动 , 光波愈短荧光发光机理可按量子理论通俗解释: 光具有波动、粒子二重性, 当某些物质受到紫外线或较短波长其光子能量愈强; 反之波长愈长其能量则弱。当, , 吸收了全部或部分光能量, 使其分子的能级升高而处于亚稳定状态光照射其中一部分化为热量, , 这些分子就会立即释放多余的能量恢复到稳定的基态时因为有部分能, 向基态跃迁时是以“光”形式释放而消失。但对某些物质而言, 光波愈, 量被消耗所以重新发出的光能量总比吸收的能量要小。由于能量愈小, , 所以物质所激发的荧光总比照射它的光波要长。磷光的能量较荧光还要小长, 这就是两者的区别。寿命可达数小时之久所以它的波长比荧光要长, , 如果物质的分子吸收了紫外和可见区电磁辐射后,它的电子能跃迁至激发本身又回复到基态如果吸收辐然后以热能的形式将这一部分能量释放出来,态,再发射的波射能后处于电子激发态的分子以发射辐射的方式释放这一部分能量, 长可以同分子所吸收的波长相同,也可以不同,这一现象称为光致发光。最常见的两种光致发光现象是荧光和磷光。这两种光致发光的机理不同,荧光发光过程 -3s-10s的时间间隔。而磷光则往往能延续10因在激发光停止后10s内停止发光,此,可通过测定发光寿命的长短来区分荧光和磷光。 一些化学物质从外界吸收并储存能量而进入激发态,当其从激发态再回复到基态时,过剩的能量以电磁辐射的形式放射(即发光)称之为荧光。可产生荧光的分子

时间分辨荧光免疫分析法(Time-resolved fluoroimmunoassay)操作

时间分辨荧光免疫分析法(Time-resolved fluoroimmunoassay)是在荧光分析的基础上发展起来的一种特殊的荧光分析。它利用具有长效荧光的稀土金属(Eu、Tb、Sm、Dy)作标记物,充分利用激发光与发射光之间的降移与发射光较长的半寿期,在激发光后延时测量发射光的强度。从而所测的荧光不受激发光和被检物中的非特异荧光干扰,提高了检测的特异性与灵敏度。在激发光后延时400微秒,测量400微秒,间歇200微秒后进入下一个测量周期,每一个周期为1000微秒。对每一个样品实施1秒钟的测量,意味着完成了1000个周期的测量,测量精确度极高。 (一)Auto DELFIA自动时间分辨荧光免疫分析仪开/关程序 1 开机 1.1 依次打开样品处理器电源,微孔板处理器电源,打印机电源。 1.2 打开计算机显示器。 1.3 启动计算机。 1.4 运行系统软件:Auto DELFIA与Multicalc系统软件在Windows启动后自动运行。Auto DELFIA workstation软件用于控制Auto DELFIA的运行,MultiCalc的主要功能是与主机通讯,对测试结果进行评估和对质控及其他数据处理(可通过双击屏幕上图标不运行)。在MultiCalc Auto DELFIA环境下,只有键盘有效,鼠标无效。 2 开机后准备 1.1 清洗液准备 1.1.1 微孔板处理器洗液(250ml浓缩液+600ml去离子水混合),每做一块板至少1升用量,洗液在密闭条件可保存2周时间。 1.1.2 准备样品处理器洗液(50ml浓缩液+5000ml去离子水混合),每做一块板至少需要800ml洗液,洗液在密闭条件下可保存1周时间。 1.2 样品处理器准备 1.2.1 在Wash bottle(清洗液瓶)、Rinse bottle (冲洗液瓶)分别注入足够用量的清洗液和去离子水,倒空废液瓶。拧紧各瓶盖,确保废液瓶管路向下。 1.2.2 如样品需要稀释,放入稀释杯和稀释液。系统安装时已调好有71ml和190ml两种规格的稀释杯,若使用71ml的稀释杯,从最右端开始放置,如有预处理样品,则不能使用190ml 的稀释杯。不能使用多个稀释杯。 1.3 微孔板处理器准备。

