文档库 最新最全的文档下载
当前位置:文档库 › 汽车点焊工艺

汽车点焊工艺

汽车点焊工艺
汽车点焊工艺

汽车点焊工艺

摘要 (2)

第一章绪论 (3)

1.1研究背景及现实意义 (3)

1.2轿车车身铝合金点焊现状 (3)

第二章电阻点焊焊概述 (4)

2.1电阻点焊简介 (4)

2.2点焊方法分类 (5)

2.3电阻点焊的基本原理 (5)

2.3.1电阻点焊的基本过程 (5)

2.3.2焊接热的产出及影响因素 (7)

第三章点焊工艺参数选择 (8)

3.1 主要规范参数分析 (8)

3.1.1 .电极压力对点焊质量的影响 (8)

3.1.2 .通电电流对点焊质量的影响 (9)

3.1.3 通电时间对点焊质量的影响 (10)

3.2 焊接规范参数的确定原则 (11)

3.3 调整方法 (11)

第四章点焊质量保证与缺陷分析 (12)

4.1 点焊质量保证 (12)

4.1.1 焊点工艺设计的优化 (12)

4.1.2 电极 (12)

4.1.3 焊点的强度保证 (12)

4.1.4 焊点外观质量的保证 (13)

4.2 点焊接头主要缺陷产生的原因及预防措施 (13)

第五章点焊焊枪驱动控制 (14)

5.1 电动伺服焊枪应用现状 (14)

5.2 点焊焊枪气动力伺服系统的组成及特点 (15)

5.3 气动伺服系统的数学模型 (15)

毕业设计总结

参考文献

摘要

电阻点焊是一种被广泛应用的生产工艺,尤其被广泛应用于现代制造业及其它一些高科技产业与领域,如汽车制造、飞机制造及航空航天领域等。点焊是现在汽车车身及其它部件的主要连接工艺方法,在汽车制造工业中发挥着不可替代的重要作用。汽车车身点焊的连接质量决定了汽车的整体结构刚度和完整性,所以检测和保证点焊的连接质量具有重要的实际意义。本文基于超声检测的基本原理,进行了汽车车身焊点连接质量的检测和评价研究。

在微型车车身装配焊接中,电阻焊占有相当重要的地位。但是在焊接过程中所出现的缺陷给汽车装配带来一定的影响,这些问题如到了总装流水线上装配才发现,需要进行补焊、补漏、校正,变形,影响流水线的作业进度,因此消除焊接缺陷,对汽车装配具有重要意义。

通过深入分析点焊工艺过程,结合基于事例推理的特点,将点焊工艺事例属性划分为两类:事例特征Ⅰ和事例特征Ⅱ。设计了相似点焊工艺事例的检索策略:在事例特征Ⅰ的约束下,以事例特征中Ⅱ所包含的材质的热物理性质和板厚作为检索相似事例的依据。应用模糊推理的方法对检索到相应的相似事例库中所含有的工艺知识、规则进行提取、总结,进而指导对新的点焊工艺事例的求解,从而较好的解决了点焊工艺设计中基于事例推理时,难以建立合适的模型对检索到的相似事例进行修正的难点,使点焊工艺参数的智能求解过程更加符合领域专家的思维,过程更加灵活,具有开放性。

现代轿车的白车身都是通过冲压件焊接连接而成,焊接质量的好坏直接关系到车身的可靠性,因此研究车身焊点的质量非常重要。锌钢板虽具有较好的抗腐蚀性能,但点焊过程中,与无镀层钢板相比,存在以下问题:先于钢板熔化的锌层形成锌环而分流,致使焊接电流密度减小;锌层表面烧损、粘连、污染电极而使电极寿命降低;锌层电阻率低,接触电阻小;容易产生焊接飞溅、裂纹、气孔或组织软化等缺陷。对于生产企业来说,合理选择工艺参数则是控制焊点质量的最主要途径。本文通过一种既能减少试验次数,又能获得可靠结果的多因素的优选方法——正交试验设计对点焊工艺参数进行优化,代替了传统的经验法,在确保试验结果可靠的基础上,提高了试验效率。

随着汽车工业飞速发展,电阻点焊己经成为轿车白车身装配的主要连接方法,因而点焊质量与焊接效率对轿车的质量与成本有着重要影响。广阔的市场需求及严格的焊接质量要求对点焊质量控制提出了更高的要求,点焊的质量问题越来越多地受到关注。由于点焊过程的复杂性,点焊质量的在线评估与质量控制一直是点焊技术领域中的难题。针对这一问题,本文对汽车点焊过程的质量控制和评估方法进行了研究,重点研究了一种点焊质量的多变量综合监控技术,以保证焊点质量的稳定性,提高点焊合格率,从而达到降低生产成本和提高生产效率的日的。

第一章绪论

1.1研究背景及现实意义

电阻点焊是一种被广泛应用的制作金属板件连接装置的生产工艺,相对其它焊接方法,点焊的主要优点是高效、质量可靠、成本低、易操作、易实现焊接自动化,适用于大批量生产。由于上述诸多优点,尤其被广泛应用于现代制造业及其它一些高科技产业与领域,如航空航天、汽车制造、能源、电子及轻工等领域,每年约占世界总焊接量的三分之一。例如,一架(美国)飞机上有一百多万个点焊焊点。

点焊已经成为汽车制造工业中的主要连接工艺方法,在汽车制造工业中发挥着不可替代的重要作用[4-5]。首先应用于车身焊装,如图1-1所示。汽车车身焊装包括车身底板、侧围、车架、车顶、车门、车身总成等部分,在它的焊接过程中大量采用电阻点焊工艺。例如,富康轿车白车身,属于无独立车架的承载式全焊接结构,是由20多个大总成、数百种薄板冲压件经焊接而成的复杂结构件;其焊接方法有电阻点焊、混合气体保护焊(MAG焊)、螺柱焊等,而主要采用电阻点焊模式,白车身上电阻焊焊点有3600多个[6];上海大众“帕萨特”白车身上的焊点数达到5892点,三箱POLO车的整个车身共有3725个焊点,几乎遍及每一个总成[7],因此保证点焊焊接质量成为汽车车身装配质量、控制车体误差的关键。其次,点焊还应用于汽车零部件的生产,包括横梁总成车挡托架的装配点焊、燃油箱上固定件的点焊、滤清器点焊、液力变矩器平衡片点焊、汽车制动蹄点焊等。

虽然新的焊接方法的发展在汽车工业中逐步形成了规模,部分的取代了传统的电阻焊方法,用于汽车车身和零部件的装配焊接,但是电阻点焊在汽车制造中的主导地位在今后的一段时期内不会改变[8],电阻点焊在汽车生产中的应用前景仍旧是非常广阔的。中国的汽车工业已进入历史上少有的高速发展期,2004年汽车产量预计在500万辆以上,其中轿车将超过220万辆[8]。点焊的完整性决定了汽车的整体结构刚度和完整性,故点焊的焊接质量直接关系到车身及汽车的质量;随着社会的发展,生活水平的提高,汽车向中高档方向发展,对焊装设备和焊接质量的要求都越来越高,而保证点焊的质量是提高汽车安全性能的方法之一;尤其是中国加入世界贸易组织的过渡期将要结束,汽车行业的竞争会更加激烈,我国的汽车工业面临巨大的挑战,提高产品质量是增强竞争力的有效途径,这同样需要保证汽车中几千个点焊焊点的连接质量。

随着新材料和新技术的不断出现以及应用领域的扩展,对点焊质量的要求也越来越高。根据实际工作的需要,克服点焊的缺陷和不足成为当前点焊技术发展中的一个重要任务。这些缺陷和不足的存在与否或多少直接关系到点焊的质量,而点焊质量直接关系到产品的质量。因为利用点焊技术的生产的产品大多数是科技含量高、价格昂贵或作用至关重要的产品或零部件,所以必须要保证点焊的质量

1.2轿车车身铝合金点焊现状

汽车车身即白车身,是整个汽车零部件的载体,其制造质量的优劣对整车的质量起着决定性的作用引。在汽车工业中,电阻点焊主要应用在车身底板、侧围、车架、车项、车门以及车身总成等部分的焊接装配中。例如美国通用汽车公司车身底部、侧身、车项及龙门系统的焊接,日本三菱汽车公司车身底板、侧围及车身总成的焊接,德国福特汽车公司车身底板、侧围、车门及翼板的焊接等。

铝合金点焊时,应根据铝合金材料牌号及焊件厚度选用点焊机。与电弧焊相比,电阻焊具有残余应力低、焊接变形小、焊接速度快、操作简便易掌握、产生的飞溅、烟尘及气体少等优点。但由于铝合金上述的焊接特点使得其焊接工艺规范的选择较困难。因此,铝及铝合金材料的焊接具有其特殊性,由于存在着氧化膜、接触电阻以及电极损耗等随机性对焊点质量的影响因素,所以在铝合金的点焊过程中容易产生飞溅、虚焊、脱焊等缺陷,使焊接工艺及设备的控制精度高、难度大。在实际操作过程中,即使有经验的师傅严格按照工艺规程操作,点焊缺陷有时也难以避免。目前,电阻焊机大量使用交流50Hz 的单相交流电源,其容量大、功率因数低。发展三相低频电阻焊机、三相次级整流焊机(已在普通型点焊机、缝焊机、凸焊机中应用)和IGBT逆变电阻焊机,可以解决电网不平衡和提高功率因数的问题。同时还可进一步节约电能,利于实现参数的微机控制,可更好地适用于焊接铝合金、不锈钢及其他难焊金属的焊接。另外,还可进一步减轻设备质量。

汽车车身焊装线上的电阻点焊设备主要有以下几类:

a.悬挂式点焊机。目前车身焊装生产线上的主要设备。一个车身焊装车间一.般有200-300台悬挂式点焊机,用于车身的各个部位的装配点焊,特别焊接位置复杂多变的部件。

b.点焊机器人。为了适应现代汽车产品多样化生产的需要,提高车身焊装生产线的自动化程度,减轻操作者的劳动强度,提高工作效率,保证焊接质量,在现代化的车身焊接生产线上,采用点焊机器人代替笨重的悬挂式点焊机,以解放人的单调、重复、长时间的强体力劳动。比如法国雷诺汽车公司与日本日产汽车公司都采用了全机器人的驾驶室焊装线。驾驶室的装配、涂胶、点焊全部由机器人完成。

c.多点焊机。其目的是为了提高生产效率,减小焊接变形。在车身焊装生产线上,车身底板的点焊装配多采用多点焊机,例如德国的奥迪BMW的车身底板自动化焊装线。点焊机器人和多点焊机在白车身生产线上所占的比例体现了该生产线的自动化程度。例如,上海大众“帕萨特"车身焊装线上,共采用294台悬挂式点焊机,6l台点焊机器人;而德国大众“帕萨特"车身焊装线上,在总共有3594个电阻焊焊点中,仅有40点是通过手工焊接的,其余都是通过机器人或多点焊机焊接的。

d.现代点焊机器人。通常由机器人本体操作机、点焊钳、控制器等几部分组成。现代点焊机器人采用逆变一体式点焊钳,大大降低了机器人体积和质量,具有控制精度高、响应速度快、节能、焊接工艺性能好等显著优点。近年来出现了伺服式点焊钳(枪),采用新型电极驭动机构作伺服马达进行位置反馈。当机器人运行时,机器人控制伺服钳作为其辅助轴之一,实现电极加压软接触和电极压力实时调节,在与焊接电流最佳配合后,消除飞溅,显著提高了点焊质量。这种MOTOMAN点焊机器人已在日本、美国和欧洲获得应用。而柔性化机器人或柔性化机器人焊接系统采用多种焊钳的自动快速更换技术,以适应焊装线的少批量多品种生产。为集中管理和控制焊接质量,设计了自动化的焊接质量和产量控制系统,如机器人二维激光视觉系统、数字摄像控制系统、射线质量检测系统等。而借助于CAE,CAM获取焊件构造、焊接条件和机器人机构等信息的新型离线示教机器人取代原再现式点焊机器人系统,来选定焊钳、配置机器人进行离线示教,示教时间短,焊接质量更稳定。点焊机器人在国外汽车生产中的应用相当广泛,如美国通用汽车公司车身底部、侧部、车顶及车架龙门系统的焊接,同本三菱汽车公司底板、侧围及车身总成的焊接,德国福特汽车公司底板、侧围、车门及翼板的焊接,机器人焊点占焊点总数的80%'--90%。近年来,国外许多汽车生产企业已将中频点焊机器人和伺服点焊机器人应用于轿车白车身装焊线。尤其在欧洲,中频点焊机器人使用量已占4096,并扩大到铝合金轿车车身的点焊作业。

汽车制造的批量化、高效率和对产品质量一致性的要求,使机器人在汽车焊接生产中获得了大量应用。我国的汽车制造业也紧跟发展的步伐,据2001年的统计,全国共有各类焊接机器人1040台,而汽车制造和汽车零部件生产企业中的焊接机器人占全部焊接机器人的76%,成为工业机器人的最主要用户。东风商用车车身厂第六焊装车间总装线采用了6台点焊机器人,3台自动焊机。一汽车身厂十万辆新品驾驶室主焊线采用了2l台点焊机器人,点焊自动化率达95%。东风车身厂六万辆新品驾驶室总装线采用了10台点焊机器人,1台自动焊机,但是点焊自动化率仍不足60%。而且在国内,点焊机器人上所配备的焊钳均为气动焊钳,焊接时冲击力较大。还有由于工件的重复精度较差,电极处于凸缘边缘时,焊钳易滑出,严重时会损坏被焊工件。另外,电极磨损量的监控反馈精度较差,影响焊接质量。在国外,机器人用焊钳已逐步采用伺服焊钳,焊接时冲击小,并能实现精确控制,提高焊接质量、

第二章电阻点焊焊概述

2.1电阻点焊简介

电阻点焊是焊件在接头处接触面的个别点上被焊接起来。点焊

要求金属要有较好的塑性。如图1所示,为最简单的应用点焊的例

子。

点焊由于焊点间有一定的间距,所以只用于没有密封性要求的薄板搭接结构和金属网、交叉钢筋结构件等的焊接。如果把柱状电极换成圆盘状电极,电极紧压焊件并转动,焊件在圆盘状电极只间连续送进,再配合脉冲式通电。就能形成一个连续并重叠的焊点,形成焊缝,这就是缝焊。它主要用于有密封要求或接头强度要求较高的薄板搭接结构件的焊接,如油箱、水箱等

2.2点焊方法分类

对焊件馈电进行电焊时,应遵循下列原则:①尽t缩短二次回路长度及减小回路所包含的空间面积.以节省能耗;②尽t减少伸入二次回路的铁磁体体积,特别是避免在焊接不同焊点时伸入体积有较大的变化.以减小焊接电流的波动.保证各点质t衡定(在使用工频交流时)。常见点焊方法有以下几种:

1.双面单点坏

所有的通用焊机均采用这个方案。从焊件两侧馈电,适用于小型零件和大型琴件周边各焊点的焊接。

2. 单面单

当零件的一侧电极可达性很差或零件较大、二次回路过长时.可采用这个方案。从焊件单侧馈电,需考虑另一侧加铜垫以减小分流并作为反作用力支点。

3.单面双点炸

从一侧馈电时尽可能同时焊两点.以提高生产率。单面馈电往往存在无效分流现象,浪费电能,当点距过小时将无法焊接。在某些场合,如设计允许,在上板二点之间冲一窄长缺口,可使分流电流大幅下降。

4.双面双点坏

此方案虽可在通用焊机上实施.但两点间电流难以均匀分配,较难保证两点质t一致。由于采用推挽式馈电方式,使分流和上下板不均匀加热现象大为改善.而且焊点可布里在任意位里。其唯一不足之处是须制作二个变压器.分别置于焊件两侧,这种方案亦称推挽式点焊。两变压器的通电需按极性进行。

5.多点坏

当零件上焊点数较多.大规模生产时,常采用多点焊方案以提高生产率,特别是单面多点焊在生产中得到广泛应用,其方式较灵活.二次回路不受焊件尺寸牵制.在要求较高的情况下,亦可采用推挽式点焊方案。目前一般采用一组变压器同时焊二或四点r后者有二组二次回路)。一台多点焊机可由多个变压器组成。可采用同时加压同时通电、同时加压分组通电和分组加压分组通电三种方案。可根据生产率、电网容t来选择合适方案

2.3电阻点焊的基本原理

2.3.1电阻点焊的基本过程

焊件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方

法称为电阻点焊。电阻点焊的焊接循环主要由由预压、焊接、维持和休止四个基本阶段组成必要时可增附加程序(图2-1)

(1)预压阶段—电极下降到电流接通阶段,确保电极压紧工件,使工件间有适当压力。

(2)焊接时间—焊接电流通过工件,产热形成熔核。

.亦可为渐升或阶跃上升。在此期间焊件焊接区的温度分布经历复杂的变化后趋向稳定。起初输入热盆大于散失热尹.温度上升,形成高温塑性状态的连接区,并使中心与大气隔绝.保证随后熔化的金属不氧化,而后在中心部位首先出现熔化区。随粉加热的进行熔化区扩大,而其外围的塑性壳(在金相试片上呈环状故称塑性环)亦向外扩大.最后当输入热t与散失热,平衡时达到德定状态。当焊接参数适当时,可获得尺寸波动小于15%的熔化核心。

在此期间可产生下列现象:

(l)液态金属的搅拌作用。液态金属通电时受电磁力作用产生漩涡状流动.当把熔核视作地球状且电极端处为二极.其运动方向为—赤道部分由周围向球心流动,而后流经两极再沿外表向赤道呈封闭状流动。对于同种金属点焊.搅拌仅需将焊件表、面的氧化膜搅碎即可,但异种金属点焊时.必须充分搅拌以获得均质的熔化核心。如通电时间太短,搅拌不充分.将产生游涡状的非均质熔核。

(2)飞溅按产生时期可分为前期和后期两种;按产生部位可分为内飞溅(处于两焊件间)和外飞溅(焊件与电极接触侧)两种。前期飞溅产生的原因大致是:焊件表面清理不佳或接触面上压强分布严重不匀,造成局部电流密度过高引起早期熔化,此时因无塑性环保护,必发生飞溅。防止前期飞溅的措施有:加强焊件清理质t,注意预压前的对中。有条件时可采用渐升电流或增加预热电流来减慢加热速度.避免早期熔化而引起飞溅。

后期飞溅产生的原因是:熔化核心长度过大,超出电极压力有效作用范围,从而冲破塑性环在径向造成内飞溅,在轴向冲破板表面造成外飞溅。这种情况一般产生在电流较大、通电时间过长的场合。可用缩短通电时间及减小电流的方法来防止。

飞溅在外表面首先影响外观,其次产生的疤痕影晌耐腐蚀及疲劳性能。内部飞溅的残迹有可能在运行时脱落,如进入管路《如油管).将造成堵塞等严重事故。

(3)胡须在加热到半熔化温度的熔核边缘,当某些材料《如高温合金)中低熔点夹杂物较多聚集在晶界处时,这部分杂质首先熔化并在电极压力的作用下被挤出呈空隙。在随后的过程中,空间有时能被液态金属充坡满,但亦可能未充坡满,这种组织形貌在金相试样上称为胡须,而未充坡满的胡须犹如裂纹,是一种危险缺陷。

(3)维持时间—切断焊接电流,电极压力继续维持至熔核凝固到足够强度。

(4)休止时间—电极开始提起到电极再次开始下降,开始下一个焊接循环。

为了改善焊接接头的性能,有时需要将下列各项中的一个或多个加于基本循环:

(1)加大预压力以消除厚工件之间的间隙,使之紧密贴合。

(2)用预热脉冲提高金属的塑性,使工件易于紧密贴合、防止飞溅;凸焊时这样做可以使多个凸点在通电焊接前与平板均匀接触,以保证各点加热的一致。

(3)加大锻压力以压实熔核,防止产生裂纹或缩孔。

(4)用回火或缓冷脉冲消除合金钢的淬火组织,提高接头的力学性能,或在不加大

锻压力的条件下,防止裂纹和缩孔。

2.3.2焊接热的产出及影响因素

点焊时产生的热量由下式决定: Q=12RtU)(2—1)

式中:Q一产生的热量(J);I一焊接电流(A);R一极问电阻(Q);t一焊接时间(S)。

1.电阻R及影响R的因素

电极间电阻包括工件本身电阻民,两工件间接触电阻R,电极与工件间接触电阻k。即: R=2R+R+28。(2·2)如图2—2所示。当工件和电极一定时,工件的电阻取决与它的电阻率。因此,电阻率是被焊材料的重要性能。电阻率高的金属其导电性差(如不锈钢),电阻率低的金属其导电性好(如铝合会)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易。点焊时,前者可用较小电流(几千安培),而后者就必须用很大电流(几万安培)。电阻率不仅取决与金属种类,还与会属的热处理状态、加工方式及温度有关。

接触电阻存在的时问是短暂的,一般存在于焊接初期,由两方面原因形成:

(1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。过厚的氧化物和脏物质层甚至会使电流不能导通。

(2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。在接触点处形成电流线的收拢。由于电流通路的缩小而增加了接触处的电阻。电极与工件间的电阻%与R和风相比,由于铜合会的电阻率和硬度一般比工件低,因此很小,对熔核形成的影响更小,我们较少考虑它的影响。

2.焊接电流的影响

从公式(2-1)可见,电流对产热的影响是平方关系,比电阻和时间两者都大。因此,在焊接过程中,它是一个必须严格控制的参数。引起电流变化的主要原因是电网电压波动和交流焊机次级回路阻抗变化。阻抗变化是因为回路的几何形状变化,或因在次级回路中引入了不同量的磁性金属。

3.焊接时间的影响

为了保证熔核尺寸和焊点强度,焊接时间与焊接电流在一定范围内可以相互补充。为了获得一定强度的焊点,可以采用大电流和短时间(强条件,又称硬规范),也可采用小电流和长时『日J(弱条件,也称软规范)。选用硬规范还是软规范,取决于会属的性能、厚度和所用焊机的功率。对于不同性能和厚度的金属所需的电流和时|’日J,都有一个上下限,使用时以此为准。

4.电极压力的影响

电极压力对两电极问总电阻R有明显的影响,随着电极压力的增大,R显著减小,10但电流增加而使产热递增的幅度并不大,解决的办法是在增大焊接压力的同时,增大焊接电流。但电极压力过大,容易在焊接过程中将液态会属挤到熔核周围,反而使点焊质量降低。

5.电极形状及材料性能的影响

由于电极的接触面积决定着电流密度,电极材料的电阻率和导热性关系着热量的产生和散失,因此,电极的形状和材料对熔核的形成有显著影响。随着电极端头的变形和磨损,接触面积增大,焊点强度将降低。

6.工件表面状况的影响

工件表面的氧化物、污垢、油和其他杂质增大了接触电阻。过厚的氧化物层甚至会使电流不能通过。局部的导通,由于电流密度过大,则会产生飞溅和表面烧损。氧化物层的存在还会影响各个焊点加热的不均匀性,引起焊接质量波动。囚此,彻底清理:L件表面足保证获得优质接头的必要条件。

第三章点焊工艺参数选择

点焊工艺的主要规范参数是焊接电流、焊接时问、电极压力。通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。

3.1主要规范参数分析

3.1.1.电极压力对点焊质量的影响

(1)电极压力与点焊质量之间的关系: (2)电极最大位移与电极压力之间的关系:

(3)电极位移与点焊质量之问的关系

结果总结:从以上试验结果来看,在通电电流和时问不变的钱提下,电极最大位移与点焊质量具有良好的对应关系,二者随压力的变化趋势基本一致。随着焊接压力的增大,在一定范围内,点焊强度稍有增大,基本稳定在一定水平,波动很小;但随电极压力进一步增大时,焊接强度下降较快。2.电极压力F电极压力的大小一方面影响电阻的数值.从而影响析热t的多少.另一方面影晌烽件向电极的散热情况。过小的电极压力将导致电阻增大、析热t过多且散热较差,引起前期飞溅;过大的电极压力将导致电阻减小、析热t少、散热良好、熔核尺寸缩小.尤其是焊透率显著下降。因此从节能角度来考虑.应选择不产生飞溅的最小电极压力。此值与电流值有关,可参照文献中广为推荐的临界飞溅曲线图。目前均建议选用临界飞溅曲线附近无飞溅区内的工作点。

3.1.2.通电电流对点焊质量的影响

(1)点焊质量与通电电流的关系(图4—7):

随着通电电流的升高,焊接质量总体上有提高的趋势。根掘实验的记录情况,压力越大,越不容易出现飞溅,所以不同压力情况下的电流给定范围有所不同,我们是根掘出现飞溅时的电流值作为实验电流的上限。电极最大位移基本随通电电流的增大而增大,和点焊强度具有较好的一致性,个别情况有位移减小的趋势,主要是因为出现较大飞溅引起的。在电极压力和通电电流不变的情况下,电极最大位移和焊接质量随通电时间的增加而增加,焊接质量基本上由通电时间来决定。3.焊接时间通电时间的长短直接影响输入热的大小,在目前广为采用的同期控制点焊机上,通电时间是周(我国一周为ZOms)的整倍数。在其它参数固定的情况下,只有通电时间超过某最小值时才开始出现熔核,而后随通电时间的增长,熔核先快速增大,拉剪力亦提高。当选用的电流适中时.进一步增加通电时间,熔核增长变慢.渐趋恒定。但由于加热时间过长.组织变差,正拉力下降.会使塑性指标(延性比Fa爪)下降。当选用的电流较大时,则熔核长大到一定极限后会产生飞溅。

3.1.3通电时间对点焊质量的影响

焊接质量基本上由通电时间来决定。4.

性能影响最敏感。在其它参数不变时,当电流小于某值熔核不能形成.超过此值后,随电流增加.熔核快速增大,焊点强度上升,而后因散热t的增大而熔核增长速度减缓,禅点强度增加缓、慢,如进一步提高电流,则导致产生飞溅,焊点强度反而下降。所以一般建议选用对熔核直径变不敏感的适中电流来焊接。

从以上分析结果可以看出:

(1)点焊强度(抗剪力F)与通电电流和时间相关性最大,且正相关;而电极压力则影响最小,和点焊质量呈负相关关系。

(2)电极最大位移(Smax)与电流和时间相关性最大,与电极压力相关性最小,这点和点焊强度一致。

(3)点焊质量与电极最大位移相关性最大,且正相关,与通电时J'日J、通电电流次之,且二者相近,电极压力影响最小。

(4)从参数重要性指标同样可以看出,通电时间和电流对点焊质量影响较大,而电极压力影响最小,并且电极最大位移与点焊质量有着良好的对应关系,这点和实验结果一致。

点焊质量对焊接电流、通电时问的最敏感,而电极压力次之。在焊接电流大于某一阈值后,点焊质

量主要由焊接时间决定;电极位移与焊点强度的确有着良好的对应关系,分析结果和试验结果一致。

3.2焊接规范参数的确定原则

l)保证焊核直径;

2)不出现飞溅,同时避免压坑过深及凸肩等缺陷;

3)尽量采用硬规范以提高生产节拍,提高接头综合性能。

以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。当采用工频交流电源时,点焊参数的选择应首先确定电极

3.3 调整方法

1)根据工件厚度,选定焊机容量,确定焊点直径范围;

2)选定焊钳型号和电极尺寸,焊钳的最大电极压力一般要求达到300oN(按管路气压为0.6MPa考虑);

3)初步设定焊接时间,根据料厚及层数组合状况,一般可调为8至14周波;

4)将焊接电流逐渐增大,直到焊点直径达到要求。若焊点直径没有达到要求即产生飞溅,则适当减小焊接电流而增加通电时间,直至达到规定的直径。

以上参数调整过程中,同时注意保证压坑深度,一般压坑深度小于板厚的15%~20%,若压坑过深,则适当减小气压并视情况调整电流和焊接时间。合工艺试验和车间生产的具体实际情况,我们归纳出低碳钢板的最佳规范如上表:

第四章点焊质量保证与缺陷分析

生产中要获得较好的焊点质量,除有最佳的焊接电流、焊接压力、焊接时间等焊接工艺参数外还须了解其它与焊接有关的参数对焊接质量的影响规律,并进行合理的优化与搭配,才能得到良好的焊接质量。

4.1 点焊质量保证

4.1.1 焊点工艺设计的优化

焊点工艺设计在相当程度上决定采用的工装和设备、焊点质量和成本。

1.工艺设计时要充分考虑焊接设备的能力和本地区供电电网的品质,选择功率裕量足够的焊机和控制精度合适的焊接控制器,确保焊点质量及其稳定性。

2.焊点设计时尽量考虑使用双面点焊,特别是使用推挽双点技术。实践证明,双面点焊比单面点焊焊接质量更可靠,易于保证。

3.尽量避免设计多层板(超过三层以上),特别是多层厚板的装配结构进行点焊。

4.焊点设计要充分考虑焊点的间距及边距,选择合适的焊接顺序,以减小焊接分流及焊接变形。

5.设计焊接回路时应尽量减小二次回路阻抗。

6.制定和采用合适的点焊质检工艺,使用简便、可靠、经济的质检方法和工具,制定合适的质检频次。

7.使用合适的测试仪表及工具。

4.1.2 电极

点焊电极是保证点焊质量的重要零件,由4部分组成:端部、

主体、尾部、冷却水孔。它的主要功能有:(1)向工件传导电流;

(2)向工件传递压力;(3)迅速导散焊接区的热量。目前点焊时

主要采用锥台形和球面形两种电极,锥台形的端面直径d或球面形

的端部回弧半径R的大小,决定了电极与焊件接触面积的多少,在

同等电流时,它决定了电流密度大小和电极压强分布范围。一般应

选用比期望获得熔核直径大20%左右的工作面直径所需的端部尺

寸。其次由于电极是内水冷却的.电极上散失的热t往往高达50%的输入总热t,因此端部工作面的波动或水冷孔端到电极表面的距离变化均将严孟影响散热t的多少,从而引起熔核尺寸的波动。因此要求锥台形电极工作面直径在工作期间每增大15%左右必须修复。而水冷孔端至表面距离在耗损至仅存3~4~时即应更换新电极。

4.1.3焊点的强度保证

要得到具有足够强度的焊点,首先取决于是否根据焊件状况(板材厚度、层数、材质、镀层情况等)制定了合理的焊接规范;其次,取决于是否采取有效措施来克服影响焊接规范稳定性的各种因素。这些因素主要有:

a)网路电压的波动;

b)铁磁性物质进人焊钳导致二次回路阻抗的变化;

c)电极端面直径和性能的的变化(随着点焊次数的不断增加,电极端面直径被徽粗变大引起电流密度降低;电极沽污,特别是镀锌板焊接时电极端部铜锌合金引起电极导电导热性能下降)针对以上因素,目前可以采取以下措施:

1)选用目前先进的微电脑阻焊控制器。我厂使用的江都焊接设备厂生产的VCW一200系列微机控制器,在网压波动士10肠、负载阻抗变化士10%时,焊接电流变化簇士3%,可有效克服网路电压的波动及二次回路阻抗变化的影响。天津陆华科技公司生产的HCW系列高档阻焊控制器网压波动十10%一一20%时,闭环恒流稳定度镇士2%。法国SCIAKY公司的CPS2000RI,2控制器网压波动+10%~一15%时,电流变化为士2%(武汉神龙公司使用)

2)在焊装车间或焊装线上对焊机的通电焊接进行计算机群控管理和集中控制,可有效防止同时通电的焊机数量,避免电源电压下降过多,使压降在允许的范围内。同时可检测和控制在线所有焊机的工作状况,保证焊接质量。如一汽奥迪轿车焊装线装天津陆华科技公司的QWDK型电网平衡控制系统和HZ型集中控制系统,可根据电网容量控制同通电的焊机台数,控制电网的三相平衡;可检测和控制在线所有焊机的工作状态(包括故障情况、焊接规范、焊点数等);可远离现场对每台焊机进行编程。为保证焊接质量、实现焊接自动化管理提供了硬件基础。

3)在编制焊接工艺时,可利用微电脑阻焊控制器的电流阶梯递增功能和定点修磨电极的措施,避免电极端面直径被辙粗而引起的电流密度降低以及电极端部性能恶化对焊点强度的影响。此外,由于车身板件组合多变,经常存在一把焊钳需焊接板件组合不同的部位。对此,最好采用多套焊接规范进行焊接。这在自动化焊钳和机器人点焊工位比较容易实现,但手工点焊工位则比较困难。如果程序(规范)转换开关设在焊钳上,操作者容易混淆或遗忘。为解决这一问题,可以在夹具上设置程序转换板,对焊接规范进行强制转换。国内已有武汉神龙、一汽大众等公司采用。

4.1.4焊点外观质量的保证

焊点的外观质量主要指焊点的表面质量(要求压抗浅、平滑均匀过度、无明显的凸肩或局部挤压造成的表面鼓起,无毛刺、焊点表面没有熔化或粘附的铜合金以及裂纹等缺陷)、焊点的位置度以及点焊造成的工件变形。焊点的外观质量除靠先进的设备和工艺参数来保证外,还可以采取以下措施来提高: l)在外观件表面一侧使用浮动电极垫板,如果在多点焊机上,可以使用平电极来减轻压坑、毛刺等缺陷;

2)采用有浮动机构的焊钳以避免工件受非焊接压力的作用而变形;

3)采用焊点导向块来保证焊点位置的准确性,并克服电极与工件不垂直而造成的工件变形。

4.2点焊接头主要缺陷产生的原因及预防措施

(1)喷溅(飞溅)。按时间分为前期喷溅和后期喷溅;按产生的部位可分为内喷溅(两焊件间,)和外喷溅(焊件与电极接触处)2种

前期喷溅产生的原因是:焊件表面清理不佳或接触面上压强分布严重不匀,造成局部电流密度过高引起早期熔化,此时因无塑性环保护,发生喷溅。

防止前期喷溅的措施有:加强焊件清理质量,注意预压前的对中;有条件时可采用渐升电流或增加预热电流来减慢加热速度,避免早期熔化而引起喷溅。

后期喷溅产生的原因是:熔核长大过快,超出电极压力有效的作用范围,从而冲破塑性环,在径向造成内喷溅,在轴向冲破板表面造成外喷溅。这种情况一般产生在电流较大、通电时间过长的情况下。可通过缩短焊接时间和减小电流的办法来防止。

喷溅在外表面上首先影响外观;其次产生的疤痕影响耐腐蚀及疲劳性能。可通过预热来防止熔核长大过快。预热降低了焊接开始时焊接区金属中的温度梯度,避免金属的瞬间过热和产生喷溅。

(2)收缩性缺陷。主要包括缩孔和收缩性裂纹。点焊时,焊接区加热集中,温度梯度大,加热与冷却速度很快,液态金属被包围在金属塑性环中;同时受焊接区金属变形的影响,特别是奥氏体不锈钢线胀很大的特殊原因。因此,接头易出现缩孔和收缩性裂纹等缺陷。

SUS301 L不锈钢具有低碳钢5倍左右的线胀系数和较高的热强性,因此当压力无法达到很高时就会出现缩孔。缩孔虽然减少了点焊的承载面积,但是对接头的静载强度影响不大,对冲击和疲劳载荷则有一定的影响,特别是同时伴有裂纹的,影响特别明显。因此规定每个焊点仅能存在1个缩孔,且孔径不大于熔核直径的25 % o

缩孔的防止主要靠提高电极压力,特别是熔核形成、焊接区快速冷却时的锻压力来实现。

熔核内部裂纹,可分为横向裂纹及缩孔边缘的裂纹。一般认为存在于熔核中心部位的裂纹,若尺寸较小,对焊接接头的强度影响不大。

出现焊核内部横向裂纹的主要原因是:电极压力太低;焊接电流过大;焊接时间过短。

出现缩孔边缘裂纹的原因是:焊接电流太大或焊接时间过长;电极压力不足。

(3)其他缺陷。

①未焊透。沿贴合面无熔核、熔核尺寸过小或熔透率不足。该缺陷使焊接接头强度大大降低,是点焊的一种危险的缺陷。

产生原因是由于焊接电流太小;焊接时间太短;电极压力过大。

②压痕过深。焊点表面压痕超过规定要求。压痕过深容易造成应力集中,导致焊接接头强度特别是疲劳强度大大下降。

产生的原因是由于电极球面半径过小;电极压力过大;焊接电流太大或焊接时间过长;喷溅所引起。

③熔合线伸人。指熔合线呈直线状伸人熔核内的现象。熔合线的伸入会减少熔核的实际有效直径,从而降低接头强度。这种缺陷对接头疲劳性能影响较大,使用时容易导致接头的破坏。产生的原因是由于焊接表面清理不净;电极球面半径过小,加在熔核边缘的压力相应减少。

④表面烧伤。焊件或电极表面不净,使电极与工件接触位置的电流密度高而集中,造成的局部熔化的烧伤。烧伤会影响接头的抗腐蚀性和表面质量。

在点焊焊接过程中,应按相关规程的要求,尽量避免出现上述的焊接缺陷。3结束语

上述工艺已应用在生产中,使得大连金州线不锈钢车辆生产顺利完成。目前该车已在投人使用,情况良好。.

第五章点焊焊枪驱动控制

随着汽车工业飞速发展,电阻点焊已经成为轿车白车身装配的主要连接方法,因而点焊质量与焊接效率对轿车的质量与成本有着重要影响。广阔的市场需求及严格的焊接质量要求对焊枪驱动提出了更高的要求。目前,点焊工业中所用的焊枪绝大部分是气动焊枪,传统的气动驱动技术决定了气动焊枪的电极力在焊接过程中固定、不可调,响应时间长。而伺服焊枪一个特有的优势在于它可以有效地控制电极力,减少和抑制焊接过程中的飞溅,提高焊点质量;同时由于焊接时电极与工件的弹性接触,伺服焊枪能够明显提高电极寿命。因此,无论是电动驱动还是气动驱动,伺服焊枪无疑是点焊焊枪驱动发展的方向。

5.1电动伺服焊枪应用现状

电动伺服焊枪对于汽车车身装配生产线来说相埘较新,目前在同本只有丰阳等少数公司将电动伺服焊枪应用到汽车车身装配生产线上,而美国只有大约200只电动伺服焊枪被应用。电动伺服焊枪因其价值昂贵,其经济利益和成本效率目前还缺少足够的论证,在实际生产中也没有一套可以保证焊点质量的焊接规范参数库。

气动伺服系统作为一种新兴的焊枪驱动系统,凭借其独特的优势,正在被越来越多的用户所关注,而且世界各大气动元件制造商也都在大力拓展这项业务。英国诺冠公司设计制造的气动伺服焊枪驱动系统,因其在比例伺服控制方面的优势,与电动伺服相比,具有同等性能但成本更低,已经在欧洲的一些厂家得到应用。因此,研究点焊焊枪的气动伺服驱动控制,对于改善或着提高点焊质量无疑具有广阔的

应用前景和现实意义。本章就足针对点焊焊枪驱动的气动力伺服系统进行了研究,为气动伺服焊枪驱动提供基础。

5.2点焊焊枪气动力伺服系统的组成及特点

伺服焊枪的主要特点表现在两个方面:一是电极加载的柔性化,这样不仅可以防止电极压紧工件时产生大的冲击,使工件表面变形不平整而影响点焊质量,而且还可以延缓电极磨损,提高电极使用寿命;二是电极运动速度的高速化,可以提高生产率。

气动力伺服系统具有结构简单、成本低廉、高速性以及清洁等优点,因此,气动伺服系统在机器人控制、点焊控制中等获得广泛应用。然而,随着焊接质量对焊枪驱动提出更高的要求,由于气动力伺服系统的复杂性,要实现高精度控制用常规方法并非易事。气动力伺服系统主要由气缸、气动比例压力阀、控制器等部分构成(如图6-1)。

由于空气的压缩性、摩擦力、气源压力和负载的变化等一系列非线性因素的存在,使得整个伺服系统的数学模型难以准确拙述。因此,对其控制方法的研究是保证点焊焊枪驱动性能的关键问题。由于滑模控制具有良好的抗干扰能力和抗模型参数摄动能力的特点,这里把滑模控制的方法应用到气动力伺服系统中,以解决气动系统中的未建模部分的动态特性和有界干扰问题,提高气动伺服系统的控制精度和稳定性。首先完成包括气动比例压力阀和被控缸在内的被控对象的数学建模,在此基础上进行滑模控制器的设计,最后进行了仿真研究。

5.3气动伺服系统的数学模型

VEP3121.1型比例压力阀采用滑阀结构,用比例电磁铁直接控制阀芯的位移,使得输出压力与输入信号电流成比例,其结构如图6.4所示。其工作原理为:当输入的电信号较小,比例电磁铁的推力F-小于反馈弹簧的预压力F2时,阀P腔与A腔封闭,A腔与R腔相同处丁二放气状态;当比例电磁铁的推力Fl上升到大于比例电磁铁的推力F2时,阀处于工作状念,P腔与A腔相通,A腔与R腔封闭,此时工作腔A的压力通过反馈通道作用于阀芯右端,起反馈作用。当A腔的压力过高时,反馈压力随之声高,阀芯向左运动,使P腔到A腔的阀口开口量减小。因此在一定的输入电流条件下,由于内部反馈的作用,使A腔的工作压力为一恒定值,实现了输入电流信号的比例关系。

毕业设计总结

参考文献

袁少波,童彦刚.点焊技术在汽车工业中的应用[J]电焊机,2005,(02)

丹丹,李文东.车身是铝合金的点焊焊接过程[J]山东内燃机,2005,(01)

恒新,陈海英.铝合金车身的点焊工艺[J]电焊机,2006,(02)

彭振固.在汽车制造中的焊接技术现状及发展趋势.焊接技术,2006,8:5-9.

