文档视界 最新最全的文档下载
当前位置:文档视界 > 概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》

第一章 概率论的基本概念

§2.样本空间、随机事件

1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生

B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅

当A ,B 中至少有一个发生时,事件B A ?发生

B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B

同时发生时,事件B A ?发生

B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅

当A 发生、B 不发生时,事件B A —发生

φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事

件B 不能同时发生,基本事件是两两互不相容的

且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件

A 与事件

B 互为对立事件

2.运算规则 交换律A B B A A B B A ?=??=?

结合律)()( )()(C B A C B A C B A C B A ?=???=??

分配律 )()B (C A A C B A ???=??)(

))(()( C A B A C B A ??=??

徳摩根律B A B A A B A ?=??=? B —

§3.频率与概率

定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率

概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率

1.概率)(A P 满足下列条件:

(1)非负性:对于每一个事件A 1)(0≤≤A P

(2)规范性:对于必然事件S 1)S (=P

(3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===n

k k

n k k

A P A P 1

1

)()(

Y (n

可以取∞)

2.概率的一些重要性质:

(i ) 0)(=φP

(ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===n

k k

n k k

A P A P 1

1

)()(

Y (n 可以取∞)

(iii )设A ,B 是两个事件若B A ?,则)()()(A P B P A B P -=-,)A ()B (P P ≥

(iv )对于任意事件A ,1)(≤A P

(v ))(1)(A P A P -= (逆事件的概率)

(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=?

§4等可能概型(古典概型)

等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同

若事件A 包含k

个基本事件,即}{}{}{2]1k i i i e e e A Y ΛY Y =,里

个不同的数,则有

中某,是,,k k n 2,1i i i ,21ΛΛ()

中基本事件的总数

包含的基本事件数

S }{)(1

j A n k e P A P k

j i ==

=∑=

§5.条件概率

(1)

(2) 定义:设A,B 是两个事件,且0)(>A P ,称)

()

()|(A P AB P A B P =

为事件A 发生的条件下事件B 发生的条件概率

(3)

(4) 条件概率符合概率定义中的三个条件

1。

非负性:对于某一事件B ,有0)|(≥A B P

2。

规范性:对于必然事件S ,1)|(=A S P

3可列可加性:设Λ,,21B B 是两两互不相容的事件,则有

∑∞

=∞

==1

1

)()(i i i i A B P A B P Y

(5)

(6) 乘法定理 设0)(>A P ,则有)|()()(B A P B P AB P =称为乘法公式

(7)

(8) 全概率公式: ∑==

n

i i

i

B A P B P A P 1

)|()()(

贝叶斯公式: ∑==

n

i i

i

k k k B A P B P B A P B P A B P 1

)

|()()

|()()|(

§6.独立性

定义 设A ,B 是两事件,如果满足等式)()()(B P A P AB P =,则称事件A,B 相互独

定理一 设A ,B 是两事件,且0)(>A P ,若A ,B 相互独立,则()B P A B P =)|(

定理二 若事件A 和B 相互独立,则下列各对事件也相互独立:A 与—

———与,与,B A B A B

第二章 随机变量及其分布

§1随机变量

定义 设随机试验的样本空间为X(e)X {e}.S ==是定义在样本空间S 上的实值单值

函数,称X(e)X =为随机变量

§2离散性随机变量及其分布律

1.

2. 离散随机变量:有些随机变量,它全部可能取到的值是有限个或可列无限多个,这种

随机变量称为离散型随机变量

k k )(p x X P ==满足如下两个条件(1)0k ≥p ,(2)∑∞

=1

k k P =1

3.

4. 三种重要的离散型随机变量

(1)分布

设随机变量X 只能取0与1两个值,它的分布律是

)101,0k p -1p )k (k

-1k <<===p X P (,)(,则称X 服从以p 为参数的

分布或两

点分布。

(2)伯努利实验、二项分布

设实验E 只有两个可能结果:A 与—

A ,则称E 为伯努利实验.设

1)p 0p P(A)<<=(,此时p -1)A P(=—

.将E 独立重复的进行n 次,则称这一串重复的

独立实验为n 重伯努利实验。

n 2,1,0k q p k n )k X (k

-n k Λ,,=?

??

? ??==P 满足条件(1)0k ≥p ,(2)∑∞

=1k k P =1注意到k

-n k q p k n ???

?