时间分辨荧光免疫分析法产前筛查原理与操作规程

时间分辨荧光免疫分析法产前筛查原理与操作规程 一、产前筛查定义及其原理 产前筛查(Prenatal Screening)是指通过经济、简便和较少创伤的检测方法,从孕妇群体中发现怀有某些先天缺陷胎儿的高危孕妇,以便进而进行诊断,以最大限度地减少异常儿的出生。血清学标志物产前筛查已成为非侵入性产前诊断的重要方法。目前产前筛查的两种主要疾病是唐氏综合征(Down’s Sydrome,DS;又称21三体综合征)和胎儿神经管缺陷(Neural Tube Defects,NTDs),也包括一部分18三体综合征。产前筛查可以在妊娠早期(7~13周)或中期(14~21周)进行。目前用于产前筛查的血清学标志物有:甲胎蛋白(AFP)、游离β- )、妊娠相关血浆蛋白(PAPP-A)、绒毛膜促性腺激素(F-β-hCG)、游离雌三醇(uE 3 抑制素A(inhibin A)等。产前筛查实验测量通用评价指标为中位值倍数(MOM),正常妊娠特定的MOM=标本检测浓度/相应孕周中位值浓度。产前筛查系统由体外诊断试剂、检测仪器和筛查分析软件组成。检测仪器配合体外诊断试剂检测出孕妇血清中标记物(AFP、F-β-hCG、PAPP-A等)的浓度,将检测数据及孕妇相关因素输入筛查分析软件中,即可得出唐氏综合征(DS)和神经管缺陷(NTD)筛查的结果。由于目前的技术水平的限制,产前筛查技术都不能做到筛查100%正确。假阴性病例因此会误诊,假阳性病例一般在产前诊断实验时被纠正。 二、唐氏综合征的产前筛查 唐氏综合征是人类最常见的一种染色体病,发病率约1/800~1/600,男性多于女性。1866年英国医生Langdom Down 首次对此病进行临床描述,因此命名称为Down,s Syndrome,简称DS。1959年Lejeune首先发现本病的病因是多了一条21号染色体,故又将其命名为21三体综合征。唐氏综合征的主要临床表现:严重智力低下、愚型面容,约50%伴有先天性心脏病、小头畸形等发育异常。目前对DS尚未有治疗方法,因此通过产前筛查找出高危孕妇,对其进行产前诊断是防止患儿出生的重要手段。 1.以孕妇年龄作为筛查指标 最早用于DS的筛查指标为孕妇年龄。早期研究发现,DS的发病率随孕妇年龄增高而增高,1977年Hook和Chambers报道了孕妇年龄在20~30岁之间,发病率呈线性增加,而在33岁左右呈对数增加,孕妇年龄为35岁时,发病率约1/384,40岁时约1/110,比30岁时增加了8倍,如图1。一般认为35岁以上

