文档库 最新最全的文档下载
当前位置:文档库 › 溶度积

溶度积

溶度积
溶度积

溶度积常数

问题思考

①AgCl(s)+(aq)+Cl-(aq);②AgCl===Ag++Cl-。

①②两方程式所表示的意义相同吗?

请分别写出Ca(OH)2 Al(OH)3 Fe(OH)3 的沉淀溶解平衡方程式和在水溶液中的电离方程式

一、溶度积常数(平衡常数):在一定温度下,在难溶电解质的饱和溶液中,各离子浓度幂之乘积为一常数,称为溶度积常数,简称溶度积。用符号Ksp表示。

对于AmBn型电解质来说,溶度积的公式是:Ksp=[A n+]m[B m+]n

请分别写出 Ca(OH)2 Al(OH)3 Fe(OH)3 溶度积K SP表达式

1、已知K sp(AgCl)=1.8×10-10 mol2·L-2,则将AgCl放在蒸馏水中形成饱和溶液,溶液中的c(Ag+)和c(AgCl)是多少?

2、已知K sp(Ag2CrO4)=9.0×10-12 mol3·L-3,现将Ag2CrO4放在蒸馏水中形成饱和溶液,溶液中的c(Ag+)和c(Ag2CrO4)是多少?

溶度积与溶解度的关系

溶度积和溶解度都可以表示物质的溶解能力,溶度积的大小与溶解度有关,它反映了物质的溶解能力。

1、对于相同类型的电解质,K sp越大,其在水中的溶解能力_____________。

2、溶度积K sp 和溶解度均可衡量物质在水中的溶解能力,只有相同类型的物质,才有K sp 越大溶解度越大的结论。

3、同一物质的K sp与___________和有关,与溶液中的溶质离子浓度无关。

二、溶解平衡的移动

AgCl(s)Ag+(aq)+Cl-(aq)

升温:稀释:

加Cl-加Ag+

3、0.01 mol/L AgNO3溶液中滴入0. 1 mol NaCl固体,求溶液中的c(Ag+)?

4、已知Ba SO4饱和溶液中,c(Ba2+)= 0.01 mol/L, 则溶液中c(SO4 2-)=?

5、已知常温下Mg(OH)2的K sp=1.8×10-11,若饱和溶液中c(OH-)=3.0×10-6 mol/L,则溶液中c(Mg2+)=______________。

三、溶度积规则

Q c(离子积):某难溶电解质的溶液中任一时刻离子浓度的乘积

Q c____K sp,溶液过饱和,有沉淀析出。

Q c____K sp,溶液饱和,沉淀与溶解处于动态平衡状态。

Q c____K sp,溶液未饱和,无沉淀析出,若向体系中加入固体难溶电解质,则固体难溶电解质溶解直至溶液饱和。

6、0.1 mol/LNaCl溶液中滴入AgNO3,求Cl-开始沉淀时所需的c(Ag+)?K sp(AgCl)=1.8×10-10 mol2·L-2

7、在1L含0.001mol/L的SO4 2-的溶液中,加入0.01 molBaCl2固体能否使SO4 2-沉淀完全?(已知K sp(Ba SO4)=1.08×10-10 ,当c(SO4 2-)<1×10-5mol/L时视为SO4 2-沉淀完全)

8、求要使0.01mol/L的FeCl3溶液开始沉淀时所需的PH和完全沉淀时溶液的PH?

(已知K sp(Fe(OH)3 )=1×10-38 ,当c(Fe3+)<1×10-5mol/L时视为Fe3+沉淀完全)

四、溶度积常数综合应用

9、已知25 ℃时,K sp[Fe(OH)3]=2.79×10-39,该温度下反应Fe(OH)3+3H

+3++3H2O的

平衡常数K=________。

10、如果BaCO3沉淀中有0.01molBaSO4,在1L此沉淀的饱和溶液中加入多少molNa2CO3才能使0.01molBaSO4完全转化为BaCO3?(K SP(BaCO3)=5.1×10-9,K SP (BaSO4)=1.1×10-10)

作业1、298K,AgCl的溶解度为1.79×10-3g·L-1,试求该温度下AgCl的溶度积。

2、已知Cu(OH)2(s)= Cu2+(aq)+2OH-(aq),K sp=c(Cu2+)c2(OH-)=2×10-20 mol3·L-3。(1)某CuSO4溶液中c(Cu2+)=0.020 mol·L-1,如果要生成Cu(OH)2沉淀,应调整溶液pH值大于。

(2)要使0.2 mol·L-1 CuSO4溶液中Cu2+沉淀较为完全(使c(Cu2+)降为原来的千分之一),则应向溶液里加入NaOH使溶液的pH=________。

3、在实际生产中,通常将难溶于强酸的BaSO4制成易溶于盐酸的碳酸钡,已知25℃时K sp(BaCO3)=5.1×10 -9,K sp(BaSO4)=1.1×10-10。今有0.15 L 1.5 mol/L的Na2CO3溶液可以使多少克BaSO4固体转化掉?

4、工业上用氧化铜制备氯化铜时,先将制的氧化铜(含有杂质FeO)用浓酸溶解得到的氯化铜(溶液中含有一定量的Fe2+)。

(1)从表提供的数据看出,不能直接将溶液PH调到9.6的方法除去Fe2+,原因是。

(2)实际生产中先用次氯酸钠将,然后用试剂将溶液PH值调至适当范围,即可除去铁杂质。

(3)调节溶液PH值宜选用的试剂是(填序号)

A .氢氧化钡

B .碳酸镁

C .氧化铜

D .稀盐酸

1、解析:已知AgCl 的相对分子质量为143.4,则

AgCl 溶解度为; 1791014343

..

?-=1.25×10-5(mol·L -1) 则: C (Ag +

)=C (Cl -)=1.25×10-5mol·L -1 ∴K SP θ={C (Ag +

/θC ){C (Cl -)/θC }=(1.25×10-5)2=1.56×10-10 2、答案 (1)5 (2)6

解析 (1)根据题意:当c (Cu 2+)·[c (OH -)]2=2×10-20时开始出现沉淀,则c (OH -)=2×10-20c (Cu 2+)

mol/L =2×10-20

0.02 mol/L =10-9 mol/L ,c (H +)=10-5 mol/L ,pH =5,所以要生成Cu(OH)2沉淀,应调整pH ≥5。

(2)要使Cu 2+浓度降至0.2 mol/L/1 000=2×10-4 mol/L ,c (OH -)= 2×10-20

2×10-4

mol/L =

10-8 mol/L ,c (H +)=10-6 mol/L 。此时溶液的pH =6。

3、答案 1.1 g

解析 设平衡时c (SO 2-4)=x ,

则 BaSO 4+CO 2-33+SO 2-4

初始溶液的浓度 1.5 0

(mol/L)

平衡时相对浓度 1.5-x x

(mol/L)

K =c (SO 2-4)c (CO 2-3)=c (SO 2-4)·c (Ba 2+)c (CO 2-3)·

c (Ba 2+)=K sp (BaSO 4)K sp (BaCO 3)=1.1×10-105.1×10-9≈0.022。 所以,K =c (SO 2-4)c (CO 2-3)

=x 1.5-x =0.022, 解得x =0.032 mol/L ,即c (SO 2-4)=0.032 mol/L 。

则在0.15 L 溶液中有SO 2-4:0.032×0.15=4.8×10-3 mol ,相当于有4.8×10-3 mol 的

BaSO 4转化为BaCO 3。故转化掉的BaSO 4的质量为:233×4.8×10-3 mol ≈1.1 g 。

4答案:(1)PH = 9.6时,Cu 2+与Fe 2+均完全沉淀,达不到除去杂质的目的。

(2)Fe 2+氧化成Fe 3+

(3)C

溶度积的计算

溶度积的计算 (1)已知溶度积求离子浓度: 例1、已知室温下PbI2的溶度积为7.1×10-9,求在c(I-)=0.1mol·L-1的PbI2饱和溶液中, Pb2+的浓度最大可达到多少? (2)已知溶度积求溶解度: 例2、已知298K 时AgCl 的K sp = 1.8×10-10,求其溶解度S (3)已知溶解度求溶度积 例3、已知AgCl 298 K 时在水中溶解度为1.92×10-4g,计算其K sp。 (4)利用溶度积判断离子共存: 例4、已知298K时,MgCO3的K sp = 6.82×10-6,溶液中c(Mg2+)=0.0001mol·L-1,c(CO32-) = 0.0001mol·L-1,此时Mg2+和CO32-能否共存?

(5)利用溶度积判断沉淀平衡移动方向: 已知:K SP(AgCl)=1.8 ×10-10K SP(AgI)=8.3 ×10-17 往AgCl固体中加入蒸馏水,使其达到溶解平衡, (1)求溶液中c(Ag+)有多大? (2)再向该溶液加入KI,使I-浓度达到0.1mol/L,请判断有没有AgI生成? (6)溶度积与PH: 例5.25℃时,Ksp [Mg(OH)2]= 5.6×10-12, 求Mg(OH)2的饱和溶液中的c(Mg2+)和PH值;若往此饱和溶液中滴入无色酚酞则溶液呈什么颜色? 练习1:在100mL 0.01mol/LKCl 溶液中,加入1mL 0.01mol/L AgNO3溶液,有沉淀(已知AgCl K SP=1.8×10-10)?Ag+沉淀是否完全?(化学上通常认为残留在溶液中的离子浓度小于1×10-5mol/L,沉淀就达完全) 练习2:25℃时Ksp [Fe(OH)2]= 4.9×10-17,Ksp [Al(OH)3]= 1.3×10-33,比较Fe(OH)2、Al(OH)3饱和溶液中溶解度的大小.

难溶电解质的标准溶度积常数表

难溶电解质的标准溶度积常数表 难溶电解质的标准溶度积常数(18,25?) 难溶电解质难溶电解质溶度积溶度积名称化学式名称化学式 -9-17氟化钙CaF 5.3×10 氢氧化锌Zn(OH) 1.2×10 22-9-14氟化锶SrF 2.5×10 氢氧化镉 Cd(OH)(新?) 2.5×10 22-6-31氟化钡BaF 1.0×10 氢氧化铬 Cr(OH) 6.3×10 23-5-13二氯化铅PbCl 1.6×10 氢氧化亚锰Mn(OH) 1.9×10 22-6-16 氯化亚铜CuCl 1.2×10 氢氧化亚铁Fe(OH) 1.8×10 2-10-38氯化银 AgCl 1.8×10 氢氧化铁Fe(OH) 4×10 3-18-9氯化亚汞HgCl 1.3×10 碳酸钡 BaCO 5.4×10 223-9-4二碘化铅PbI 7.1×10 铬酸钙CaCrO 7.1×10 24-9-5溴化亚铜CuBr 5.3×10 铬酸锶SrCrO 2.2×10 4-13-102)溴化银AgBr 5.0×10 铬酸钡BaCrO 1.6×10 4-23-13溴化亚汞HgBr5.6×10 铬酸铅PbCrO 2.8×10 22 4-5-12二溴化铅PbBr 4.0×10 铬酸银AgCrO 1.1×10 224-17-7碘化银AgI 8.3×10 重铬酸银AgCrO 2.0×10 227-122)-15碘化亚铜CuI 1.1×10 硫化亚锰 MnS 1.4×10 -29-44碘化亚汞HgI 4.5×10 氢氧化钴Co(OH) 1.6×10 223-28-16硫化铅PbS 8.0×10 Co(OH)(粉红) 2×10 2氢氧化亚钴 -25-15硫化亚锡 SnS 1.0×10 Co(OH)(新?) 1.6×10 2-22-312) 三硫化二砷AsS 2.1×10 氯化氧铋BiOCl 1.8×10 23-93-142)三硫化二锑SbS 1.5×10 碱式氯化铅PbOHCl 2.0×10 232)-97-15三硫化二铋BiS 1×10 氢氧化镍Ni(OH) 2.0×10 232-48-6硫化亚铜CuS 2.5×10 硫酸钙CaSO 9.1×10 24-36-8硫化铜CuS 6.3×10 硫酸锶 SrSO 4.0×10 4-50-10硫化银AgS 6.3×10 硫酸钡BaSO 1.1×10 24-24-8α-ZnS 1.6×10 硫酸铅PbSO 1.6×10 4硫化锌 -22-5β-ZnS 2.5×10 硫酸银 AgSO 1.4×10 24-27-14硫化镉CdS 8.0×10 亚硫酸银AgSO 1.5×10 23-53-7HgS(红) 4.0×10 硫酸亚汞HgSO 7.4×10 24硫化汞 -52-8HgS(黑) 1.6×10 碳酸镁 MgCO 3.5×10 3-18-9硫化亚铁FeS 6.3×10 碳酸钙CaCO 2.8×10 3-21-10α-CoS 4.0×10 碳酸锶SrCO 1.1×10 3硫化钴 -25-52)β-CoS 2.0×10 草酸镁 MgCO 8.6×10 24-19-9α-NiS 3.2×10 草酸钙CaCO?HO 2.6×10 242-24-7硫化镍β-NiS 1.0×10 草酸钡BaCO 1.6×10 24-252)-5 草酸锶SrCO?HO 2.2×10 2.0×10,-NiS 242-33-7氢氧化铝 Al(OH)(无定形) 1.3×10 草酸亚铁 FeCO?2HO 3.2×10 3242-11-10氢氧化镁Mg(OH) 1.8×10 草酸铅PbCO 4.8×10 224-6-41 氢氧化钙Ca(OH) 5.5×10 六氰合铁(?)酸铁Fe[Fe(CN)]3.3×10 2463 -14-16氢氧化亚铜CuOH 1.0×10 六氰合铁(?)酸铜Cu[Fe(CN)] 1.3×10 26铁(?) -20-8 氢氧化铜Cu(OH) 2.2×10 碘酸铜Cu(IO) 7.4×10 232(?) -8氢氧化银 AgOH 2.0×10

溶液浓度和溶解度的换算

溶液浓度和溶解度的换算 (师大附中高级教师王际定老师撰写) 学习误区: 溶液溶解度和溶解度之间的换算,关键是要掌握溶解度的概念,根据溶解度的概念找出溶质、溶剂和溶液三者间量的关系,如果要计算溶液的物质的量浓度,则必须用上密度。还要注意溶解度是对饱和溶液而言,溶液的浓度则与此无关。 学习点拔: 溶解度是指在一定温度下在100克溶剂中达到饱和溶液所能溶解的溶质的克数。这个概念有四个要点:温度一定,溶液是饱和溶液,溶剂(一般是水)是100克,溶解溶质的克数,这个概念本身告诉了我们溶质、溶剂、溶液三者间量的关系,也告诉了溶液的质量百分比浓度,例如物质A在t℃时的溶解度为xg,则t℃时的饱和溶液中有溶剂(水)100g,溶质Axg,溶液为(100+x)g,质量百分比深度为[x/(100+x)]×100%=质量百分比浓度。如果要求A在t℃时饱和溶液的物质的量浓度,则把溶质除以A的摩尔质量得到物质的量,把(100+x)g除以密度得到溶液的体积(mL),再根据溶液的物质的量概念(或公式)去计算。 例1硝酸钾在60℃时的溶解度为110g,求60℃时饱和硝酸钾溶液中溶质的质量分数。 分析:根据溶解度的概念60℃时饱和硝酸钾溶液中每含100g水,必有110g硝酸钾溶质,则溶液为:(100+110)g,然后根据溶液浓度的计算方法去计算。 解:硝酸钾的质量分数=[110/(100+110)]×100%≈52.4% 答:60℃时饱和硝酸钾溶液中硝酸钾的质量分数为52.4%

例220℃时的饱和食盐水的食盐质量分数为26.5%,试计算20℃时食盐的溶解度。 分析:已知20℃时饱和食盐水中溶质的质量分数,即知道食盐水中溶质和溶液的质量关系,因为溶液是由溶剂和溶质组成,从而可求出溶质与溶剂的质量关系,即可求出溶解度。 解:设溶解度为x,则有: [x/(100+x)]×100%=26.5%x≈36(g) 或假设溶液为100g,则溶质为26.5g,溶剂为73.5g,溶解度为: [26.5g/(100g-26.5g)]×100g≈36g 例3某物质的式量为M,取V1ml该物质质量分数为a%的溶液,加Vml水后溶质的质量分数为b%,试求: (1)若原溶液为饱和溶液时,求该温度下,该物质的溶解度。 (2)原溶液铁物质的量浓度 分析:①已知深度为a%,若为饱和溶液,则溶解度可按公式求得。 解:设溶解度为x [xg/(x+100)g]=a/100x=100a/(100-a) 溶解度为[100a/(100-a)]g/100gH2O (1)已知原溶液的体积为V1ml,求物质的量浓度C,关键是求出V1ml溶液中

难溶盐溶度积的测定

电导法测定PbSO 4的溶度积 张玉 吴玲 一、实验目的 (1)掌握电导法测定难溶盐溶解度的原理和方法; (2)掌握电导率仪的使用方法; (3)注意有毒物质的排放。 二、基本原理 难溶电解质在水中会建立一种特殊的动态平衡。尽管难溶电解质无法溶解, 但仍有一部分阴阳离子进入溶液, 当这两个过程的速率相等时, 难溶电解质的溶解就达到平衡状态, 这样的平衡状态叫沉淀溶解平衡, 其平衡常数叫溶度积。在一定温度下, 一种难溶电解质的饱和溶液中形成一种多相离子平衡, 可表示为: AmBn( s) ? nAm+ ( aq) + mBn- ( aq) K sp= αn (Am+ ) αm ( Bn- ) K sp 称为溶度积常数, 简称溶度积。若能测出难溶电解质的饱和溶液中相应离子浓度, 就可计算出溶度积。难溶盐的饱和溶液浓度很低,可以把浓度当做活度处理,即c ≈α,所以: K sp= cn (Am+ ) cm ( Bn- ) 难溶盐PbSO 4在其饱和溶液中存在如下溶解平衡: PbSO 4(s )?Pb 2+(aq )+ SO 42-(aq ) 其溶度积为: K sp= c (Pb 2+ ) c (SO 42-)=c (PbSO 4) 本实验采用电导法测定PbSO 4的溶度积,惠斯顿电桥 G K G A L L A G cell ?=?=?? =κκ 由电导率仪测出:O H pbso pbso 244κκκ-=溶液 由离子独立移动定律,查表计算:

)]2 1()21([2)(24244 - ∞+∞∞+=≈so pb pbso m m m pbso λλλλ 4 4)(3pbso pbso m m ol C λκ=?- 或 4 4 1000)(3pbso pbso dm mol C λκ?=?- 所以: K sp=c 2(mol.m -3) 因温度对溶液的电导有影响,本实验在恒温下测定。电导测定不仅可以用来测定硫酸铅、硫酸钡、氯化银、碘酸银等难溶盐的溶解度,还可以测定弱电解质的电离度和电离常数,盐的水解度等。 三、实验仪器与试剂 (1)仪器 电导率仪1台,恒温水浴装置1套,滤纸若干,洗瓶1只,烧杯若干,玻璃棒一根。 (2)试剂 KCl 标准溶液(0.1mol/L),硝酸铅固体试样,去离子水。 四、实验步骤 (1)将恒温水浴温度调至25℃。 (2)制备PbSO 4饱和溶液 准确称取PbSO 4固体试样0.0045g (最好稍微过量一点),放入250ml 烧杯中,用100ml 容量瓶取100ml 去离子水加入烧杯中,放入恒温槽中恒温并用玻璃棒搅拌溶解(由于PbSO 4很难溶解,必要时用电炉加热溶解)。 (3)测定电导池常数k cell 取适量配置好的0.1mol/L KCl 标准溶液,在恒温槽中恒温10分钟后,用电导率仪测其电导率,重复三次。 (4)测定电导水的的电导率 调节好电导率仪的电导池常数k cell ,将电极和电导池用电导水洗干净并擦干,然后测电导水的电导率,重复三次。 (5)测定PbSO 4饱和溶液的电导率

溶度积

溶度积 溶度积定义 对于物质AnBm(s)= n A(aq)+ mB(aq), 溶度积(Ksp)=C(A) C(B)溶度积的应用很广泛。在定性分析中,利用金属硫化物、氢氧化物、碳酸盐等溶度积的差异分离金属离子。若往氯化铅饱和溶液中加入氯化钾时,溶液中Cl浓度增大,C(Pb )C(Cl大于氯化铅的溶度积大,这时将有部分离子发生Pb+2Cl =PbCl2 ↓的反应,将过剩的PbCl2沉淀出来,直至两种离子的浓度幂之积等于氯化铅的溶度积为止。因此,为使溶解度小的物质完全沉淀,需要加入含有共同离子的电解质。 人教版化学选修4化学反应原理第三章沉淀的溶解平衡涉及溶度积的计算溶解度与溶度积的关系 溶解度和溶度积的互相换算: 换算说明:根据溶度积常数关系式,难溶电解质的溶度积和溶解度之间可以互相换算。但在换算时,应注意浓度单位必须采用mol·L;另外,由于难溶电解质的溶解度很小,溶液浓度很小,难溶电解质饱和溶液的密度可近似认为等于水的密度。 1、已知溶度积, 计算溶解度S ( →S ) 例、已知BaSO4在298.15K时的溶度积为1.08×10,求BaSO4在298.15K时的溶解度。解:设BaSO4的溶解度(S)为x mol·L 因BaSO4为难溶强电解质,且Ba、SO4基本上不水解,所以在BaSO4饱和溶液中:BaSO4(s) Ba + SO4离子浓度/(mol·L)x x c(Ba)·c(SO4)= (BaSO4)(c) x·x = 1.08×10 S = x = 1.04×10 则S(BaSO4) = 1.04×10 mol·L (1)AB型难溶强电解质计算结果表明:对于基本上不水解的AB型难溶强电解质,其溶解度(S )在数值上等于其溶度积的平方根。即: S = ×c (2)AB2型难溶强电解质同时可推导出AB2(或A2B)型难溶电解质(如CaF2、Ag2CrO4等)其溶度积和溶解度的关系为: AB2 A+ 2B离子浓度/(mol·L)S 2S c(A)c(B)= (AB2)(c) S×(2S)= 4S= (AB2) 所以:S = ×c 也近似地适用于微弱水解的AB型、A2B(或AB2)型难溶强电解质。如CaSO4、AgCl、AgBr、AgI等,但不适用于易水解的难溶电解质(如ZnS)和难溶弱电解质及在溶液中易以离子对形式存在的难溶电解质。 2、已知溶解度S , 计算溶度积(S → ) 与→S 是可逆过程, 只要列出与S 的关系式, 即能求解。 两者都可以用来表示难溶电解质的溶解性大小。 溶度积是难溶解的固相与溶液中相应离子达到平衡时的离子浓度的乘积,只与温度有关。溶解度不仅与温度有关,还与系统的组成,PH的改变,配合物的生成等因素有关。只有同一类型的难溶电解质才能通过溶度积来比较其溶解度(mol/L)的相对大小。大多数物质实际溶解度S比由Ksp计算得到c要大。 编辑本段溶度积规则

溶解度与溶度积的关系(推荐文档).doc

溶解度与溶度积 联系:溶度积与溶解度均可表示难溶电解质的溶解性,两者之间可以相互换算。区别:溶度积是一个标准平衡常数,只与温度有关。而溶解度不仅与温度有关,还与系统的组成、 pH 值的改变及配合物的生成等因素有关。 在溶度积的计算中,离子浓度必须是物质的量的浓度,其单位为 而溶解度的单位有 g/100g 水, g·L-1, mol·L-1。计算时一般要先将难溶电解质的溶解度 S 的单位换算为 mol·L-1。对于难溶物质饱和溶液浓度极稀,可作近似处理: (xg/100gH2O)×10/M mol ·L-1。 几种类型的难溶物质溶度积、溶解度比较 物质类型难溶物质溶度积 Ksp 溶解度 /mol ·L-1 换算公式 AB AgCl 1.77 ×10-10 1.33 ×10-5 Ksp =S2 BaSO4 1.08 ×10-10 1.04 ×10-5 Ksp =S2 AB 2 CaF2 3.45 ×10-11 2.05 ×10-4 Ksp =4S3 A 2 B Ag 2CrO4 1.12 ×10-12 6.54 ×10-5 Ksp =4S3 对于同种类型化合物而言,Ksp , S 。 但对于不同种类型化合物之间,不能根据Ksp 来比较 S 的大小。 mol·L -1;

例 1、25℃时, AgCl 的溶解度为 1.92 ×10-3g ·L -1,求同温度下 AgCl 的溶度积。 例 2、25℃时,已知 Ksp(Ag 2 4 -12 4) -1 。 ×10 ,求同温度下 S(Ag 2 · CrO )=1.1 CrO /g L 例 3、查表知 PbI 2 的 Ksp 为 1.4 ×10-8,估计其溶解度 S(单位以 g ·L -1 计)。 溶度积规则 在难溶电解质溶液中,有关离子浓度幂的乘积称为浓度积,用符号 Q C 表 示 ,它表示任一条件下离子浓度幂的乘积。 Q C 和 Ksp 的表达形式类似,但其 含义不同。 Ksp 表示难溶电解质的饱和溶液中离子浓度幂的乘积, 仅是 Q C 的一 个特例。 对某一溶液,当 (1)Q C = Ksp ,表示溶液是饱和的。 这时溶液中的沉淀与溶解达到动态平衡, 既无沉淀析出又无沉淀溶解。 (2)Q C < Ksp ,表示溶液是不饱和的。溶液无沉淀析出, 若加入难溶电解质,则会继续溶解。 (3)Q C > Ksp ,表示溶液处于过饱和状态。有沉淀析出。 以上的关系称溶度积规则 (溶度积原理 ),是平衡移动规律总结,也是判断沉淀生成和溶解的依据。 当判断两种溶液混合后能否生成沉淀时,可按下列步骤进行: (1)先计算出混合后与沉淀有关的离子浓度; (2) 计算出浓度积 Qc ; (3) 将 Qc 与 Ksp 进行比较,判断沉淀能否生成。 溶度积规则的应用 (1)判断是否有沉淀生成 原则上只要 Qc >Ksp 便应该有沉淀产生,但是只有当溶液中含约 10-5g ·L -1 固体时,人眼才能观察到混浊现象, 故实际观察到有沉淀产生所需的离子浓度往往要比理论计算稍高些。 (2)判断沉淀的完全程度 没有一种沉淀反应是绝对完全的,通常认为溶液中某离子的浓度小于 -5 -1

溶度积表

溶度积表 化合物 化学式 温度Ksp 来源 无水氢氧化铝Al(OH)3 20°C 1.9×10–33 L 无水氢氧化铝Al(OH)3 25°C 3×10–34 w1 三水合氢氧化铝Al(OH)3 20°C 4×10–13 C 三水合氧化铝Al(OH)3 25°C 3.7×10–13 C 磷酸铝AlPO4 25°C 9.84×10–21 w1 溴酸钡Ba(BrO3)2 25°C 2.43×10–4 w1 碳酸钡BaCO3 16°C 7×10–9 C, L 碳酸钡BaCO3 25°C 8.1×10–9 C, L 铬酸钡BaCrO4 28°C 2.4×10–10 C, L 氟化钡BaF2 25.8°C 1.73×10–6 C, L 二水合碘酸钡Ba(IO3)2 25°C 6.5×10–10 C, L 二水合草酸钡BaC2O4 18°C 1.2×10–7 C, L 硫酸钡BaSO4 18°C 0.87×10–10 C, L 硫酸钡BaSO4 25°C 1.08×10–10 C, L 硫酸钡BaSO4 50°C 1.98×10–10 C, L 氢氧化铍Be(OH)2 25°C 6.92×10–22 w1 碳酸镉CdCO3 25°C 1.0×10–12 w1 氢氧化镉Cd(OH)2 25° C 7.2×10–15 w1 三水合草酸镉CdC2O4 18°C 1.53×10–8 C, L 磷酸镉Cd3(PO4)2 25°C 2.53×10–33 w1 硫化镉CdS 18°C 3.6×10–29 C, L 碳酸钙(方解石)CaCO3 15°C 0.99×10–8 C, L 碳酸钙(方解石)CaCO3 25°C 0.87×10–8 C, L 碳酸钙(方解石)CaCO3 18-25°C 4.8×10–9 P 铬酸钙CaCrO4 18°C 2.3×10–2 L 氟化钙CaF2 18°C 3.4×10–11 C, L 氟化钙CaF2 25°C 3.95×10–11 C, L 氢氧化钙Ca(OH)2 18°C-25°C 8×10–6 P氢氧化钙Ca(OH)2 25°C 5.02×10–6 w1 六水合碘酸钙Ca(IO3)2 18°C 6.44×10–7 L 一水合草酸钙CaC2O4 18°C 1.78×10–9 C, L 一水合草酸钙CaC2O4 25°C 2.57×10–9 C, L 磷酸钙Ca3(PO4)2 25°C 2.07×10–33 w1 硫酸钙CaSO4 10°C 6.1×10–5 C, L 硫酸钙CaSO4 25°C 4.93×10–5 w1 二水合酒石酸钙CaC4H4O6 18°C 7.7×10–7 C, L 氢氧化亚铬Cr(OH)2 25°C 2×10–16 w2 氢氧化铬Cr(OH)3 25°C 6.3×10–31 w2 氢氧化钴Co(OH)2 25°C 1.6×10–15 w2 硫化钴CoS 18°C 3×10–26 C, L 硫化钴CoS 18°C-25°C 10–21 P 碳酸铜CuCO3 25°C 1×10–10 P 氢氧化铜Cu(OH)2 18°C-25°C 6×10–20 P 氢氧化铜Cu(OH)2 25°C 4.8×10–20 w1 碘酸铜Cu(IO3)2 25°C 1.4×10–7 C, L 草酸铜CuC2O4 25°C 2.87×10–8 C, L 硫化铜CuS 18°C 8.5×10–45 C, L 溴化亚铜CuBr 18°C-20°C 4.15×10–8 C 氯化亚铜CuCl 18°C-20°C 1.02×10–6 C 氢氧化亚铜(与氧化亚铜平衡)Cu(OH) 25°C 2×10–15 w1 碘化亚铜CuI 18°C-20°C 5.06×10–12 C 硫化亚铜Cu2S 16°C-18°C 2×10–47 C, L 硫氰化亚铜CuSCN 18°C 1.64×10–11 C, L 氢氧化铁Fe(OH)3 18°C 1.1×10–36 C, L 碳酸亚铁FeCO3 18°C-25°C 2×10–11 P 氢氧化亚铁Fe(OH)2 18°C 1.64×10–14 C, L 氢氧化亚铁Fe(OH)2 25°C 1×10–15; 8.0×10–16 P; w2 草酸亚铁FeC2O4 25°C 2.1×10–7 C, L 硫化亚铁FeS 18°C 3.7×10–19 C, L 溴化铅PbBr2 25°C 6.3×10–6; 6.60×10–6 P; w1 碳酸铅PbCO3 18°C 3.3×10–14 C, L 铬酸铅PbCrO4 18°C 1.77×10–14 C, L 氯化铅PbCl2 25.2°C 1.0×10–4 L 氯化铅PbCl2 18°C-25°C 1.7×10–5 P 氟化铅PbF2 18°C 3.2×10–8 C, L 氟化铅PbF2 26.6°C 3.7×10–8 C, L 氢氧化铅Pb(OH)2 25°C 1×10–16; 1.43×10–20 P; w1 碘酸铅Pb(IO3)2 18°C 1.2×10–13 C, L 碘酸铅Pb(IO3)2 25.8°C 2.6×10–13 C, L 碘化铅PbI2 15°C 7.47×10–9 C 碘化铅PbI2 25°C 1.39×10–8 C 草酸铅PbC2O4 18°C 2.74×10–11 C, L 硫酸铅PbSO4 18°C 1.6×10–8 C, L 硫化铅PbS 18°C 3.4×10–28 C, L 碳酸锂Li2CO3 25°C 1.7×10–3 C, L 氟化锂LiF 25°C 1.84×10–3 w1 磷酸锂Li3PO4 25°2.37×10–4 w1 磷酸铵镁MgNH4PO4 25°C 2.5×10–13 C, L 碳酸镁MgCO3 12°C 2.6×10–5 C, L 氟化镁MgF2 18°C 7.1×10–9 C, L 氟化镁MgF2 25°C 6.4×10–9 C, L 氢氧化镁Mg(OH)2 18°C 1.2×10–11 C, L 草酸镁MgC2O4 18°C 8.57×10–5 C, L 碳酸锰MnCO3 18°C-25°C 9×10–11 P 氢氧化锰Mn(OH)2 18°C 4×10–14 C, L 硫化锰(粉色)

溶度积与溶解度的关系解读

溶度积与溶解度的关系 关键词:溶度积,溶解度 难溶电解质的溶度积及溶解度的数值均可衡量物质的溶解能力。因此,二者之间必然有着密切的联系,即在一定条件下,二者之间可以相互换算。根据溶度积公式所表示的关系,假设难溶电解质为A m B n,在一定温度下其溶解度为S,根据沉淀-溶解平衡: B n(s)mA n+ + nB m? A [A n+]═ m S,[B m?]═ n S 则K sp(A m B n)═ [A n+]m[B m?]n ═ (m S)m(n S)n ═ m m n n S m+n(8-2)溶解度习惯上常用100g溶剂中所能溶解溶质的质量[单位:g/(100g)]表示。在利用上述公式进行计算时,需将溶解度的单位转化为物质的量浓度单位(即:mol/L)。由于难溶电解质的溶解度很小,溶液很稀,可以认为饱和溶液的密度近似等于纯水的密度,由此可使计算简化。 【例题8-1】已知298K时,氯化银的溶度积为1.8×10?10,Ag2CrO4的溶度积为1.12×10?12,试通过计算比较两者溶解度的大小。 解(1)设氯化银的溶解度为S1 根据沉淀-溶解平衡反应式: AgCl(s)Ag++Cl? 平衡浓度(mol/L)S1S1 K sp(AgCl)═ [Ag+][Cl?]═ S12 S1 ═10 ?═ 1.34×10?5(mol/L) 8.1- 10 (2)同理,设铬酸银的溶解度为S2 Ag CrO4(s)2Ag++ CrO42- 平衡浓度(mol/L)2S2 S2 K sp(Ag2CrO4)═[Ag+]2 [CrO42-]═(2S2)2S2═4S23 S2 6.54×10?5(mol/L)>S1 在上例中,铬酸银的溶度积比氯化银的小,但溶解度却比碳酸钙的大。可见对于不同类型(例如氯化银为AB型,铬酸银为AB2型)的难溶电解质,溶度积小的,溶解度却不一定小。因而不能由溶度积直接比较其溶解能力的大小,而必须计算出其溶解度才能够比较。对于相同类型的难溶物,则可以由溶度积直接比较其溶解能力的大小。

溶度积的计算

学习情景五 硫酸钡溶度积常数的测定 学习要点 1、溶度积与溶解度 2、溶度积规则 3、影响多相离子平衡移动的因素 4、分步沉淀与沉淀分离法 链接 沉淀反应是一类广泛存在的反应,常用于对混合物的分离,在日常生活及生物技术的研究中有着重要作用。沉淀现象在工业生产中常用来提取物料,得到产品;在生物工程中常用于对发酵液的分离提纯,以得到生物制品。沉淀在日常保健中也有应用,如利用沉淀-溶解平衡原理可通过使用含氟牙膏来预防龋齿。 必备知识点一 溶度积规则 极性溶剂水分子和固体表面粒子相互作用,使溶质粒子脱离固体表面成为水合离子进入溶液的过程叫溶解。 溶液中水合离子在运动中相互碰撞重新结合成晶体从而成为固体状态并从溶液中析出的过程叫沉淀。 溶解和沉淀两个相互矛盾的过程使一对可逆反应在某一时刻(溶解与沉淀速率相等)达平衡状态,此平衡称为沉淀溶解平衡。 一、难溶电解质的溶度积常数 1、难溶电解质 在水中溶解度小于0.01g/100g 的电解质称为~。 如AgCl 的沉淀溶解平衡可表示为: ) aq (Cl )aq (Ag )s (AgCl -++?→← 平衡常数 2、溶度积 对于一般难溶电解质 )aq (nB )aq (mA )AmBm(s m n -++?→← K Ag Cl +-????=?????

平衡常数 一定温度下难溶电解质的饱和溶液中各组分离子浓度系数次幂的乘积为一常数,称为溶度积常数,简称溶度积;符号为K sp 。 沉淀溶解平衡是在未溶解固体与溶液中离子间建立的,溶液中离子是由已溶解的固体电离形成的。由于溶解的部分很少,故可以认为溶解部分可完全电离。 3、K sp 的物理意义 (1)K sp 的大小只与反应温度有关,而与难溶电解质的质量无关; (2)表达式中的浓度是平衡时离子的浓度,此时的溶液是饱和溶液; (3)由K sp 可以比较同种类型难溶电解质的溶解度的大小; 不同类型的难溶电解质不能用K sp 比较溶解度的大小。 对于AB 型难溶电解质: 对于A 2B 或AB 2型难溶电解质: 不同概念。 一定温度下饱和溶液的浓度,也就是该溶质在此温度下的溶解度。 溶解度s 的单位均为mol/L ,计算时注意单位换算,g/L=mol/L*g/mol 例1:已知25℃时,Ag 2CrO 4的溶解度是2.2×10-3g /100g 水,求K sp (Ag 2CrO 4)。 解: 2s s 三、溶度积规则 离子积:某难溶电解质的溶液中任一状态下有关离子浓度的乘积,用J i 表示。 [][]n m m n sp K A B +-=?s =()3θ θsp 4K s c =?()2θ sp K s =s =22442Ag CrO Ag CrO +-+223 4[][]4sp K Ag CrO S +-=?=33312122.210444291.410 1.110332s ---???=?=??=? ??? ()()()n m m n A B s mA aq nB aq +-+()()[][]m n n m m n m n m n sp K A B mS nS m n S +-+=?=?=?

难溶电解质溶度积常数

第三章第四节难溶电解质的溶解平衡—难溶电解质的溶度积常数 【学习目标】1.正确理解和掌握溶度积K sp的概念,熟知溶度积常数的应用 2.能应用溶度积常数K sp进行相关的计算。 【学习重、难点】能应用溶度积常数K sp进行相关的计算。 【知识梳理】 一、难溶电解质的溶度积常数(K sp) 1.概念: 一定温度下,难溶电解质在溶液中达到沉淀溶解平衡状态时,各离子浓度保持不变,该沉淀溶解平衡的平衡常数称之为溶度积常数,简称,用表示。 2.表达式: 对于沉淀溶解平衡M m A n mM n+(aq)+nA m-(aq), 参照电离平衡原理得平衡常数:K sp = 3.影响因素: (1)K sp只与难溶电解质的性质和有关,而与沉淀的量和溶液中的离子浓度无关。并且溶液中的离子浓度的变化能使平衡移动,并不改变K sp。 (2)对于大部分溶解平衡,升高温度,平衡向移动,K sp,Ca(OH)2除外。4.意义: K sp反映了难溶电解质在水中的溶解能力,当化学式所表示的阴、阳离子个数比相同时,K sp越大的难溶电解质在水中的溶解能力相对越强,溶解度。但对化学式所表示的组成中阴、阳离子个数比不相同的电解质,则不能直接由它们的溶度积来比较溶解能力的大小,必须通过具体计算确定。下表是几种难溶电解质的溶度积以及溶解能力的比较: 沉淀溶解平衡K sp(18~25℃)溶解能力比较 AgCl(s)Cl-(aq)+Ag+(aq) 1.8×10 -10mol2. L-2 AgCl> AgBr > AgI AgBr(s)Br-(aq)+Ag+(aq) 5.0×10 -13mol2.L-2 AgI(s)I-(aq)+Ag+(aq)8.3×10 -17mol2.L-2 Mg(OH)2(s)Mg 2+(aq)+2OH-(aq)1.8×10-11mol3.L-3Mg(OH) 2 > Cu(OH)2 Cu(OH)2(s)Cu 2+(aq)+2OH-(aq)2.2×10 -20mol3.L-3 5.应用—溶度积规则: 比较K sp与溶液中有关离子浓度幂的乘积(离子积Q c)判断难溶电解质在给定条件下沉淀能否生成或溶解。 ①Qc>K sp:溶液过饱和,有析出;

化合物的溶度积常数表(超全).doc

化合物的溶度积常数表化合物 醋酸盐 **AgAc *AgBr *AgCl *AgI BaF2*CaF2*CuBr *CuCl *CuI *Hg 2Cl2*Hg 2I2HgI2PbBr2*PbCl2PbF2*PbI2SrF2Ag 2CO3*BaCO3CaCO3CdCO3*CuCO3FeCO3Hg 2CO3MgCO3MnCO3NiCO3*PbCO 31.94 × 10-3 卤化物 1.8 × 10-10 8.3 × 10-17 1.84 × 10-7 溶度积化合物

氢氧化物 *AgOH 2.0 × 10-8 *Al(OH) 3(无定形) 1.3 × 10-33 *Ca(OH)2*Cd(OH) 25.5 × 10-6 5.27 × 10-15 溶度积化合物 *CdS *CoS(α-型) *CoS(β-型) *Cu 2S *CuS *FeS *HgS(黑色) *HgS(红色) *MnS(晶形 )**NiS *PbS *SnS **SnS2**ZnS 磷酸盐 *Ag 3PO4*AlPO4*CaHPO4*Ca

3(PO 4)2**Cd 3(PO 4)2Cu 3(PO 4)2FePO 4·2H 2O 5.4 × 10-12 1.6 × 10-7 4× 10-9 4.43 × 10-10 3.2 × 10-7 4.83 × 10 1.70 × 10-7 8.51 × 10-10-溶6度积8.0 × 10-27 4.0 × 10-21 2.0 × 10-25 2.5 × 10-48 6.3 × 10-36

6.3 × 10-18 1.6 × 10-524 × 10-53 2.5 × 10-13 1.07 × 10-21 8.0 × 10-281 × 10-252 × 10-27 2.93 × 10-25 1.4 × 10-16 6.3 × 10-191 × 10-7 2.0 × 10-29 2.53 × 10-33 1.40 × 10-37 9.91 × 10-16 2.5 × 10-13 1.04 × 10-24 8.0 × 10-43 9.0 × 10-33 7.2 × 10-11 1.6 × 10 1.3 × 10-16 1.03 × 10-12-41 5.0 × 10-13*Be(OH)

第二节沉淀的溶解度及其影响因素

第二节沉淀的溶解度及其影响因素 在利用沉淀反应进行重量分析时,要求沉淀反应进行完全,一般可根据沉淀溶解度的大小来衡量。通常,在重量分析中要求被测组分在溶液中的残留量在0.000 1g 以内,即小于分析天平的称量允许误差。但是,很多沉淀不能满足这个条件。例如,在1 000 mL水中,BaSO4的溶解度为0.002 3 g, 故沉淀的溶解损失是重量分析法误差的重要来源之一。因此,在重量分析中,必须了解各种影响沉淀溶解度的因素。 一、沉淀的溶解度 当水中存在1: 1型难溶化合物MA时,MA溶解并达到饱和状态后,有下列平衡关系: MA (固)MA (水)M+ + A- 式中MA (固) 表示固态的MA,MA (液) 表示溶液中的MA,在一定温度下它的活度积是一常数,即:a (M+)×a (A-) == (7—1) 式中a (M+)和a (A-)是M+和A-两种离子的活度,活度与浓度的关系是: a (M+) = (M+) ×ceq(M+);a (A—) = ( A—) ×ceq (A—)(7—2) 式中(M+)和( A—)是两种离子的活度系数,它们与溶液中离子强度有关。将式( 7 - 2 )代入 (7 – 1 )得 (M+) ceq(M+)·( A-) ceq(A-) = (7—3) 故= ceq(M+)·ceq(A—) = (7—4) 称为微溶化合物的溶度积常数,简称溶度积。 在纯水中MA的溶解度很小,则 ceq(M+) = ceq(A—) = so(7—5) ceq(M+)·ceq(A—) = so2 =(7—6) 上二式中的so是在很稀的溶液内,没有其他离子存在时MA的溶解度,由so所得溶度积非常接近于活度积。一般溶度积表中所列的是在很稀的溶液中没有其他离子存在时的数值。实际上溶解度是随其他离子存 在的情况不同而变化的。因此溶度积只在一定条件下才是一个常数。如果溶液中的离子浓度变化不太大,溶度积数值在数量级上一般不发生改变。所以在稀溶液中,仍常用离子浓度乘积来研究沉淀的情况。如果溶液中的电解质浓度较大(例如以后将讨论的盐效应对沉淀溶解度的影响),就必须用式 (7 - 3) 来考虑沉淀的情况。 对于其他类型沉淀如MmAn的溶解度公式,根据质量作用定律可推导为: = [ceq (M n+)]m·[ceq (A m-)]n

物质的溶解度与温度有什么关系与溶解度曲线有关

物质的溶解度与温度有什么关系?与溶解度曲线有关吗? 初中化学有关溶解度与温度的关系只需明白4点 1:大部分固体溶解度随温度的上升而上升,如氯化氨,硝酸钾 2:少部分固体溶解度随温度的上升而基本不变,如氯化钠 3:少部分固体溶解度随温度的上升而下降,如含结晶水的氢氧化钙,醋酸钙 4:气体溶解度随温度的上升而下降,随压强增大而增大 既然在一定温度下,溶质在一定量的溶剂里的溶解量是有限度的,科学上是如何表述和量度这种溶解限度呢?好,那么我们就先来看一下溶解性的概念。 溶解性 通过实验的验证,在相同条件下(温度相同),同一种物质在不同的溶剂里,溶解的能力是各不相同的。我们通常把一种物质溶解在另一种物质里的能力叫做溶解性。溶解性的大小跟溶剂和溶质的本性有关。所以在描述一种物质的溶解性时,必须指明溶剂。 物质的溶解性的大小可以用四个等级来表示:易溶、可溶、微溶、难溶(不溶),很显然,这是一种比较粗略的对物质溶解能力的定性表述。 溶解度 1.固体的溶解度 从溶解性的概念,我们知道了它只是一种比较粗略的对物质溶解能力的定性表述。也许会有同学问:能不能准确的把物质的溶解能力定量地表示出来呢?答案是肯定的。这就是我们本节课所要学的溶解度的概念。 溶解度:在一定温度下,某固态物质在100g溶剂中达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂中的溶解度。在这里要注意:如果没有指明溶剂,通常所说的溶解度就是物质在水里的溶解度。 用纵坐标表示溶解度,横坐标表示温度,根据物质在不同温度时溶解度数据,可以画出溶解度随温度变化的曲线,叫做溶解度曲线(Solubility curve) 大部分固体物质的溶解度随着温度升高而显著增大,如硝酸钾、硫酸铜等。有少数固体物质的溶解度受温度的影响很小,如食盐。此外,有极少数固体物质的溶解度随温度升高而减小,如硫酸锂、氢氧化钙等。 2.气体的溶解度

溶度积表

溶度积表 溶度积表 化合物化学式温度K sp 来源 无水氢氧化铝Al(OH) 3 20°C 1.9×10–33L 无水氢氧化铝Al(OH) 325°C3×10–34w 1 三水合氢氧化铝Al(OH) 3 20°C4×10–13C 三水合氧化铝Al(OH) 3 25°C 3.7×10–13C 磷酸铝AlPO 425°C9.84×10–21w 1 溴酸钡Ba(BrO 3) 2 25°C 2.43×10–4w 1 碳酸钡BaCO 3 16°C7×10–9C,L 碳酸钡BaCO 3 25°C8.1×10–9C,L 铬酸钡BaCrO 4 28°C 2.4×10–10C,L 氟化钡BaF 2 25.8°C 1.73×10–6C,L 二水合碘酸钡Ba(IO 3) 2 25°C 6.5×10–10C,L 二水合草酸钡BaC 2O 4 18°C 1.2×10–7C,L 硫酸钡BaSO 4 18°C0.87×10–10C,L 硫酸钡BaSO 4 25°C 1.08×10–10C,L 硫酸钡BaSO 4 50°C 1.98×10–10C,L 氢氧化铍Be(OH) 225°C 6.92×10–22w 1 碳酸镉CdCO 325°C 1.0×10–12w 1 氢氧化镉Cd(OH) 225°C7.2×10–15w 1 三水合草酸镉CdC 2O 4 18°C 1.53×10–8C,L 磷酸镉Cd 3(PO 4 )225°C 2.53×10–33w 1 硫化镉CdS18°C 3.6×10–29C,L 碳酸钙(方解石)CaCO 3 15°C0.99×10–8C,L 碳酸钙(方解石)CaCO 3 25°C0.87×10–8C,L 碳酸钙(方解石)CaCO 3 18-25°C 4.8×10–9P 铬酸钙CaCrO 4 18°C 2.3×10–2L 氟化钙CaF 2 18°C 3.4×10–11C,L 氟化钙CaF 2 25°C 3.95×10–11C,L 氢氧化钙Ca(OH) 2 18°C-25°C8×10–6P 氢氧化钙Ca(OH) 225°C 5.02×10–6w 1

难溶电解质的溶度积

难溶电解质的溶度积 溶度积 严格地说,在水中绝对不溶的物质是不存在的。通常将溶解度小于0.01 g/L的物质称为难溶电解质。例如,在一定温度下,将过量AgCl固体投入水中,Ag+和Cl-离子在水分子的作用下会不断离开固体表面而进入溶液,形成水合离子,这是AgCl的溶解过程。同时,已溶解的Ag+和 Cl-离子又会因固体表面的异号电荷离子的吸引而回到固体表面,这就是AgCl的沉淀过程。当沉淀与溶解两过程达到平衡时,此时的状态称为沉淀溶解平衡。 溶解 AgCl(s) ==== Ag+ + Cl- (未溶解固体) 沉淀 (已溶解的水合离子) 根据平衡原理,其平衡常数可表示为 但因c(AgCl)为常数,a(Ag+) = c(Ag+), a(Cl-) = c(Cl-) 故上式可写成∴ a(Ag+) ´ a(Cl-) = c(Ag+) ´ c(Cl-) = K ? = Ksp ? 即为多相离子平衡的平衡常数,称为溶度积常数(可简称溶度积)。 对于一般的难溶电解质AmBn的沉淀溶解平衡 AmBn(s) ==== mAn+ + nBm- Ksp=c^m(An+)×c^n(Bm-) 上式的意义是:在一定温度下,难溶电解质饱和溶液中各离子浓度幂的乘积为一常数。严格地说,应该用溶解平衡时各离子活度幂的乘积来表示。但由于难溶电解质的溶解度很小,溶液的浓度很稀。一般计算中,可用浓度代替活度。 Ksp的大小反映了难溶电解质溶解能力的大小。 Ksp越小,则该难溶电解质的溶解度越小。 Ksp的物理意义; (1)Ksp的大小只与此时温度有关,而与难溶电解质的质量无关; (2)表达式中的浓度是沉淀溶解达平衡时离子的浓度,此时的溶液是饱和或准饱和溶液; (3)由Ksp的大小可以比较同种类型难溶电解质的溶解度的大小;不同类型的难溶电解质不能用Ksp比较溶解度的大小。 编辑本段溶解度和溶度积的相互换算 Ksp与S均可判断溶解度大小,二者有无关系? 根据溶度积常数关系式,可以进行溶度积和溶解度之间的计算。但在换算时必须注意采用物质的量浓度(单位用mol/L)作单位。另外,由于难

沉淀的溶解度及其影响因素

沉淀的溶解度及其影响因素 在利用沉淀反应进行重量分析时,要求沉淀反应进行完全,一般可根据沉淀溶解度的大小来衡量。通常,在重量分析中要求被测组分在溶液中的残留量在 1g 以内,即小于分析天平的称量允许误差。但是,很多沉淀不能满足这个条件。例如,在1 000 mL水中,BaSO4的溶解度为 3 g, 故沉淀的溶解损失是重量分析法误差的重要来源之一。因此,在重量分析中,必须了解各种影响沉淀溶解度的因素。 一、沉淀的溶解度 当水中存在1: 1型难溶化合物MA时,MA溶解并达到饱和状态后,有下列平衡关系: MA (固)MA (水)M+ + A- 式中MA (固) 表示固态的MA,MA (液) 表示溶液中的MA,在一定温度下它的活度积是一常数,即: a (M+)×a (A-) == (7—1) 式中a (M+)和a (A-)是M+和A-两种离子的活度,活度与浓度的关系是: a (M+) = (M+) ×ceq(M+);a (A—) = ( A—) ×ceq (A—)(7—2) 式中(M+)和( A—)是两种离子的活度系数,它们与溶液中离子强度有关。将式( 7 - 2 )代入 (7 – 1 )得 (M+) ceq(M+)·( A-) ceq(A-) = (7—3) 故= ceq(M+)·ceq(A—) = (7—4) 称为微溶化合物的溶度积常数,简称溶度积。 在纯水中MA的溶解度很小,则

ceq(M+) = ceq(A—) = so(7—5) ceq(M+)·ceq(A—) = so2 =(7—6) 上二式中的so是在很稀的溶液内,没有其他离子存在时MA的溶解度,由so所得溶度积非常接近于活度积。一般溶度积表中所列的是在很稀的溶液中没有其他离子存在时的数值。实际上溶解度是随其他离子存 在的情况不同而变化的。因此溶度积只在一定条件下才是一个常数。如果溶液中的离子浓度变化不太大,溶度积数值在数量级上一般不发生改变。所以在稀溶液中,仍常用离子浓度乘积来研究沉淀的情况。如果溶液中的电解质浓度较大(例如以后将讨论的盐效应对沉淀溶解度的影响),就必须用式 (7 - 3) 来考虑沉淀的情况。 对于其他类型沉淀如MmAn的溶解度公式,根据质量作用定律可推导为: = [ceq (M n+)]m·[ceq (A m-)]n =((7—7)= = = (7—8)在一定温度下,难溶电解质在纯水中都有其一定的溶度积,其数值的大小是由难溶电解质本身的性质所决定的。外界条件变化,例如酸度的变化、配位剂的存在等,都将使金属离子浓度或沉淀剂浓度发生变化,因而影响沉淀的溶解度和溶度积。这和配位滴定中,外界条件变化引起金属离子或配位剂浓度变化,因而影响稳定常数的情况相似。 二、影响沉淀溶解度的因素 影响沉淀溶解度的因素很多,如同离子效应、盐效应、酸效应及配位效应等。此外,温度、溶剂、沉淀的颗粒大小和结构,也对溶解度有影响,分别讨论如下。

相关文档