??是二项式

n q p )(+的展开式中出现k

p 的那一项,我们称随机变量X 服从参数为n ,p 的二项分布。

(3)泊松分布

设随机变量X 所有可能取的值为0,1,2…,而取各个值的概率为

,2,1,0,k!

e )k X (-k Λ==

=k P λ

λ其中0>λ是常数,则称X 服从参数为λ的泊松分布记为

(λπ~X

§3随机变量的分布函数

定义 设X 是一个随机变量,x 是任意实数,函数∞<<∞≤=x -x},P{X )x (F

称为X 的分布函数

分布函数)()(x X P x F ≤=,具有以下性质(1) )(x F 是一个不减函数 (2)

1)(,0)(1)(0=∞=-∞≤≤F F x F ,且 (3)是右连续的即)(),()0(x F x F x F =+

§4连续性随机变量及其概率密度

连续随机变量:如果对于随机变量X 的分布函数F (x ),存在非负可积函数)(x f ,使

对于任意函数x 有,

dt t f )x (F x

-?

=

)(则称x 为连续性随机变量,其中函数f(x)称为X

的概率密度函数,简称概率密度

1 概率密度)(x f 具有以下性质,满足(1)1)( (2) ,0)(-=≥?

+∞

dx x f x f ;

(3)?

=

≤≤2

1

)()(21x x dx x f x X x P ;

(4)若)(x f 在点x 处连续,则有=)(F x ,

)(x f

2,三种重要的连续型随机变量

(1)均匀分布

若连续性随机变量X 具有概率密度?????<<=,其他

,0a a -b 1)(b

x x f ,则成X 在区间(a,b)上服

从均匀分布.记为),(b a U ~X

(2)指数分布

若连续性随机变量X 的概率密度为?????>=,其他

,0

0.e

1)(x -x x f θθ

其中0>θ为常数,则称

X 服从参数为θ的指数分布。

(3)正态分布 若连续型随

机变量X 的概率密度为

,)

∞<<∞=

--

x e

x f x -21)(2

2

2(σμσ

πσμσσμ,服从参数为为常数,则称(,其中X )0>的正态分布或高斯分布,记为),(2N ~X σμ

特别,当10==σμ,时称随机变量X 服从标准正态分布

§5随机变量的函数的分布

定理 设随机变量X 具有概率密度,-)(x ∞<<∞x x f ,又设函数)(x g 处处可导且恒有

0)(,>x g ,则

Y=)(X g 是连续型随机变量,其概率密度为

[]?

?

?<<=其他,0,)()()(,β

αy y h y h f y f X Y

第三章 多维随机变量

§1二维随机变量

定义 设E 是一个随机试验,它的样本空间是X(e)X {e}.S ==和Y(e)Y =是定义在S

上的随机变量,称X(e)X =为随机变量,由它们构成的一个向量(X ,Y )叫做二维随机变量

设(X ,Y )是二维随机变量,对于任意实数x ,y ,二元函数

y}Y x P{X y)}(Y x)P{(X y x F ≤≤≤?≤=,记成),(称为二维随机变量(X ,Y )的分

布函数

如果二维随机变量(X ,Y )全部可能取到的值是有限对或可列无限多对,则称(X ,Y )是离散型的随机变量。

我们称Λ,

,,,2,1j i )y Y (ij j i ====p x X P 为二维离散型随机变量(X ,Y )的分布律。

对于二维随机变量(X ,Y )的分布函数),(y x F ,如果存在非负可积函数f (x ,y ),

使对于任意x ,y 有,),()

,(??

∞∞

=y -x

-dudv v u f y x F 则称(X ,Y )是连续性的随机变量,

函数f (x ,y )称为随机变量(X ,Y )的概率密度,或称为随机变量X 和Y 的联合概率密度。

§2边缘分布

二维随机变量(X ,Y )作为一个整体,具有分布函数),(y x F .而X 和Y 都是随机变

量,各自也有分布函数,将他们分别记为)((y ),x F X Y F ,依次称为二维随机变量(X ,Y )关于X 和关于Y 的边缘分布函数。

Λ,,2,1i }x P{X p 1

j i ij i ====∑∞=?p Λ,,2,1j }

y P{Y p 1

i i ij ====∑∞

=?j p 分别称?i p j p ?为(X ,Y )关于X 和关于Y 的边缘分布律。

?∞∞

-=dy y x f x f X ),()( ?∞

-=dx y x f y f Y ),()(分别称)(x f X ,

)(y f Y 为X ,Y 关于X 和关于Y 的边缘概率密度。

§3条件分布

定义 设(X ,Y )是二维离散型随机变量,对于固定的j ,若,0}{>=j y Y P

则称Λ,2,1,}

{}

,{}{==

====

==?i p p y Y P y Y x X P y Y x X P j

ij j j i j i 为在j y Y =条件下随

机变量X 的条件分布律,同样Λ,2,1,}

{},{}{========?