时间分辨荧光免疫分析的原理

一、前言 近百年来,“特效试剂”一直是分析化学家追求的目标。所谓“特效试剂”,就是指的是只与一种待测物质反应的试剂。事实上,目前使用的所谓的“铜试剂”、“铁试剂”、“硝酸试剂”等等,都是“盛名之下,其实难副”的。20世纪40-50年代追求合成特效试剂的狂热,早已降温。正在分析化学家心灰意冷之际,人们从免疫学与生物化学的成就看到了这一理想的曙光:免疫系统简直就是天然存在的一部特异性试剂的合成机器。抗原与抗体之间的免疫反应具有高度的特异性,这种识别的专一性超过酶对底物的识别水平,抗原-抗体复合物的稳定常数一般为109,有些高达1010-1015,具有很高的稳定性。免疫反应的特点使得免疫分析已成为一个跨学科的新型分析技术,广泛应用于临床体液分析、药物分析、环境分析、食品分析和生物化学研究,尤其在毒品的鉴定、吸毒人员的认定和疾病的诊断方面,发挥了重要作用。 时间分辨荧光免疫分析技术(TRFIA)是自80年代以来新发展起来的一种新型分析技术,与其它免疫分析技术相比,有其独特的优点。它克服了放射性免疫分析法(RIA)中放射性同位素带来的污染问题;克服了酶免疫分析法(EIA)中酶不稳定的缺点;而且,由于TRFIA法能够很好的消除背景荧光的干扰,使其灵敏度比普通荧光法(FIA)高出几个数量级。正是由于TRFIA的独特优点,使得它成为免疫分析中最有发展潜力的一种分析方法。 二、时间分辨荧光免疫分析的原理 时间分辨荧光免疫分析的原理就是使用三价稀土离子(如Eu3+、Tb3+、Sm3+、Dy3+)作为示踪物,通过这些稀土离子与具有双功能结构的螯合剂以及抗原形成稀土离子-螯合剂-抗原螯合物。当标记抗原、待测抗原共同竞争抗体,形成免疫复合物,由于免疫复合物中抗原抗体结合部分就含有稀土离子,当采取一些办法将结合部分与游离部分分开后,利用时间分辨荧光分析仪,即可测定复合物中的稀土离子发射的荧光强度,从而确定待测抗原的量。 正常情况下,免疫复合物中的稀土离子自身荧光信号很微弱,若加入一种酸性增强液,稀土离子从免疫复合物中解离出来,和增强液中的β-二酮体、三正辛基氧化膦、Triton X-100等成分形成一种微囊。后者被激发光激发后,则稀土离子可以发出长寿命的极强的荧光信号,使原来微弱的荧光信号增强将近100万倍。 采用时间分辨技术测量荧光,采用了门控技术,它是使背景荧光信号降低到零以后,再测定长寿命标记物的荧光。 三、时间分辨荧光分析的测量方法 (1)解离增强测量法 解离增强测量法是解离增强稀土离子荧光方法,简称DELFIA法。通过双功能基团把Eu3+或Sm3+螯合到抗原、抗体或SA上,免疫反应后,部分标记物结合到固相载体上,未结合的标记物被洗掉。最后用低pH值的增强液,把Eu3+或Sm3+

化学发光免疫技术与时间分辨技术的异同点

化学发光免疫技术与时间分辨技术的异同点 概念 化学发光免疫分析(chemiluminescenceimmunoassay,CLIA),是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。 时间分辨荧光免疫测定(TRFIA)是以镧系元素标记抗原或抗体,并与时间分辨测定技术结合而建立起来的一种新型非放射性微量免疫分析技术,它根据镧系元素螯合物的发光特点,用时间分辨技术测量荧光,同时检测波长和时间两个参数进行信号分辨,可有效地排除非特异荧光的干扰,极大地提高了分析灵敏度。 原理 化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测 量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。鲁米诺(1umino1)、异鲁米诺(isolumino1)及其衍生物、吖啶酯(acIidinim ester)衍生物、辣根过氧化物酶(horseradishperoxidase,HRP)和碱性磷酸酶(alkaline phosphatase,ALP)是目前CLIA中使用最多的四类标记物。 时间分辨荧光免疫测定(TRFIA)基本原理 用三价稀土离子及其鳌合剂作为示踪物,代替荧光物质、同位素或酶,标 记蛋白质、激素、抗原、抗体、核酸探针等物质,当免疫反应体系发生后,根据稀土离子螯合物的荧光光谱的特点,用时间分辨荧光分析仪测定免疫反应最后产物中荧光强度。根据荧光强度或相对荧光强度比值,来判断反应体系中分析物的浓度,达到定量分析之目的。 应用 化学发光免疫分析技术(CLIA) 各种激素、病毒抗原抗体、肿瘤标志物、感染性疾病、心脏标志物、治疗药物检测等各种抗原、抗体和半抗原 时间分辨荧光免疫测定(TRFIA)应用广泛 1.多肽类:蛋白质、激素(甲状腺激素、甾体类激素)。 2.病原体抗原/抗体 3.病毒性肝炎标志物 4.肿瘤相关抗原 5.药物 6.核酸 优缺点