邹帆,罗震,单平,高战蛟.电阻点焊熔核设计的数值模拟.焊接技术,2006,3-5

尹孝辉,张忠典,赵洪运,等.点焊监控技术的发展与现状.焊接,2002(2): 5—9

张延松,许敏,陈关龙,会隼.伺服焊枪在轿车车身制造中的应用前景研究.汽车工程,2004,2-6 毕惠琴.焊接方法及设备.(第二分册)电阻焊.机械工业出版社,1987

孙金贞.全国第三届汽车焊接年会论文集1996

现代制造工程2003(1) 薄板构件点焊工艺优化□许小平

汽车钣金焊接基础知识

焊接基础知识 版本:A/0 1 主题内容与适用范围 1.1本标准规定了钣金焊接基础知识的内容。 1.2本标准适用于钣金焊接作业相关人员的培训管理。 2 焊接的本质 焊接本质上是指通过适当的物理化学过程使两个分离的固态物体产生原子(分子)间结合力而连接成一体的连接方法。 金属晶格间距(0.3-0.5nm)。 3 焊接方法的分类 4 用于车身件的焊接方法种类 用于车身件的焊接方法主要有: 电阻焊接,电弧焊接,激光焊接,螺柱焊接。 5 电阻焊接 电阻焊接是用于车身件焊接的最主要的焊接方法。 5.1点焊焊接的原理 焊件接合后,通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法。

ELECTRODES 5.2电阻焊的物理本质 就是利用焊接区金属本身的电阻热和大量塑性变形能量,使两个分离表面的金属原子之间接近到晶格距离(0.3-0.5nm),形成金属键,在结合面上产生足够量的共同晶粒而得到焊点、焊缝或对接接头。 5.3电阻焊接优点 生产效率高,快速,简单、可靠,易用于镀层材料,成本低,易于自动化。 5.4手工点焊设备

5.5机器人点焊单元 5.6焊接热量的形成及其影响因素 电阻R,焊接电流I,焊接时间T。 电极压力,电极形状及材料性能的影响,工件表面状况的影响。 5.6.1电阻及影响电阻的因素

Rw-工件本身电阻,由材料的本身特性决定(不锈钢、碳钢、铝等) Rc-两工件间的接触电阻,具有短暂性,工件表面氧化物、脏物,微观不平度 Rew-工件与电极间接触电阻,阻值很小,对熔核的形成影响很小 5.6.2焊接电流的影响 由热方程可知电流对产热的影响最大。 电流的影响因素有: 电网电压波动; 交流焊机次级回路阻抗的变化。 5.6.3焊接时间的影响 大电流、短时间-强条件,硬规范。 小电流、长时间-弱条件,软规范。 5.6.4电极压力的影响 电极压力对两电极间的总电阻R有显著的影响:压力增大,则R显著减小。但对电流影响不大。 焊点强度随焊接压力增大而减小,所以一般在增大焊接压力的同时,增大焊接电流。 5.6.5工件表面状况的影响 工件表面的氧化物、污垢、油和其它杂质增大了接触电阻,会造成接触表面的局部导通,由于电 流密度过大,则会产生飞溅和表面烧损。表面杂质的存在还会影响各个焊点加热的不均匀性,引起焊 接质量的波动。因此彻底清理工件表面是保证获得优质接头的必要条件。 5.7热平衡及散热

大众点焊标准

分类号:04815 2004年12月德国大众汽车公司镀层/无镀层板件电阻点焊之设计、计算与工艺质量保证VW011 05-1 Konzern标准 关键词焊接、点焊、电阻点焊、焊点、板件、钢板、薄钢板 本标准英文版翻译准确,如果出现前后不一致,则以德文版为准。使用前请检查本标准的最新版本。 机密文件,注意保密。版权所有;未事先得到德国大众集团标准部的书面同意,不得传输或复制本文件中的任何部分。签约方只能够从主管部门获取本标准。

目次 1.范围………………………………………………………………………… 2.定义…………………………………………………………………………. 2.1.点焊………………………………………………………………………… 2.2.热影响区…………………………………………………………………… 2. 3.未受影响的母材…………………………………………………………… 2.4.焊接设计…………………………………………………………………… 3. 焊接要求…………………………………………………………………… 3.1. 母材(可焊性)……………………………………………………………… 3.2. 焊接设计(焊接性)………………………………………………………… 3.3. 生产(焊接能力)…………………………………………………………… 4. 点焊基础…………………………………………………………………… 4.1最小剪切力F min…………………………………………………………… 4.2. 横向拉力F K………………………………………………………………… 4.3. 剥离力F Sch?l…………………………………………………………………4.4. 扭力M t………………………………………………………………………4. 5. 静态和动态应力负载………………………………………………………… 4.6. 工艺质量保证………………………………………………………………… 5. 图纸…………………………………………………………………………….. 6. 引用标准………………………………………………………………………

P+T焊接工艺参数

P+T焊接设备对不锈钢产品工艺的要求 一、P+T焊接设备: 该设备由纵缝机、环缝机组成,适用于碳钢、不锈钢以及某些有色金属对接焊接。 纵缝机参数: 1、3-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用填丝盖面。拖罩保护焊缝。 2、工件精度要求: 焊缝直线度要求10m长直线度误差≤2mm(直线度不能保障时,可通过摄像监控系统调整焊枪位置) 对接间隙≤1/10T(T 为试件板厚)且不大于 错边≤(T 为试件板厚)且不大于1mm 3.工作对象 ①直径范围:φ1500~φ3200mm ②工件壁厚: 2-14mm(一次熔透8mm,大于8mm需开坡口填丝) ③工件长度:≤2500 mm ④工件材质:不锈钢、碳钢、钛基合金等 工件施焊端面采用机械加工,拼缝要求规则均匀 4.设备参数

可夹持最小壁厚: 2mm 可夹持最大壁厚: 14mm 焊枪行走速度: 100-3000mm/min 跟踪滑板速度:≤200mm/min 液压升降台承载:≤6T 一、设备的用途: 等离子环缝焊接系统用于各类碳钢\合金钢(碳钢、不锈钢、钛基合金等)环缝焊接,采用等离子焊接工艺,壁厚8mm以下可不开坡口直接焊接一次性单面焊双面成形。对于较薄板直接用等离子焊接;对于8mm 板厚以上视情况采用等离子添丝焊接的方式。焊接时正面有拖罩保护焊缝,反面有背气保护系统 设备采用一套飞马特等离子焊接系统和一套KM4030焊接操作机,一套视频系统,一套20T可调式滚轮架,采用等离子高效焊接,实现工件的环缝焊接。 电控系统部分以三菱PLC为控制核心,能够准确控制设备的各种动作,操作盒上安装有触摸屏,便于修改各项控制参数,使用安全可靠,故障率低。 1、焊接成型工艺: 2-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用TIG填丝盖面。拖罩保护焊缝。

电焊工基础知识

电焊工培训资料 一、基本知识 1.什么叫焊接? 答:两种或两种以上材质(同种或异种),通过加热或加压或二者并用,来达到原子之间的结合而形成永久性连接的工艺过程叫焊接. 2.什么叫电弧? 答:由焊接电源供给的,在两极间产生强烈而持久的气体放电现象—叫电弧。 〈1〉按电流种类可分为:交流电弧、直流电弧和脉冲电弧。 〈2〉按电弧的状态可分为:自由电弧和压缩电弧(如等离子弧)。 〈3〉按电极材料可分为:熔化极电弧和不熔化极电弧。 3.什么叫母材? 答:被焊接的金属---叫做母材。 4.什么叫熔滴? 答:焊丝先端受热后熔化,并向熔池过渡的液态金属滴---叫做熔滴。 5.什么叫熔池? 答:熔焊时焊件上所形成的具有一定几何形状的液态金属部分---叫做熔池。 6.什么叫焊缝? 答:焊接后焊件中所形成的结合部分。 7.什么叫焊缝金属? 答:由熔化的母材和填充金属(焊丝、焊条等)凝固后形成的那部分金属。 8.什么叫保护气体? 答:焊接中用于保护金属熔滴以及熔池免受外界有害气体(氢、氧、氮)侵入的 ?--保护气体。 9.什么叫焊接技术? 答:各种焊接方法、焊接材料、焊接工艺以及焊接设备等及其基础理论的总称—叫焊接技术。 10.什么叫焊接工艺?它有哪些内容? 答:焊接过程中的一整套工艺程序及其技术规定。内容包括:焊接方法、焊前准备加工、装配、焊接材料、焊接设备、焊接顺序、焊接操作、焊接工艺参数以及焊后处理等。 11.什么叫CO2焊接? 答:用纯度> 99.98% 的CO2做保护气体的熔化极气体保护焊—称为CO2焊。 12.什么叫MAG焊接? 答:用混合气体75--95% Ar + 25--5 % CO2 ,(标准配比:80%Ar + 20%CO2 )做保护气体的熔化极气体保护焊—称为MAG焊。 13.什么叫MIG焊接? 答:〈1〉用高纯度氩气Ar≥ 99.99%做保护气体的熔化极气体保护焊接铝及铝合金、铜及铜合金等有色金属; 〈2〉用98% Ar + 2%O2 或95%Ar + 5%CO2做保护气体的熔化极气体保护焊接实心不锈钢焊丝的工艺方法--称为MIG焊。 〈3〉用氦+氩惰性混合气做保护的熔化极气体保护焊。 14.什么叫TIG(钨极氩弧焊)焊接? 答:用纯钨或活化钨(钍钨、铈钨、锆钨、镧钨)作为不熔化电极的惰性气体保护电弧焊,简称TIG焊。

点焊工艺及全参数

点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合

汽车车身焊接工艺设计教案

浅析汽车车身的焊接工艺设计 在汽车厂中,焊接生产线相对于涂装线和总装线来说,刚性强,多品种车型的通用性差,每更新换代一种车型,均需要更新车间大量专用设备和生产工艺。焊接工艺设计可以称得上是焊接生产线的“灵魂”,涉及的专业知识较多,如机械化、电控、非标设备、建筑、结构、水道、暖通、动力、电气、计算机、环保和通讯等,从宏观上决定车间的工艺水平、物流、投资和预留发展,具体决定着生产线的工艺设备种类和数量、夹具形式、物流工位器具形式、机械化输送方式及控制模式等。因此,焊接工艺设计在焊接生产线的开发中占有举足轻重的地位,是产生高性价比焊接生产线 的关键。 1、车身焊接工艺设计的前提条件 1.1产品资料 a.产品的数学模型(简称数模)。在汽车制造行业中,一般情况下用 UG,Catia,ProE等三维软件均能打开数模(如图1),并在其中获取数据或进行深人的工作。在工艺设计过程中,将所有数模装配在一起就构成了一个整车数模,从数模中可以获得零部件的结构尺寸、位置关系。由数模还可以生成整车、分总成、冲压件的各种视图(包括轴测图),以及可以输出剖面图。 b.全套产品图纸。 c.样车、样件(包括整车车身总成、各大总成、分总成和冲压件)。

d.产品零部件明细表(包括各部件的名称、编号,冲压件的名称、编号、数量,标准件的规格、数量)。 工艺设计时,业主必须提供上述a、b、c中至少1项,d项可以从前3项中分析出来,正常状态下d项(如图2)早在汽车设计结束时就已经确定了。如果仅提供b 项,那么需要增加大量的车身拆解、分析工作。

1.2工厂设计的参数 工厂设计的参数包括以下几方面: a.生产纲领即年产量; b.年时基数即生产班次、生产线的利用率等; c.生产线的自动化程度(机器人+自动焊钳焊点数/全车身焊点数x 100%=自动化率); d.生产线的工艺水平要求(如主要设备选用原则、生产线的输送方式,电气控制水平等); e.各种材料、外购件的选用原则(如型材、控制元件、气动元件、电机、减速器); f.各种公用动力介质的供应方式、能力、品质等参数,建厂所在地的环境状况如温度、湿度等; g.当生产线布置在原有厂房内时,应收集原有房的土建、公用有关资料,如厂房柱顶标高、屋架承载能力、电力和动力介质的余富程度等。 2、工艺分析 2.1工艺线路分析 根据业主提供的产品资料进行产品工艺线路分析(如业主仅提供样车及样件则需经过样车分析→样车拆解→样车测量→样车再装配过程),完成装焊工艺线路图或爆炸图设计。 2.1.1产品分块 同类型车身的分块基本相同(一般车身均由地板、侧围、前/后围、门、顶盖等大总成组成),但各总成之间的连接方式及顺序往往有较大区别,合理的分块才能保

点焊方法及工艺参数选择

点焊方法及工艺参数选择 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各

对电极均由单独的变压器供电,全部电极同时压住工件的型式(图 11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 三、不等厚度和不同材料的点焊 当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一边偏移,偏移的结果将使薄件或导电、

焊接工艺基本知识

焊接工艺基本知识 1什么是焊接接头?它有哪几种类型? 用焊接方法连接的接头称为焊接接头(简称为接头)。它由焊缝、熔合区、热影响区及其邻近的母材组成。在焊接结构中焊接接头起两方面的作用,第一是连接作用,即把两焊件连接成一个整体;第二是传力作用,即传递焊件所承受的载荷。 根据GB/T3375—94《焊接名词术语》中的规定,焊接接头可分为10种类型,即对接接头、T形接头、十字接头、搭接接头、角接接头、端接接头、套管接头、斜对接接头、卷边接头和锁底接头,如图1。其中以对接接头和T形接头应用最为普遍。

2什么是坡口?常用坡口有哪些形式? 根据设计或工艺需要,将焊件的待焊部位加工成一定几何形状的沟槽称为坡口。开坡口的目的是为了得到在焊件厚度上全部焊透的焊缝。 坡口的形式由 GB985—88《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》、GB986—88《埋弧焊焊缝坡口的基本形式及尺寸》标准制定的:常用的坡口形式有I形坡口、Y型坡口、带钝边U形坡口、双Y形 坡口、带钝边单边V形坡口等,见图2。

⑴坡口面焊件上所开坡口的表面称为坡口面,见图3。

⑵坡口面角度和坡口角度焊件表面的垂直面与坡口面之间的夹角称为坡口面角度,两坡口面之间的夹 角称为坡口角度,见图4。

开单面坡口时,坡口角度等于坡口面角度;开双面对称坡口时,坡口角度等于两倍的坡口面角度。坡口角度(或坡口面角度)应保证焊条能自由伸入坡口内部,不和两侧坡口面相碰,但角度太大将会消耗太多的填充材料, 并降低劳动生产率。

⑶根部间隙焊前,在接头根部之间预留的空隙称为根部间隙。亦称装配间隙。根部间隙的作用在于焊接底层焊道时,能保证根部可以焊透。因此,根部间隙太小时,将在根部产生焊不透现象;但太大的根部间隙,又会使根部烧穿,形成焊瘤。 ⑷钝边焊件开坡口时,沿焊件厚度方向未开坡口的端面部分称为钝边。钝边的作用是防止根部烧穿,但钝边值太大,又会使根部焊不透。 ⑸根部半径 U形坡口底部的半径称为根部半径。根部半径的作用是增大坡口根部的横向空间,使焊条能够伸入根部,促使根部焊透。 4试比较Y形、带钝边U形、双Y形三种坡口各自的优缺点? 当焊件厚度相同时,三种坡口的几何形状见图5。

点焊在汽车工业中的应用

点焊在汽车工业中的应用 点焊在汽车工业中有着广泛的应用,因此,焊点计数系统也就有着广阔的应用前景。 1. 焊点计数器在点焊焊接操作过程中的应用 在使用时,将传感器与常闭开关安装于焊机,并且将其集成于一个接口,方便系统的安装,将系统的接口与其联接后即可正常工作。 操作者在焊接时,会触发脉冲信号。通过对脉冲信号的采集,单片机判断其操作的状态。如果操作者漏点或者其操作的时间大于标准的时间,那么系统则会停机报错,并且通过网络将错误信息发送至控制室。 2. 焊点计数器的组网 通过对焊点计数器的组网,更能发挥其自动检测的功用。 如果现场的计数器发生停机报警,那么控制台上就会把对应的工位和错误信息显示出来,与此同时,控制室的工作人员将信息反馈给工位所对应的现场工程师及质量管理人员,这样,现场工程师就会在第一时间知道自己员工所犯的错误,并且到现场的工位一同进行排查、指导。 此外,此系统还可以与计算机等上位机进行连接,通过软件对其数据进行分析,找出每个工位出现错误的概率。我们可以通过软件所提供的数据分析,对现场的工位进行分析,找出犯错的原因,对其进行改善,更有效地进行防错。 3. 焊点计数器的使用更有利于车间标准化等工作的推行 焊点计数器安装、调试之后,对操作者点焊操作的时间、焊点的个数都有很合理、明确的要求,而且对装件等生产辅助时间也有很严格的要求。这样,在操作的过程中,操作者就不会随便中止自己的操作,方便了车间产品质量等方面的管理。 在焊接过程中,如何控制质量是焊接生产质量管理的一个难题。由于点焊操作过程中发生质量问题的随机性很大,因此在过程中发现质量问题就变得尤为困难。如果把计数器融入到点焊的操作过程中,就会把问题变得简单。在操作者操作的过程中记录他点焊时间与焊点的个数,判断他的操作是否正确,如果发现有异常操作,马上对其操作进行报错,在过程中对质量进行控制。这也改变了以往在生产线上要设立多个检验点来检查是否有漏焊接焊点的现状,更多地在生产过程中控制质量。节约了车间质量控制成本,提高了车间质量管理水平。 4. 其他方面的应用 此种计数系统不仅适用于点焊,通过更改系统的传感器,同样,传感器也可以检测出螺柱焊机所焊螺柱的数量,所以经过改进之后,系统也可以适用于螺柱焊机。此种计数系统采用的是模块化设计,我们完全可以把其集成于焊机,应用焊机自身的资源,实现系统的功能。这样,就丰富了焊机的功能,使焊机具有质量控制的功能,提高整个汽车工业的焊接质量。 1/1