j p p x X P y Y x X P X X y Y P i ij i j i i j 为

在i x X =条件下随机变量X 的条件分布律。

设二维离散型随机变量(X ,Y )的概率密度为),(y x f ,(X ,Y )关于Y 的边缘概率密

度为)(y f Y ,若对于固定的y ,)(y f Y 〉0,则称

)

()

,(y f y x f Y 为在Y=y 的条件下X 的条件概率密度,记为)(y x f Y X =

)

()

,(y f y x f Y

§4相互独立的随机变量

定义 设),(y x F 及)(F x X ,)(F y Y 分别是二维离散型随机变量(X ,Y )的分布函数

及边缘分布函数.若对于所有x,y 有y}}P{Y {},{≤≤===x X P y Y x X P ,即

(y))F (F },{F Y X x y x =,则称随机变量X 和Y 是相互独立的。

对于二维正态随机变量(X ,Y ),X 和Y 相互独立的充要条件是参数0=ρ

§5两个随机变量的函数的分布

1,Z=X+Y 的分布

设(X,Y)是二维连续型随机变量,它具有概率密度),(y x f .则Z=X+Y 仍为连续性随

机变量,其概率密度为?

-+-=dy y y z f z f Y X ),()(或?∞

-+-=dx x z x f z f Y X ),()(

又若X 和Y 相互独立,设(X ,Y )关于X ,Y 的边缘密度分别为)(),(y f x f Y X 则

?∞

-+-=dy f y z f z f Y X Y X y)()(() 和?

-+-=dx x z f x f z f Y X Y X )(()()这两个公式称为Y X f f ,的卷积公式

有限个相互独立的正态随机变量的线性组合仍然服从正态分布

2,的分布的分布、XY Z X

Y

Z ==

设(X,Y)是二维连续型随机变量,它具有概率密度),(y x f ,则XY Z X

Y

Z ==

仍为连续性随机变量其概率密度分别为

dx xz x f x z f X Y ),()(?∞

-=dx x

z

x f x z f XY ),(1)(?

-=又若X 和Y 相互独立,设(X ,Y )关于X ,Y 的边缘密度分别为)(),(y f x f Y X 则可化为dx xz f x f z f Y X X Y ?∞

-=)()()(

dx x

z f x f x z f Y XY )()(1)(X ?

-=

3的分布及,},m in{N Y }{X m ax Y X M ==

设X ,Y 是两个相互独立的随机变量,它们的分布函数分别为)(),(y F x F Y X 由于

Y}{X max ,=M 不大于z 等价于X 和Y 都不大于z 故有z}Y z,P{X z}P{M ≤≤=≤又

由于X 和Y 相互独立,得到Y}{X max ,=M 的分布函数为)()()(max z F z F z F Y X =

},min{N Y X =的分布函数为[][])(1)(11)(min z F z F z F Y X ---=

第四章 随机变量的数字特征

§1.数学期望

定义 设离散型随机变量X 的分布律为k k p x X P ==}{,k=1,2,…若级数

∑∞

=1

k k k

p x

对收敛,则称级数∑∞

=1

k k k

p x

的和为随机变量X 的数学期望,

记为)(X E ,即∑=i

k k p x X E )(

设连续型随机变量X 的概率密度为)(x f ,若积分

?

-dx x xf )(绝对收敛,则称积

分?

-dx x xf )(的值为随机变量X 的数学期望,记为)(X E ,即?+∞∞

-=dx x xf X E )()(

定理 设Y 是随机变量X 的函数Y=)(X g (g 是连续函数)

(i )如果X 是离散型随机变量,它的分布律为k p X P ==}x {k ,k=1,2,…若

k

k k

p x g ∑∞

=1

()

绝对收敛则有=)Y (E =))((X g E k

k k

p x g ∑∞

=1

()

(ii )如果X 是连续型随机变量,它的分概率密度为)(x f ,若

?