(SOP)时间分辨荧光免疫分析实验操作指南

时间分辨荧光免疫分析实验操作指南以及注意事项

第一节时间分辨反应过程图 TRFIA的操作要点 优质的试剂,良好的仪器和正确的操作是保证TRFIA检测结果准确可靠的必要条件。 下面列出TRFIA各个操作步骤的注意要点,严格遵照规定操作. 1、样本的采取和保存 TRFIA测定的样本一般为血清。不能使用含抗凝剂EDTA和柠檬酸的样本,因为二者可以螯合铕,使测定值降低。血清样本可按常规方法采集,溶血和脂血样本可能会影响测值。 样品在2℃-8℃可以保存3-5天,如果需要长期保存,请-20℃保存,避免反复冻融。冻结血清融解后,蛋白质局部浓缩,分布不均,宜轻缓充分混匀,避免气泡,可上下颠倒混和。不要把样本保存在室温,室温放置48小时可能会导致结果不稳定。 2、试剂的准备 整个实验过程应尽量在干净无尘的环境下进行 实验前应检查试剂盒的出厂日期以确定试剂盒是否过期,一般自产品检验合格出厂日期起有效期为一年。 按试剂盒说明书的要求准备实验中需用的试剂。TRFIA中用的去离子水,包括用于洗涤的,应为新鲜的和高质量的去离子水。从冰箱中取出的试验用试剂应待其温度与室温平衡后使用。试剂盒中本次试验不需用的部分应及时放回冰箱保存。 试剂盒中的标准品或铕标试剂若是冻干的状态,第一次开盒做实验在加去

离子水溶解标准品或铕标后,请不要立刻开始使用,静置10分钟左右待其溶解完全后再开始。 板条若未能一次用完,剩余板条用塑料袋(内有干燥剂)封口后密封保存。 TRFIA受反应温度的不恒定、操作误差以及铕标记物的稳定性等因素的影响,不同日期的荧光值会有所波动,因此在定量测定中,每批测试均须用一系列不同浓度的参考标准品在相同的条件下制作标准曲线。 3、加样 在TRFIA中一般有3次加样步骤,即加样本,加铕标记物,加增强液。加样时应将所加物加在微孔板的底部,避免加在孔壁上部,不可溅出,不可产生气泡。 加样本一般用微量加样器,按规定的量加入板孔中。加不同的样本应更换吸嘴,以免发生交叉污染。加铕标记和增强液时可用定量多道加液器,使加液过程迅速完成。 连续加样器使用时要连续流畅,并不是加样越慢越好! 加样时检测吸嘴是否堵塞,加量是否足够,注意吸头之间是有差异的。 加样品时把样品按12个一排排好,做时每加样一个,就把它前移一排,这样不容易出错。 注意按操作步骤计算试剂的量是否充足,特别是使用全自动仪器时! 使用干净的一次性容器配制铕标记物。铕标记物的污染是造成实验本底增高的首要原因。注意铕标记物的瓶盖不要与标准品瓶盖混用;所有接触过铕标记物的用品使用完毕应该丢弃,不能重复使用。注意铕标记物原液和工作不要污染实验台面、加样枪及试剂盒中的其他组份。 4、孵育 在TRFIA中一般有一次或两次抗原抗体反应,即加样本和铕标记物后。抗原抗体反应的完成需要有一定的温度和时间,这一保温过程称为孵育,或者温育。 目前TRFIA常用模式在微孔板中进行,属固相免疫测定,抗原、抗体的结合只在固相表面上发生。以抗体包被的夹心法为例,加入板孔中的样本,其中的抗原并不是都有均等的和固相抗体结合的机会,只有最贴近孔壁的一层溶液中的抗原直接与抗体接触。这是一个逐步平衡的过程,因此需经扩散才能达到反应的

时间分辨荧光免疫分析方法的光谱研究

第24卷,第5期 光谱学与光谱分析Vol 124,No 15,pp5962599 2004年5月 Spectroscopy and S pectral Analysis May ,2004  时间分辨荧光免疫分析方法的光谱研究 郭周义,田 振,贾雅丽 华南师范大学激光生命科学研究所,广东广州 510631 摘 要 时间分辨荧光免疫分析法是用三价稀土离子及其螯合剂作为示踪物,标记蛋白质、激素、抗体、核 酸探针或生物活性细胞,待反应体系(如:抗原抗体免疫反应、生物素亲合反应、核酸探针杂交反应、靶细胞与效应细胞的杀伤反应等)发生后,用时间分辨荧光技术测定反应体系中分析物的浓度,达到定量分析的目的。它之所以能够继放射性同位素标记、酶标记、化学发光、电化学发光后成为一种更新、更灵敏的检测方法,主要取决于它所用标记物三价稀土离子螯合物独一无二的物理及化学性质。主要报导了对使用的长寿 命荧光团Eu 3+ 螯合物的光谱研究结果,时间分辨技术及荧光增强技术的原理。实验表明:选择336~337nm 的激发波长,有利于Eu 3+ 的配位二酮体的激发及能量转移。 主题词 免疫分析;荧光增强技术;时间分辨光谱技术;Eu 3+螯合物中图分类号:O657132 文献标识码:A 文章编号:100020593(2004)0520596204  收稿日期:2003203226,修订日期:2003206228  基金项目:广东省科技攻关重点项目(2002C60113);广州市天河区科技计划项目(2002XGP06);广东省自然科学基金项目(No 1015012, No.031518);教育部科学技术研究重点项目(No 102113)资助  作者简介:郭周义,1965年生,华南师范大学激光生命科学研究所教授,博士生导师 引 言 最近几年发展起来的时间分辨荧光免疫分析方法(TR 2 FIA )是超微量免疫检定法的一大突破。由于使用了时间分辨光谱技术和荧光增强技术,使荧光免疫分析的灵敏度得到了极大提高。1983年Petterson [1]和Eskola [2]首先将时间分辨荧光光谱技术应用于免疫分析的研究中。目前,TRFIA 的最低检出值已达10-19mol ?well -1,远远超过酶标记免疫分析法(EIA )的10-9mol ?well -1,放射免疫分析法(RIA )的10-15mol ?well -1和发光免疫分析法(L IA )的10-15mol ?L -1。 稀土离子是金属离子,若用来直接标记抗原、抗体,标记率很低,一般使用含有双功能基团的螯合剂,形成稀土离子2螯合剂2抗原(或抗体)的螯合物。稀土离子的荧光,不仅与自身的能级结构有关,而且与螯合剂的性质有关。螯合物不同,稀土离子的激发光和发射光也会有所不同。 1 稀土离子的吸收光谱 镧系离子的电子排布为 1s 2 2s 22p 63s 23p 63d 104s 24p 64d 104f n 5s 25p 6(n =0~14),其主要价态有二价、三价和四价。三价态是特征氧化态,其 基组态是4f n (n =0~14),下一个激发态是4f n -15d [3]。 稀土离子吸收光谱[4]的产生可归因于三种情况。111 f —f 跃迁光谱 指f n 组态内,不同J 能级间跃迁所产生的光谱。它的特点是: (1)发光弱。这主要是因为f —f 跃迁是宇称选择规则禁 阻的。虽然在溶液和固态化合物中,由于配体场微扰,也能 观察到相应的光谱,但相对于d —d 跃迁来说,也是相当弱的。 (2)类线性的光谱。谱带的尖锐原因是处于内层的4f 电子受到5s 2,5p 6电子的屏蔽,受环境的影响较小。 (3)谱带的范围较广。在近紫外,可见区和近红外区内 都能得到稀土离子(Ⅲ )的光谱。112 f —d 跃迁光谱 4f n 向4f n -15d 的跃迁是组态间的跃迁。这种跃迁是宇称选择规则允许的,因而4f —5d 的跃迁是较强的;三价离子的吸收带一般在紫外区出现;由于5d 能级易受周围离子的配体场影响,相对于f —f 跃迁来说,谱带变宽。113 电荷跃迁光谱 稀土离子的电荷跃迁光谱,是指配体向金属发生电荷跃迁而产生的光谱,是电荷密度从配体的分子轨道向金属离子轨道进行重新分配的结果。镧系络合物能否出现电荷跃迁带取决于配体和金属离子的氧化还原性。一般在易氧化的配体 和易还原为低价离子(Sm 3+,Eu 3+ ,Te 3+,Yb 3+和Ce 4+)的络合物光谱中易见到电荷跃迁带。谱带的特点是有较强的强度和较宽的宽度。

时间分辨荧光免疫分析技术及临床应用

时间分辨荧光免疫分析技术及临床应用 武学成1,2(综述),何 林1,周克元2(审校) (1.深圳人民医院检验医学部,广东深圳518001;2.广东医学院,广东湛江524001) 中图分类号:R44616 文献标识码:A 文章编号:100622084(2006)0720434203 摘要:标记免疫分析技术的出现使临床生化分析由常量分析向微量分析转变。20世纪80年代出现的时间分辨荧光免疫分析技术,以其独特的优势成为最有发展前途的非放射免疫标记技术。本文主要介绍时间分辨荧光免疫技术基本原理、基础试剂、基本技术以及近年来临床应用。 关键词:时间分辨荧光免疫分析技术;铕;标记技术 The R esearch and C linical Application of Time2resolved F luoroimmunoassay WU Xue2cheng1,2,HE Lin1, ZHOU K e2yuan2.(1.The Medical Laboratory Department o f Shenzhen People′s Hospital,Shenzhen518001,China; 2.Guangdong Medical College,Zhanjiang524001,China) Abstract:The marked immunoassay technique gives the changes from macroanalysis to microanalysis.T ime2 res olved fluoroimmunoassay technology is a non2radio2immunity labeling technique having m ost perspective future because of its unique advantage since1980s.This article reviewed s ome aspects about it including fundamental principle,basic reagent,basic technique and the its clinical application in recent years. K ey w ords:T ime2res olved fluoroimmunoassay;Europium;Labeling technique 随着生物标记技术的不断进步,免疫分析技术得到了长 足的发展。免疫分析技术逐步由放射免疫分析技术向非放射 免疫技术转变。在此期间,涌现了一大批非放射免疫技术,例 如酶免分析技术、化学发光免疫分析技术、时间分辨荧光免疫 分析技术(time2res olved fluoreimmuoassay,TRFI A)等。但是从灵 敏度来说只有时间分辨荧光免疫分析技术可与放射免疫媲 美。TRFI A是20世纪80年代迅速发展起来的的一种公认的 最有发展前途的非放射免疫标记技术。 1 时间分辨荧光免疫分析技术的基本原理 TRFI A是用镧系金属离子作为示踪物标记蛋白质、多肽、 激素、抗体、核酸探针或生物活性细胞,与其螯合剂、增强液 (有一部分不需要)在待反应体系(如:抗原抗体免疫反应、生 物素亲和素反应、核酸探针杂交反应、靶细胞与效应细胞的杀 伤反应等)发生反应后,用时间分辨荧光仪测定最后产物中的 荧光强度,根据荧光强度和相对荧光强度比值,推测反应体系 中分析物的浓度,达到定量分析的目的。 2 时间分辨荧光分析技术简介 TRFI A的基础试剂包括示踪剂、稀有元素双功能螯合剂、 分析缓冲液、增强溶液。基本技术包括包被技术、标记技术、 反应模式。 2.1 基础试剂 2.1.1 示踪剂的选择和使用 所使用的稀土元素主要位于 元素周期表中的ⅢB族,包括钪(scandium,SC)、钇(yttrium,Y) 和镧系元素。到目前为止,只有铕(europium,Eu)、铽(terbium, Tb)、钐(samarium,Sm)、钕(neodymium,Nd)、镝(dysprosium,Dy) 等5种被用作TRFI A示踪剂,尤以Eu3+常用。一般用Eu2O3 制备成EuCl 3 ,再经纯化和常温真空抽干,然后干燥保存。用 Eu3+等镧系元素作为示踪剂有以下特点:①荧光物质激发光 谱曲线的最大吸收波长和发射光谱的最大发射波长之间的 差,称为S tokes位移。普通荧光物质荧光光谱的S tokes位移 只有几十纳米,激发光谱和发射光谱通常有部分重叠,互相干 扰严重。游离铕的荧光信号虽然相当微弱,但当Eu3+与螯合剂形成螯合物时,产生分子内和分子间能量传递,使Eu3+的荧光强度显著增强,S tokes位移达200nm,很容易分辨激发光和发射光,从而排除激发光干扰;②镧系元素与普通的荧光团比较,镧系元素离子螯合物荧光的衰变时间(decay time)长,为传统荧光的103~106倍。稀土离子及一些常见荧光物质的荧光寿命(见表1)。镧系元素的荧光不仅强度高,而 且半衰期也很长,介于10~1000μs之间。这样,用时间分辨荧光仪测量Eu3+螯合物的荧光时,在脉冲光源激发之后,可以适当的延迟一段时间,待血清、容器、样品管和其他成分的短半衰期荧光衰变后再测量,这时就只存Eu3+标记物的特异性荧光,即通过时间分辨,极大地降低了本底荧光,实现了高信噪比,这是TRFI A高灵敏度和低干扰的原因之一。如果在使用链霉亲合素2生物素系统,可更好地降低非特异性荧光的干扰[1];③镧系螯合物激发光光谱较宽,最大激发波长在300~500nm,可通过增加激发光能量来提高灵敏度。而它的发射光谱带很窄,甚至不到10nm,可采用只允许发射荧光通过的滤光片,进一步降低本底荧光;④Eu3+等镧系标记物与放射性同位素相比不受半衰期的影响。如125I标记试剂最长可用3个月,酶标记物常因其纯度、显色底物不稳定等问题,使其应用受到限制。Eu3+与双功能螯合剂螯合,可形成稳定的螯合物,稳定性很高,2年内能保证质量。再者,Eu3+标记物体积很小(为原子标记),标记后不会影响被标记物的空间立体结构,这既保证了被检测物质的稳定性(尤其对蛋白质影响更小),又可实现多位点标记[2]。标记物稳定就可以对标记物进行多次激发,通过对每次激发的荧光信号累加后取平均值的办法,可大大减少偶然误差,提高准确度。同时多位点标记技术,不仅使检测更灵敏,也使一个试剂盒能够同时检测出两种或两种以上的项目。 2.1.2 稀有元素双功能螯合剂 稀土元素作为金属离子,很难直接与抗原抗体结合,因此在标记时需要有一种双功能基团的螯合物,它们分子内或带氨基和羧基或带有异硫氰酸基和羧酸基,一端与稀土离子连接,一端与抗原或抗体的自由氨基(组氨酸、酪氨酸)连接。目前常用镧系元素标记的双功能螯合剂有异硫氰酸2苯基2二乙胺四乙酸(IC B2E DT A)、β2萘甲酰三氟丙酮(β2NT A)、二乙基三胺五乙酸环酐(DTPAA)、4,72二氯磺基苯21,102菲罗啉22,9二羧酸(BCPDA)及对2异硫氰酸2苄基2二乙三胺四乙酸(P2IC B2DTT A)等5种。Y uan等[3]合成出一种稳定的能发出强烈荧光的Eu3+络合剂4,4′2二(1,1′,2,2′,

荧光免疫技术

第八章荧光免疫技术 FluoreSCenCe ImmunoaSsay 第一部分目的要求和教学内容 一、目的要求 掌握:荧光免疫技术原理、类型及临床应用,常用的荧光物质;熟悉:荧光免疫技术 的技术要点;了解:荧光标记物的制备与保存,镧系稀土元素标记物的制备,荧光免疫技术主要类型的技术要点。 二、教学内容 1.荧光标记物的制备:荧光和荧光物质,荧光标记物的制备。 2.荧光免疫显微技术:基本原理,技术类型,技术要点,方法评价,临床应用。 3.荧光免疫测定技术:时间分辨荧光免疫测定(基本原理,技术类型,技术要点,方法评价和临床应用);荧光偏振免疫测定(基本原理,技术类型,技术要点,方法评价和临床应用)。 第二部分测试题 一、选择题 (一)单项选择题(A型题) 1.如下有关荧光免疫技术正确的提法 A.直观性检测抗原和抗体 B.直观性检测抗原 C.直观性检测抗体 D.间接检测抗原或抗体 E.间接检测抗原和抗体 2.荧光素易受温度影响,操作时通常选择较佳的温度 A.10~15℃ B.15~20℃ C.20~25℃ D.25~30℃ E.30~35℃ 3.荧光抗体保存3~4年,应选择 A.小量分装、4℃ B.瓶分装、4℃ C.瓶分装、-10℃ D.瓶分装,-20℃ E.小量分装、-20℃ 4.下列组成荧光显微镜的结构中,与普通光学显微镜相同的是 A.光源 B.聚光器 C.目镜 D.物镜 E.滤光片

5.下列哪项方法不属于荧光免疫显微技术类型 A.直接法 B.夹心法 C.间接法 D.补体法 E.双标记法 6.荧光抗体染色标本的观察时间 A.当天 B.第二天 C.第三天 D.1周内 E.5天 7.荧光抗体闭接法应标记 A.抗原 B.抗体 C.补体 D.抗抗体 E.抗体及补体 8.荧光显微技术常用于检验血清中各种自身抗体和多种病原体抗体的方法是 A.直接法 B.间接法 C.双抗体夹心法 D.补体法 E.双标记法 9.荧光抗体间接法可检测 A.抗原 B.抗体 C.补体 D.蛋白质 E.抗原和抗体 lO.在荧光显微镜检查中直接影响检测结果的是 A.抗原荧光染色 B.抗体荧光染色 C.补体荧光染色 D.特异性荧光染色 E.非特异性荧光染色 11.主要用于测定各种激素、蛋白质、酶、药物及病毒抗原的技术 A.荧光偏振免疫测定 B.荧光免疫显微技术 C.时间分辨荧光免疫测定 D.底物标记荧光免疫测定 E.流式荧光免疫技术 12.临床药物浓度检测的首选方法

全自动时间分辨荧光免疫分析系统

PerkinElmer Wallac 1235 AutoDELFIA?全自动时间分辨荧光 免疫分析系统 1235 AutoDELFIA?全自动时间分辨荧光免疫分析系统是一个全自动系统,它无需人工操作,十分便利,甚至对整夜运行的测试也是如此。只需装载样品、微孔板以及运行所需的相应试剂,启动仪器并令其执行测试即可。处理器在可控的条件下,会完成DELFIA测试的所有步骤,并为每一个分析物分批提供结果。 AutoDELFIA可连接实验室主机,接受工作列表并返回取得的结果。或者可以在MultiCalc中或使用工作站软件创建工作列表。系统内全部使用条形码,从而最大程度地降低发生错误的可能性。该系统具有极高的承载量,使用同一样品管可进行若干种测试,非常灵活。 AutoDELFIA主要包括三个部分,它们分别是1235-501 AutoDELFIA?全自动微孔板处理器、1297-014AutoDELFIA?样品处理器和1224-8010 AutoDELFIA?

工作站。它们具有强大的功能,简述如下: 一、样品处理系统 ●允许各种原试管上机(2ml-10ml) ●样品及标准品条形码自动输入 ●可装载12个试管架,一次上机432个样品 ●4个加样探针,每一探针具有液面检测功能,凝血自动识别功能。 ●连续操作,样品检测项目自动组合 ●样品自动稀释功能,自动对样品进行5-100倍稀释 ●独特探测系统,可避免样品中的血块和气泡 ●自动清洗装置,样品交叉污染<0.005% ●标准品自动冷藏,标准架可容纳56个标准。 二、实验运行系统 ●24小时待机 ●对同一样品1秒钟检测1000次,确保结果准确 ●可同时装载12块微孔板,容纳8种不同的试剂,一个样品最多同时可检测 8个项目 ●每批可进行1152个检测 ●条形码自动识别,确保操作准确 ●24针洗板机,测量后自动清洗,吸液和冲洗压力自动控制。 ●加样管路自动冲洗,精确度超过1%CV。 ●双试剂加样器,试剂加样器容量0-1000ul,容量为50ul时精确度大于 1%CV。 ●时间分辨荧光计采用氙光源,1us光脉冲,脉冲频率1000/S;双激发光 滤光片转换器,发射光滤光片自动转换,滤光片包括Europium(613nm)、Samarium(645nm)、Terbium(545nm)。 ●可进行多标记项目检测 ●除进行临床常规免疫项目检测外,还广泛应用于新生儿筛查和产前筛查 领域 ●每个血样可同时进行多个项目检测 三、中央控制系统 ●Windows界面,简单,易于操作 ●预装AutoDELFIA?系统软件,Windows NT4.0,及功能强大的 AutoDELFIA?MultiCalc数据处理软件。

相关文档
相关文档 最新文档