(汽车行业)汽车点焊设备

(汽车行业)汽车点焊设备

汽车车身点焊设备综述 电阻焊具有的采用内部热源、热量集中、热影响区小、产品变形小能获得较好的表面加工质量、易操作、不使用外加焊接耗材等特点,使其成为焊接质量稳定、生产效率高、易于实现自动化大规模生产的目前最常用的焊接方法之壹,广泛应用于汽车车辆、航空航天、家电电器、钢制家具、交通设施、薄壁容器、汽车零部件等多种制造领域,特别是近年来我国汽车工业飞速发展,促使电阻焊应用不断增加,我国电阻焊机产量逐年大幅提升。电阻焊机年产量由数年前的数千套跃升到近年来的数万套。 电阻焊机在汽车工业上应用,主要是将冲压成形的薄板结构的车身覆盖件在其工件搭接连接处利用电阻热熔化金属形成焊点,将焊件联为壹体。壹台轿车车身的焊点约在3500~5000点之间。汽车车身点焊是电阻焊的主要形式之壹,汽车车身焊装用的点焊设备占全部电阻焊产品的90%之上。用于汽车车身焊装用的点焊机主要有三类: 普通点焊机、多点焊机和点焊机器人。 普通点焊机是适用于各种场合、各类焊接对象的通用点焊设备,也是组成汽车焊装自动化生产线的主要设备。汽车焊装自动化生产线根据其年生产纲领、汽车年产量不同,每条生产线需普通点焊机几十台到几百台不等。普通点焊机根据机器结构和应用场合的不同又分为移动式点焊机和固定式点焊机;移动式点焊机根据其结构不同,又分为悬挂式点焊机和手提式点焊机。 多点焊机是为焊装特定工件设计、制造的专用焊接设备,其优点是生产效率高,适合大批量单品种生产,适用于焊装结构形状复杂、焊点密集、接头搭边小、操作困难、焊接质量难以保证等因素的工件。其缺点是设备投资多、专用性强,将逐步由焊接机器人和相应工装夹具组合取代。多点焊机除用于焊接各种车辆构件之外,仍应用于家用电器如电冰箱、洗衣机,钢制家具、交通设施、板式散热器等各种薄金属构件制造行业。 机器人无论在国际仍是国内,近年来发展速度不断加快,应用领域越来越广,新技术不断采用,机器人数量越来越多。汽车厂使用的机器人主要用于搬运、焊接、涂敷和装配等工作。汽车厂冲压、焊装、涂装及总装四大工序中使用机器人的水平和数量,代表着该厂自动化、现代化的水平。国外全部使用机器人的无人操作汽车厂屡见不鲜渐成主流,这也将是国内汽车工业发展到壹定阶段的必然产物和发展方向。应用机器人不仅能进行复杂的工艺操作、适应恶劣工作环境,取代笨重、单调、重复的人工体力劳动,保证产品质量,提高工效、节约能源、安全生产、消除壹切人为影响产品质量因素,仍能迅速组成柔性生产系统,特别适宜于新产品开发和多品种生产需要,产品换型上马快、周期短、应变能力强。 无论哪种类型的点焊机,其结构均由三大部分组成:电源及控制装置(阻焊控制器)、能量转换装置(焊接变压器)和焊接执行机构(点焊钳或点焊枪)。上文提到的三种类型的点焊机,其主要区别在于焊接执行机构不同。普通点焊机是由工人手抱点焊钳逐点对工件焊接,多点焊机顾名思义是由安装在多种形式机架上的多把点焊枪同时焊接,点焊机器人模仿人工动作使用安装在机械手臂上的点焊钳对工件焊接。 现代电阻焊技术和工艺的发展对阻焊控制器提出了更高的要求,这些要求离开了电子计算机是无法实现的。阻焊控制器控制电路在经历了分立元件、集成电路等发展阶段之后,目前已进展到以单片微型计算机为主的阶段。计算机的应用使阻焊控制器的功能更加强大、性能更加完善、可靠性进壹步提高。 现代阻焊控制器应具有下列功能: 1)可靠地控制电阻焊机接通、关断电源; 2)焊接电流精确可调; 3)焊接时间精确可调且无误差; 4)能够实现焊接过程各部分简单或复杂的循环;

钣金件点焊参数标准(DOC)

钣金件点焊参数标准 核准: 审核: 会签: 制定:付强红 发布日期:2011/07/06 海宁红狮宝盛科技有限公司发布

1.目的: 规范点焊过程参数不确定性及标准的不明确性,同时规范和明确焊接的使用,判定及检测方法,保证公司产品的焊接质量,并加以规定,以便检查工作的顺利进行和实施 2.范围: 适用部门:技术、生产部焊接及公司其它涉及焊接的车间;公司所生产的所有需点焊产品,但是有特殊要求的产品除外 适用客户:公司所生产的所有需点焊产品,如 BE,WINCOR 及其他客户,但是有特殊要求的产品除外. 3.引用标准: 1.BE PS-01-01_03 Welding焊接标准 2.国内点焊标准 3.国内点焊接检测方法 4.点焊参数规格及标准 电阻点焊(resistance spot welding),简称点焊。是焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊是一种高速、经济的重要连接方法,适用于制造可以采用搭接、接头不要求气密、厚度小于3mm的冲压、轧制的薄板构件。当然,它也可焊接厚度达6mm或更厚的金属构件,但这时其综合技术经济指标将不如某些熔焊方法。 如下为焊接参数规格及标准参考表: 1.点焊通常采用搭接接头或折边接头(图1).接头可以由两个或两个以上等厚度或不等厚度、相同材料或不相同材料的零件组成,焊点数量可为单点或多点.在电极可达性良好的条件下,接头主要尺寸设计可参见表1、表2和表3。 图1

2.焊前工件表面清理 点焊、凸焊和缝焊前,均需对焊件表面进行清理,以除掉表面脏物与氧化膜,获得小而均匀一致的接触电阻,这是避免电极粘结、喷溅、保证点焊质量和高生产率的主要前提.对于重要焊接结构和铝合金焊件等,尚需每批抽测施加一定电极压力下的两电极间总电阻R,以评定清理效果,一般情况下可由清理工艺保证。清理方法可有二类:机械法清理,主要有喷砂、刷光、抛光及磨光等;化学清理用溶液参见表5,也可查阅相关熔焊资料。 3、常用金属材料的点焊 判断金属材料点焊焊接性的主要标志:①材料的导电性和导热性,即电阻率小而热导率大的金属材料,其焊接性较差; ②材料的高温塑性及塑性温度范围,即高温屈服强度大的材料(如耐热合金)、塑性温度区间较窄的材料(如铝合金),其焊接性较差;③材料对热循环的敏感性,即易生成与热循环作用有关缺陷(裂纹、淬硬组织等)的材料(如65Mn),其焊接性较差;④熔点高、线膨胀系数大、硬度高等金属材料,其焊接性一般也较差。当然,评定某一金属材料点焊焊接性时,应综合、全面地考虑以上诸因素。 3.1 低碳钢的点焊(表6)

焊接与汽车车身结构

焊接与车身结构 作为汽车车身产品结构与焊接之间是相辅相成的,好的产品结构,在满足强度和功能的基础上,焊接工艺相对简单,实施较为容易,而车身结构又与装配关系息息相关,目前我们在前期同步工程中针对产品本身主要需处理的两大类工作:一为车身装配关系,二为车身焊接工艺性。车身装配关系关系到生产线的长度、生产组织方式,物流储运等,以下重点就车身结构与装配关系作一描述。 一车身结构 从车身结构上划分,车身分承载式车身、半承载式车身、非承载式车身三类。第一类:非承载式车身卡车、大中型客车、越野车等车身通常采用非承载式车身,有独立的车架,车架与车身之间通过装配形式连接。车架部分采用铆接、弧焊、电阻点焊方式连接的都有,弧焊方式居多,并且单独进行涂装,而后在总装与车身相互连接;而车身本体部分因车型相异而截然不同,客车多为骨架蒙皮式,由车身骨架加上外覆盖件组成,因而采用电阻点焊+铆接方式的居多,卡车由驾驶舱和车厢组成,驾驶舱多采用电阻点焊方式,车厢采用电阻点焊+弧焊的连接方式,越野车类似于轿车,车身本体由各块装焊,多采用电阻点焊,如现规划中的P11 车型,属于越野车。 第二类:承载式车身 轿车(专指乘用车)车身通常为承载式车身,没有独立的车架,悬架装置直接装配于车身轮罩上,如现生产的A11、B11、规划中的M11、B12 等车型,车身在总拼时按照模块化生产一般包括侧围、地板、顶盖、后围等,因车型的不同,在局部构成上有较大区别,在焊接方式上大都采用电阻点焊,零星位置采用弧焊。 第三类:半承载式车身 半承载式车身介于承载与非承载之间,一般在车身后半部有单独的车架构成,但与承载式车身不同的是,此车架在焊装即与车身焊接形成一个整体,随着汽车设计的发展,有无单独的车架概念已越来越模糊,但是否为半承载式的一个根本性的标准,是判断后部悬架装置是装配在轮罩上还是车架上,小型客车、面包车、SUV 、MPV 通常为半承载式车身,如规划中的A18 、B13 等车型,其模块化组成与承载式轿车基本相同,焊接方式大都采用电阻点焊,零星位置采用弧焊连接。 二车身装焊组成 除卡车、大中型客车车身结构组成迥然、其它类型车如面包车、小型客车、轿车、SUV、MPV 、越野车等在车身本体(不包含车架)组成上大同小异,作为一些大的焊接总成组焊原则,如车身总成、地板总成因大都采用流水线生产输送方式,为达到柔性好、共用性强、投资小的目的,这些总成工位尽 要求在 可能实现一次装焊、分步焊接,零件上线工位尽可能少。

P+T焊接工艺参数

P+T焊接工艺参数-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

P+T焊接设备对不锈钢产品工艺的要求 一、P+T焊接设备: 该设备由纵缝机、环缝机组成,适用于碳钢、不锈钢以及某些有色金属对接焊接。 纵缝机参数: 1、3-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用填丝盖面。拖罩保护焊缝。 2、工件精度要求: 焊缝直线度要求10m长直线度误差≤2mm(直线度不能保障时,可通过摄像监控系统调整焊枪位置) 对接间隙≤1/10T(T 为试件板厚)且不大于0.5mm 错边≤0.2T(T 为试件板厚)且不大于1mm 3.工作对象 ①直径范围:φ1500~φ3200mm ②工件壁厚: 2-14mm(一次熔透8mm,大于8mm需开坡口填丝) ③工件长度:≤2500 mm ④工件材质:不锈钢、碳钢、钛基合金等 工件施焊端面采用机械加工,拼缝要求规则均匀 4.设备参数

可夹持最小壁厚: 2mm 可夹持最大壁厚: 14mm 焊枪行走速度: 100-3000mm/min 跟踪滑板速度:≤200mm/min 液压升降台承载:≤6T 一、设备的用途: 等离子环缝焊接系统用于各类碳钢\合金钢(碳钢、不锈钢、钛基合金等)环缝焊接,采用等离子焊接工艺,壁厚8mm以下可不开坡口直接焊接一次性单面焊双面成形。对于较薄板直接用等离子焊接;对于8mm 板厚以上视情况采用等离子添丝焊接的方式。焊接时正面有拖罩保护焊缝,反面有背气保护系统 设备采用一套飞马特等离子焊接系统和一套KM4030焊接操作机,一套视频系统,一套20T可调式滚轮架,采用等离子高效焊接,实现工件的环缝焊接。 电控系统部分以三菱PLC为控制核心,能够准确控制设备的各种动作,操作盒上安装有触摸屏,便于修改各项控制参数,使用安全可靠,故障率低。 1、焊接成型工艺: 2-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用TIG填丝盖面。拖罩保护焊缝。

点焊工艺基础知识

武汉兴园金属有限责任公司 点焊工艺基础知识 版本:A/0 1 主题内容与适用范围 2 焊点的形成与对其质量的一般要求 焊接是两种或两种以上同种或异种材料通过分子或原子间的结合和扩散而连成一体的工艺加工过程。 焊接包括:熔化焊、压焊、钎焊。 压焊包括:电阻焊、锻焊、摩擦焊、高频焊、超声波焊等等。 电阻焊包括:点焊、凸焊、对焊、缝焊。 电阻焊就是将工件置于两个电极之间加压,通以电流,利用工件的电阻产生热量并形成局部熔化,或达到塑性状态。断电后,压力继续作用,形成牢固接头。 2.1焊点的形成 点焊过程可分为彼此相联的三个阶段:预加压力、通电加热和锻压。 2.1.1预加压力 预加电极压力是为了使焊件在焊接处紧密接触。若压力不足,则接触电阻过大,导致焊件烧穿或将电极工作面烧损。因此,通电前电极力应达到预定值,以保证电极与焊件、焊件与焊件之间的接触电阻保持稳定。 2.1.2通电加热 通电加热是为了供焊件之间形成所需的熔化核心。在预加电极压力下通电,则在两电极接触表面之间的金属圆柱体内有最大的电流密度,靠焊件之间的接触电阻和焊件自身的电阻,产生相当大的热量,温度也很高。尤其是在焊件之间的接触面处,首先熔化,形成熔化核心。电极与焊件之间的接触

电阻也产生热量,但大部分被水冷的铜合金电极带走,于是电极与焊件之间接触处的温度远比焊件之间接触处为低。正常情况下是达不到熔化温度。在圆柱体周围的金属因电流密度小,温度不高,其中靠近熔化核心的金属温度较高,达到塑性状态,在压力作用下发生焊接,形成一个塑性金属环,紧密地包围着熔化核心,不使熔化金属向外溢出。 在通电加热过程中有两种情况可能引起飞溅:一种是开始时电极预压力过小,熔化核心周围未形成塑性金属环而向外飞溅;另一种是加热结束时,因加热进间过长,熔化核心过大,电极压力下,塑性金属环发生崩溃,熔化金属从焊件之间或焊件表面溢出。 2.1.3锻压 锻压是在切断焊接电流后,电极继续对焊点挤压的过程,对焊点起着压实作用。断电后,熔化核心是在封闭的金属“壳”内开始冷却结晶的,收缩不自由。如果此时没有压力作用,焊点易出现缩孔和裂纹,影响焊点强度。如果有电极挤压,产生的挤压变形使熔核收缩自由并变得密实。因此,电极压力必须在断电后继续维持到熔核金属全部凝固之后才能解除。锻压持续时间视焊件厚度而定。对于厚度1-8mm的钢板一般为0.1-2.5秒。 当焊件厚度较大,(铝合金为1.6-2mm,钢板为5-6mm)时,因熔核周围金属壳较厚,常需增加锻压力。加大压力的时间须控制好。过早,会把熔化金属挤出来变成飞溅,过晚,熔化金属已凝固而失去作用。一般断电后在0-0.2秒内加大锻压力。 以上是焊点形成的一般过程。在实际生产中,往往根据不同材料、结构以与对焊接质量的要求,采用一些特殊的工艺措施。例如:对热裂纹倾向较大的材料,可采用附加缓冷脉冲的点焊工艺,以降低熔核的凝固速度;对调质材料的焊接,可在两电极之间作焊后热处理,以改善因快速加热、冷却而

铝合金电阻点焊和缝焊工艺

中华人民共和国航空工业部部标准 HB/Z 77-84 铝合金电阻点焊和缝焊工艺 1 总则 1.1 本标准适用于LF2、LF3、LF6、LF21、LY12、LY16、LC4、LC9变形铝合金电阻点焊及LF2、LF3、LF6、LF21变形铝合金电阻缝焊工艺。 1.2 焊工应有焊接航空产品的焊接操作证书。 2 设备 2.1 焊机:点焊机、缝焊机。 2.1.1 焊接铝合金一般选用直流脉冲式、电容储能式、次级整流式等类型的焊机,缝焊机建议选用步进式的。 2.1.2 焊机最好具有三种加压方式:不变的压力、附加锻压力、附加予压和锻压力。 2.1.3 焊机电极臂应有足够的刚性,当施加最大额定压力时,臂长不大于500㎜,弹性挠 度应不超过1.5㎜,臂长不大于1200㎜,挠度应不超过2㎜。 2.1.4 焊机在规定气压范围和额定焊接速度下工作时,电极压力的波动应不超过+8%。上电极下降时应平稳无冲击现象。 2.1.5 焊机工作时,电源电压应在额定值的+5%范围内。管道压缩空气压力应不低于 5kg/cm2,室温应不低于15℃。 2.1.6 焊机的次级回路电阻,直流脉冲焊机应不大于60μΩ,交流焊机应不大于100μΩ,单个活动连结处电阻不大于20μΩ,单个固定结合处电阻不大于2μΩ。焊机的次级回路电阻至少三个月测量一次,并记入设备档案中。 2.1.7 焊机应定期检修,活动导电部分应定期更换石墨润滑剂。 2.1.8 焊机应配备必要的专用工具。 2.1.9 焊机在安装、改装、大修或改变动力线路之后,由工厂主管部门组织进行鉴定,鉴定合格后才允许投入生产使用。 焊机鉴定内容如下: a.按附录A《焊机鉴定表》规定内容测量焊机的参数。 b.选用生产中常用的一种材料,取最薄和最厚的两种相同厚度的组合进行工艺稳定性试 验,试验内容列于表1,试验结果应符合表1及HB5276--84《铝合金电阻点焊和缝焊质量检验》的规定。在全部试验项目中有一项不合格,则应调整焊机重新试验,直到全部试验项目合格为止。鉴定试验结果应记入焊机鉴定表中(附录A)。 c.焊机鉴定试验应按生产需要在该焊机上焊接的最高等级接头的要求进行。 2.2 电极和滚盘 2.2.1 电极和滚盘可以采用镉青铜或其它铜合金,其导电率应不低于80%IACS(国际标准退火铜)。布氏硬度不小于110kgf/mm2。当电极压力不大于600kgf时,可选用布氏硬度不小于80 kgf/mm2的冷拉钢。 2.2.2 电极和滚盘应按不同材料分别打上印记,并不在损伤其工作面的条件下存放。 航空工业部1983-05-30发布1984-07-01实施

汽车车身焊接工艺设计

汽车车身焊接工艺设计

————————————————————————————————作者: ————————————————————————————————日期:

浅析汽车车身的焊接工艺设计 在汽车厂中,焊接生产线相对于涂装线和总装线来说,刚性强,多品种车型的通用性差,每更新换代一种车型,均需要更新车间大量专用设备和生产工艺。焊接工艺设计可以称得上是焊接生产线的“灵魂”,涉及的专业知识较多,如机械化、电控、非标设备、建筑、结构、水道、暖通、动力、电气、计算机、环保和通讯等,从宏观上决定车间的工艺水平、物流、投资和预留发展,具体决定着生产线的工艺设备种类和数量、夹具形式、物流工位器具形式、机械化输送方式及控制模式等。因此,焊接工艺设计在焊接生产线的开发中占有举足轻重的地位,是产生高性价比焊接生产线的 关键。 1、车身焊接工艺设计的前提条件 1.1产品资料 a.产品的数学模型(简称数模)。在汽车制造行业中,一般情况下用UG,Catia,ProE等三维软件均能打开数模(如图1),并在其中获取数据或进行深人的工作。在工艺设计过程中,将所有数模装配在一起就构成了一个整车数模,从数模中可以获得零部件的结构尺寸、位置关系。由数模还可以生成整车、分总成、冲压件的各种视图(包括轴测图),以及可以输出剖面图。 b.全套产品图纸。 c.样车、样件(包括整车车身总成、各大总成、分总成和冲压件)。

d.产品零部件明细表(包括各部件的名称、编号,冲压件的名称、编号、数量,标准件的规格、数量)。 工艺设计时,业主必须提供上述a、b、c中至少1项,d项可以从前3项中分析出来,正常状态下d项(如图2)早在汽车设计结束时就已经确定了。如果仅提供b项,那么需要增加大量的车身拆解、分析工作。

点焊工艺及参数

一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c 为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 三、不等厚度和不同材料的点焊 当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一边偏移,偏移的结果将使薄件或导电、导热性好的工件焊透率减小,焊点强度降低。熔核偏移是由两工件产热和散热条件不相同引起的。厚度不等时,厚件一边电阻大、交界面离电极远,故产热多而散热少,致使熔核偏向厚件;材料不同时,导电、导热性差的材料产热易而散热难,故熔核也偏向这种材料(见图11-8) 调整熔核偏移的原则是:增加薄板或导电、导热性好的工件的产热而减少其散热。常用的方法有:(1)采用强条件使工件间接触电阻产热的影响增大,电极散热的影响降低。电容储能焊机采用大电流和短的通电时间就能焊接厚度比很大的工件就是明显的例证。 (2)采用不同接触表面直径的电极在薄件或导电、导热性好的工件一侧采用较小直径,以增加这一侧的电流密度、并减少电极散热的影响。 (3)采用不同的电极材料薄板或导电、导热性好的工件一侧采用导热性较差的铜合金,以减少这一侧的热损失。 (4)采用工艺垫片在薄件或导电、导热性好的工件一侧垫一块由导热性较差的金属制成的垫片(厚度为),以减少这一侧的散热。

相关文档