-dx x f x g )()(绝对收敛则

有=)Y (E =))((X g E ?

-dx x f x g )()(

数学期望的几个重要性质

1设C 是常数,则有C C E =)(

2设X 是随机变量,C 是常数,则有)()(X CE CX E =

3设X,Y 是两个随机变量,则有)()()(Y E X E Y X E +=+;

4设X ,Y 是相互独立的随机变量,则有)()()(Y E X E XY E =

§2方差

定义 设X 是一个随机变量,若[]})({2

X E X E -存在,则称[]})({2

X E X E -为X 的方

差,记为D (x )即D (x )=[]})({2

X E X E -,在应用上还引入量)(x D ,记为)(x σ,称为标准差或均方差。

222)()())(()(EX X E X E X E X D -=-=

方差的几个重要性质

1设C 是常数,则有 ,0)(=C D

2设X 是随机变量,C 是常数,则有)(C )(2

X D CX D =,D(X))(=+C X D

3设X,Y 是两个随机变量,则有E(Y))}-E(X))(Y -2E{(X D(Y)D(X))(++=+Y X D 特

别,若X,Y 相互独立,则有)()()(Y D X D Y X D +=+

40)(=X D 的充要条件是X 以概率1取常数E(X),即1)}({==X E X P

切比雪夫不等式:设随机变量X 具有数学期望2

)(σ=X E ,则对于任意正数ε,不等式

22

}-X P{εσεμ≤≥成立

§3协方差及相关系数

定义 量)]}()][({[Y E Y X E X E --称为随机变量X 与Y 的协方差为),(Y X Cov ,即

)()()())]())(([(),(Y E X E XY E Y E Y X E X E Y X Cov -=--=

而D(Y)

D(X)Y X (XY ),Cov =

ρ称为随机变量X 和Y 的相关系数

对于任意两个随机变量X 和Y ,),(2)()()_(Y X Cov Y D X D Y X

D -

+

+=+

协方差具有下述性质

1),(),( ),,(),(Y X abCov bY aX Cov X Y Cov Y X Cov ==

2),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+

定理 1

1≤XY ρ

2

1=XY ρ的充要条件是,存在常数a,b 使1}{=+=bx a Y P

=XY ρ0时,称X 和Y 不相关

概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)

第五章 大数定律与中心极限定理

§1. 大数定律

弱大数定理(辛欣大数定理) 设X 1,X 2…是相互独立,服从统一分布的随机变量序列,并

具有数学期望),2,1()(Λ==k X E k μ.作前n 个变量的算术平均∑=n

k k X n 1

1,则对于任意

0>ε,有1}1{lim 1

=<-∑=∞→εμn

k k n X n P

定义 设ΛΛn Y Y Y ,,21是一个随机变量序列,a 是一个常数,若对于任意正数ε,有

1}{lim =<-∞

→εa Y P n n ,则称序列ΛΛn Y Y Y ,,21依概率收敛于a ,记为a Y p

n ?→?

伯努利大数定理 设A f 是n 次独立重复试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对于任意正数ε〉0,有1}{

lim =<-∞

→εp n f P n n 或0}{lim =≥-∞→εp n

f

P n n

§2中心极限定理

定理一(独立同分布的中心极限定理) 设随机变量n X X X ,,,21Λ相互独立,服从同一分布,且具有数学期望和方差2)( ,)(σμ==k i X D X E (k=1,2,…),则随机变量之和

标准化变量∑=n

i k

X

1

, σ

μ

n n X

X D X E X

Y n

i k

n

k k n

k n

k k k

n ∑∑∑∑====-=

-=

1

1

1

1 )

()

(,

定理二(李雅普诺夫定理) 设随机变量n X X X ,,,21Λ…相互独立,它们具有数学期望和方差Λ2,1,0)( ,)(2

=>==k X D X E k k k k σμ记∑==

n

k k n B 122

ε 定理三(棣莫弗-拉普拉斯定理)设随机变量10(,),2,1(<<=p p n n n 服从参数为Λη)的二项分布,则对任意x ,有)(21})

1({

lim 2

2x dt e

x p np np

P x

t n n Φ==≤--?

--∞

→π

η

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.

以下无正文

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.

以下无正文

相关文档
  • 概率论与数理统计总结

  • java各知识点详细总结

  • 初中数学知识点全总结

  • 概率论与数理统计答案

  • 概率论与数理统计笔记

相关推荐: