文档库 最新最全的文档下载
当前位置:文档库 › 粘土矿物分析

粘土矿物分析

粘土矿物分析
粘土矿物分析

作为岩石组分的粘土矿物其含量、种类及其分布、产状等对地层伤害有着非常密切的关系。由于粘土矿物颗粒细小(<0.01mm),比表面极大,并具有特殊的结构组成,因此它们对外来作业流体如注入水、压裂液、酸化液、压井液等的侵入极为敏感。当与外来流体接触时,粘土矿物往往会发生膨胀、微粒运移、生成某种沉淀等从而堵塞储层油气流动的孔隙通道,造成储层渗流能力的下降,损害油气层。因此了解粘土矿物的性质对油田开发十分重要。

通过X射线衍射分析和扫描电子显微镜技术可以确定岩石中粘土矿物的含量、分布及产状等。选取了西泉5井的部分岩石样品进行了上述测定,测定结果见表1。

表1 西泉5井区三叠系储层粘土矿物含量统计表

根据X衍射和扫描电镜分析,韭菜园子组砂层以蒙皂石(包括蒙

脱石和皂石两个亚族)为主,63%~98%,平均%;其次为伊/蒙混层(20%~99%,平均%),绿泥石(1%~55%,平均%),另有高岭石(1%~12%,平均%)和伊利石(2%~16%,平均%)(见表1)。

对韭菜园子组敏感性的简单分析:(供参考)

韭菜园子组伊/蒙混层和绿/蒙混层含量较多,伊/蒙混层和绿/蒙混层是遇水易膨胀的矿物,易发生粘土膨胀和分散造成地层伤害。

韭菜园子组绿泥石含量相对较高(平均%),绿泥石是酸敏性矿物,酸化时易造成氢氧化铁胶体沉淀(酸敏)。另外伊利石和高岭石是速敏性矿物,易造成颗粒运移堵塞地层。

粘土矿物分析在储层潜在敏感性评价中的应用

一、粘土矿物类型

粘土矿物(clay minerals)是粘土和粘土岩中晶体一般小于2微米,主要是含水的铝、铁和镁的层状结构硅酸盐矿物。有的在其成分中还有某些碱金属或碱土金属存在。粘土矿物包括高岭石族矿物、蒙皂石、蛭石、粘土级云母、伊利石、海绿石、绿泥石和膨胀绿泥石以及有关的混层结构矿物,此外还包括具过渡性的层链状结构的坡缕石(凹凸棒石)和海泡石以及非晶质的水铝英石。除水铝英石外均属层状或层链状结构硅酸盐,因此粘土矿物可按层状结构硅酸盐矿物的分类来划分。粘土矿物按成因可分为他生粘土矿物和自生粘土矿物两类,他生粘土矿物主要是来自沉积物源区的陆源矿物,矿物成分与母源区岩石类型关系密切;自生粘土矿物为储层在特定成岩阶段化学反

应析出的矿物,如自生绿泥石、自生高岭石等。不同成因粘土矿物通常具有不同的矿物组合、产状、晶形和分布规律等特征。

粘土矿物的粒度细小,其大小和形态需用电子显微镜才能测定。多数粘土矿物如伊利石等呈鳞片状,结晶良好的高岭石则呈完整的假六方片状。少数粘土矿物呈管状(埃洛石)或纤维状(坡缕石和海泡石)。

晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、CI-、(PO4)3-、(NO3)-。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。

粘土矿物的形成方式有三种:①与风化作用有关。风化原岩的种类和介质条件如水、气候、地貌、植被和时间等因素决定了矿物种和保存与否。②热液和温泉水作用于围岩,可以形成粘土矿物的蚀变富集带。③由沉积作用、成岩作用生成粘土矿物。

高岭土主要用作陶瓷原料、造纸的填料和涂层;主要由蒙脱石构成的膨润土用于作钻井泥浆、精炼石油的催化剂和漂白剂、铁矿球团

的粘结剂和铸形砂粘合剂;凹凸棒石粘土和海泡石粘土是制造抗盐泥浆的优质原料、油脂的脱色剂和吸收剂。

下面我们介绍一下常见的几种粘土矿物:

1、蒙脱石

铝硅酸盐矿物,常呈现蜂窝状、丝絮状等,比面很大,有很强的吸水膨胀率,遇矿化度低的淡水等发生膨胀,体积可增大3 0倍以上,堵塞孔隙和吼道,影响渗透率,是对储层伤害最大的水敏性黏土矿物。

2、伊利石

铝硅酸盐矿物,呈叶片状、丝发状等贴附于颗粒表面或充填于粒间孔隙内。片状等微晶把孔隙分割成许多小孔隙,增加了迂回度;丝发状的容易被水冲移,堵塞孔隙和吼道,降低孔隙度和渗透率。

3、高岭石

硅铝酸盐矿物,是长石的蚀变产物,呈书页状、蠕虫状、手风琴状,多以孔隙充填的形式存在于粒间孔隙。其晶间结构比较松,在流体的冲刷下容易随流体移动,堵塞、分割孔隙和吼道,尤其在细小吼道中,影响很大,是重要的速敏矿物。

4、绿泥石

铝硅酸盐矿物,常与自生石英共生,呈针叶状、绒球状、玫瑰花状,在孔隙中的产状有孔隙衬垫及孔隙充填。一般针叶状绿泥石多为孔隙衬垫包于颗粒表面,绒球状和玫瑰花状的则充填在孔隙中。绿泥石可由黑云母、角闪石、蒙脱石等矿物转化而来,自生绿泥石一般富含高价铁离子,与钻井液中的HCL等酸液作用容易产生沉淀,而造成储层伤害,是酸敏性矿物。

5、伊蒙混层

蒙脱石向伊利石过渡的矿物,呈蜂窝状、半蜂窝状、棉絮状等,随埋深加大和温压的升高而含量增多,有较强的水敏性。

6、绿蒙混层

是蒙脱石向绿泥石转化中的产物,呈薄片状体包于颗粒表面或充填于颗粒间,既有绿泥石的针叶状结构,也有蒙脱石的网格状结构。成分中也有绿泥石特征,含有较多的铁和镁,有一定的酸敏和水敏性。

二、粘土矿物分析

储层敏感性矿物分析,特别是粘土矿物组分分析对储层敏感性研究具有很重要的作用。

1、粘土矿物分析鉴定中存在的问题

(1)样品选取

样品一定要具有代表性和真实性。代表性就是根据研究目标的需要,从层位、深度、岩性变化等方面选取有代表性的样品。并要注意合理的取样密度,一般情况下,岩性变化大时取样间隔要小,反之要大。如果研究储集层,还要选取油、气、水、干层中的样品。

真实性就是要选取研究目标所需要的真实样品。由于粘土矿物对周围环境具有敏感性,因此不取受到外来流体影响的样品。例如取岩心砂岩样品,注意避开岩心壁,因为它常受到钻井过程中泥浆的影响。如果是取岩屑样品,一定要挑样,防止上部掉块。而且,砂岩不能用岩屑,因为砂岩的渗透性受泥浆影响大;取泥岩岩屑时,如果岩屑是细粉,也不能用,因为细粉既有上部掉下来的部分,又有泥浆等杂质的混入。

(2)分析前处理

许多分析项目(如X射线衍射、差热分析、红外光谱、化学分析、透射电镜、穆斯堡尔谱等)都必须对岩样进行前处理,即进行粘土分

离。

(3)分析鉴定

由于粘土矿物是岩石中最细粒部分(多小于2μm),同时,每种分析方法往往有局限性,因此应采用多种方法分析结果进行综合鉴定。

X射线衍射分析该方法是粘土矿物分析中最有效的方法,它既可定性,又可定量。局限性是不能分析矿物形态和产状,另外,有些矿物(如高岭石和迪开石)也难以区分。电镜、能谱分析在X射线衍射分析基础上,选择一部分样品(有代表性的矿物组合)进行电镜和能谱分析。扫描电镜可分辨矿物的形态和产状;能谱可测定每种矿物的化学成分。透射电镜只测定矿物的形态(包括泥岩、砂岩等)。差热和红外光谱分析定向样品的X射线衍射谱图不能区分高岭石和迪开石,非定向样品(压片)的X射线衍射谱图虽可区分这两种矿物,但也较复杂,样品用量也较多,且一般不做压片分析。而差热分析和红外光谱分析用样量少,且易区分这两种矿物,高岭石差热分析的中温吸热谷比迪开石低100℃左右。该两种矿物是高岭石亚族中两个不同的种,二者形成条件有很大区别。

不难看出,取样、前处理和分析鉴定,是粘土矿物分析研究最重要的基础工作,必须认真对待。这对我们在油田开发过程中研究储层潜在敏感性具有很重要的意义。

三、储层敏感性试验分析

1、水敏试验

注入水和黏土矿物接触,使得黏土矿物膨胀、分散和运移,堵塞孔隙、吼道,降低渗透率。储层中水敏矿物主要是蒙脱石,其膨胀性和层间阳离子种类有关,Na-蒙脱石的膨胀性大于Ca-蒙脱石和K-蒙脱石。水敏试验应在模拟地层的温压条件下,且水流速低于临界流速,排除速敏的干扰。实验用地层水、次地层水(蒸馏水稀释一倍后的地

层水)和蒸馏水作为驱替介质进行实验,应参考试验结果对注入水的矿化度进行控制,应高于能使黏土矿物明显发生反应的临界矿化度值,避免水敏反应。

2、速敏试验

储层中的微粒,注入水中的杂质和黏土矿物颗粒随注入水移动,堵塞吼道,降低渗透率。在采用模拟地层水以消除其它影响的实验中,流速超过某值时,渗透率急剧下降,该流速称为临界流速。高岭石、丝状伊利石和绿泥石等的碎片,都可以随注入水而移动,造成储层渗透率下降。试验为实际开发过程提供比较可靠的采出和注入速度,尤其是在注水开发过程中确定单井的合理注水速度。

3、酸敏试验

将酸液(常用盐酸和乙酸等)和滴入岩心样品,酸液会和绿泥石、浊沸石等发生反应而产生沉淀,部分碳酸盐矿物也可以和酸液反应生成沉淀物,使得渗透率下降。根据实验结果结果可以为酸化时提供合适的酸液配方,选择合适的酸液体系。

4、碱敏试验

硅酸盐矿物(长石类、沸石类矿物)和氧化硅矿物(石英、蛋白石)等,若在强碱性(PH>12)介质中黏土矿物可产生新的硅酸盐沉淀物和硅凝胶体堵塞孔喉。通过碱敏感性评价实验可以了解油层岩石与不同p H值盐水接触作用下岩石渗透率的变化过程,找出碱敏感性损害发生的条件(临界pH值)以及由碱敏感性引起的油层损害程度,为各种入井工作液PH值的确定提供依据。

5、盐敏实验

盐敏感性是指储层在系列盐溶液中,由于黏土矿物会发生水化和阳离子交换使黏土层间距加大,产生分散、运移、膨胀而导致储层渗透率下降的现象。实验所用介质为不同矿化度的水样,每更换一次矿

化度,应先用该矿化度的溶液驱替10~15倍孔隙体积以上,驱替后,浸泡24 h以上,再用该矿化度盐水驱替,稳定后测其渗透率。其结果作为作业时所用的注入水、泥浆等矿化度的参考值。

四、粘土矿物分析在研究储层潜在敏感性中的应用

1、A油田三叠系砂岩储层中,I、Ⅱ油组以高岭石为主,为20%-60%,Ⅲ油组增加为40%-50%。但高岭石往往局部集中,成斑块状分布,甚至有的样品粘土矿物集中分布于数个孔隙中,因此速敏性程度弱。

伊/蒙混层矿物I、Ⅱ油组为5%-15%,Ⅲ组为10%左右,故水敏性中偏弱。绿泥石I、Ⅱ油组为12%-48%,Ⅲ油组为20%-40%,含量较高,故存在酸敏性损害。且土酸与粘土矿物产生硅沉淀,因此酸敏程度为中等偏强。

三叠系储层临界盐度为×104mg/L,且含有少量伊/蒙混层矿物,故盐敏程度为中等偏弱。

三叠系储层地层水矿化度为××104mg/L,且为caCl2型水,ca2+ :××104mg/L、Mg2+:500-900 mg/L,离子含量普遍较高,产层与高pH值流体接触将会导致钙、镁沉淀,产生碱敏性损害,故碱敏程度中等。

2、西峰油田长8储层精细研究表明,以孔隙衬垫形式存在的绿泥石含量与自生石英胶结物含量存在消长关系,当砂粒表面自生绿泥石包膜厚度大于3um时,能有效抑制石英和长石的再生长,当自生绿泥石包膜厚度很薄或缺失时,石英和长石再生长严重,压溶嵌合、再生长作用强烈,可能严重堵塞粒间孔隙,使储层孔隙度和渗透率大大降低 (图1)

图1 西峰油田长8孔隙衬垫绿泥石含量与自生石英含量关系

高岭石是岩石与孔隙水在弱酸性沉积环境中发生化学反应的产

物,高岭石的析出常与岩石溶蚀作用伴生,高岭石的产生必将填充储层孔隙,而溶蚀作用常能够形成部分次生孔隙,一定程度上缓解了高岭石生成对储层孔隙的影响,另外,高岭石多呈散点式孔隙充填产状,对储层孔喉连通性的影响也很小(图2),因此,自生高岭石的发育对储层孔隙度的影响并不明显。但由于高岭石颗粒往往较大,在岩石颗粒表面附着不牢固,当外来流体或油气层中流体以较高流速流经孔隙通道时,所产生的剪切力可能使高岭石脱落并随流体在孔道中发生移动,较大颗粒的高岭石就有可能在喉道内形成堵塞,对注水开发的影响较大。

图2 陇东地区长8储层渗透率与高岭石含量关系

3、胡状集油田胡2块储层粘土矿物的X-衍射资料分析,发现该块储层中的粘土矿物类型主要有高岭石、伊利石、绿泥石和伊/蒙混层矿物。其中,高岭石相对含量为11%-19%,平均为%;伊利石相对含量为31%-46%,平均为%;绿泥石含量不高,其相对含量为6%-10%,平均为%;伊/蒙混层矿物几乎全部为有序混层,混层比为30%,伊/蒙混层矿物相对含量为33%-44%,平均为38%。

该区块所做的一块样品水敏指数为。由于该区伊/蒙混层矿物含量较高,参考邻区胡5块水敏曲线,推测胡2块水敏性为中等水敏(水敏指数为及较强水敏(水敏指数为。

该区块所作的2个速敏实验样品中,一个发生降渗速敏,一个发生增渗速敏。渗透率K高的一块样品发生增渗速敏,速敏指数为;渗透率低的一块样品发生降渗速敏,速敏指数为。其中,降渗速敏主要是由于粒间孔隙高岭石和伊利石造成的,该区粘土矿物中高岭石、伊利石含量不高,因而降渗速敏也不强;增渗速敏主要是由于胡2块储层为弱胶结强溶解的储层,大都经历了强溶解作用,孔道连通性好,在长期注水条件下,这些大孔道中的微粒物质均可被流体冲走,从而增大孔喉,增大渗透率。总的来说,胡2块沙三段储层的速敏指数≥,敏感性为中等速敏。

该区块共做2个酸敏试验样品。渗透率高的一块样品K前/K后为(K前为试验前的渗透率,K后为试验后的渗透率),渗透率低的一块样品(K前/K后为,可见其酸敏性相对较强。

4、瓦窑堡油田安家嘴区位于鄂尔多斯盆地沉积中心东侧,主要含油层为三叠系延长组。自上而下可分为:长61,长62,长63,长64,在长6各小层中均有含油砂体,其中长61,长62是主要的产油小层。物性集中于8%-12%,平均%;渗透率主要集中于×10-3μ×10-3μm2,平均×10-3μm2,该油层整体属低孔、特低渗透储层。含油饱和度集中于%%,平均%。电测解释含油饱和度平均%,为低饱和油层。地层水以CaCl2水型为主,其中Cl-含量33 548 mg/L,Ca2++Mg2+含量13 808 mg/L。矿化度为55 354 mg/L-74 146 mg/L,平均64 801 mg/L。pH=,略显酸性。粘度0.7 mm2/s(V50℃)。储层亲水使吸水好,注水的效果最好,偏亲水的储层也有较好的效果。酸后地层水渗透率为3×10-3μm2,酸敏指数,属于强酸敏地层。水敏指数,为弱水敏反应。储层盐敏的试验结果表明为弱盐敏。据裂缝充填比例和裂缝力学性质判断,长6储层段大多为闭合的无效裂缝,占%,有效裂缝占%。有效裂缝与无效裂缝之比为1:。

酸敏感性:试验前地层水渗透率为×10-3μm2,酸后地层水渗透率为3×10-3μm2,酸敏指数,属于强酸敏。

水敏:用同样的样品进行水敏试验,试验前地层水渗透率为×10-3μm2,注入无离子水量19 PV,无离子水渗透率为×10-3μm2,水敏指数,为弱水敏反应(见图3)。图3 15-6号水敏曲线

速敏:速敏的试验结果表明为弱速敏。速敏试验特征表明,临界流量比较大(5.06 m/d-7.12 m/d),说明地层微粒对流体的运动不敏感,抗机械冲刷能力强(见图4)。图4 9-2号样品速敏曲线

储层中粘土矿物的类型、数量、产状及其分布特征等对储层储渗条件具有明显的控制作用,开发过程中易对油层造成损害,加剧开发

矛盾。客观认识粘土矿物发育特征、分布规律及其对开发过程的影响,并有针对性地采取酸化压裂、防膨胀注水等措施,可有效提高油田开发水平。

结论

粘土矿物质点微小、比表面积大,是低渗透砂岩储层的重要胶结物,其存在和发育对砂岩储层性质(特别是孔隙度和渗透率)具有较大影响。同时,粘土矿物常发育于颗粒或孔隙表面,易与人侵流体发生强烈而快速的物理化学反应,发生膨胀、运移、水化、溶解等,使储层呈现水敏、酸敏、速敏等特性,对油藏开发产生较大影响。

参考文献

[1]李召成,马玉新. A油田三叠系储层敏感性研究.油气井测试,2001,10(6):53-55

[2]王尤富. 渤中25-1油田储层敏感性试验研究.石油天然气学报(江汉石油学报),2009,31(2):104-106

[3]刘宝锋. 超深井储层潜在敏感性预测. 石油钻探技术,2008,36(6):30-33

[4]胡作维,黄思静等. 川东华蓥山二叠系/三叠系界线附近粘土层中粘土矿物的类型及成因.地质通报,2008,27(3):374-378

[5]曹忠辉,程少林. 大牛地气田上古生界储层粘土矿物及敏感性分析.河南石油,2006,20(1):10-13

[6]白一男,惠晓莹. 低渗透储层敏感特征分析. 基础及前沿研究,2009,17:32-36

[7]高淑梅,范绍雷等. 鄂尔多斯盆地低渗透储层粘土矿物分析.特种油气藏,2009,16(3):15-17

[8]刘飞,周文等. 鄂尔多斯盆地杭锦旗地区上古生界砂岩中储层粘土矿物特征分析.矿物岩石,2006,26(1):92-97

[9]单玲,文玲,王彪. 孤东油田馆上段储层的粘土矿物特征.电子显微学报,2005,24(4):330-330

[10]付正,刘钦甫等. 海拉尔盆地贝尔凹陷兴安岭群储层粘土矿物组成及特征研究.地球学报,2008,29(2):174-178

[11]戴胜群,李慧莉等. 胡状集油田胡2块储层粘土矿物分析及其敏感性研究.江汉石油学院学报,2003,25,增刊(上):14-15

[12]夏文武,王正团,冷军. 江陵凹陷新沟咀组下段粘土矿物分布规律及储层敏感性评价.江汉石油科技,1993,3(4):19-24

[13]徐保庆. 临盘油田储层敏感性评价.特种油气藏,2006,13(45):94-95

[14]肖玲,张春生等. 马朗凹陷二叠系芦草沟组储层敏感性分析.新疆地质,2004,22(4):422-424

[15]王尤富,袁贵峰. 平湖油田储层敏感性试验研究. 石油天然气学报(江汉石油学院学报),2009,31(3):103-104

[16]侯连华. 曲堤油田储层敏感性研究. 石油大学学报(自然科学版),2000,24(2):50-53

[17]李大建,杨立华等. 西峰油田长8储层孔隙结构特征及粘土矿物分析. 内蒙古石油化工,2008,17:135-138

[18]于涛,吴殿义等. 榆树林油田砂岩储层敏感性研究.大庆石油地质与开发,2002,21(1);59-61

[19]赵杏媛,何东博. 粘土矿物分析及其在石油地质应用中的几个问题.新疆石油地质,2008,29(6):756-757

[20]张关龙,陈世悦等. 郑家—王庄地区沙一段粘土矿物特征及对储层敏感性影响.矿物学报,2006,26(1):99-103

粘土矿物在扫描电镜下的识别

10自生粘土矿物鉴定 根据矿物的形态特征和成分特点进行鉴定. 10.1高岭石 10.1.1形态特征 用扫描电子显微镜观察,沉积岩中自生高岭石呈蠕虫状(图版I-b)、书页状(图版I-c)集合体赋存子粒间.其单晶为六方板状(图版I—a),常与自生石英、方解石等自生矿物共生.10.1.2成分特征 用能谱测定高岭石的化学成分.主要元素为硅(Si)、铝(Al),其Si02/Al2O3的比值为1·1-1.3。 10.2蒙皂石 10.2.1形态特征 用扫描电子显微镜观察.沉积岩中自生蒙皂石呈蜂窝状(图版I-a、b、c)赋存子粒表,星棉絮状、片状赋存予粒间. 10.2.2成分特征 用能谱测定其成分.主要成分为硅(Si)、铝(Al)、钙(Ca)、钠(Na),氧化钾(K2O)含量低,通常小于1.5%. 10.3伊利石 10.3.1形态特征 用扫描电子显微镜观察,自生伊利石呈片状(图版I-a、c)或丝状(图版I-b)集合体,赋存子粒表和粒同. 10.3.2成分特征 用能谱测定伊利石成分.主要元素为硅(Si)、铝(Al)、钾(K).其氧化钾(K20)值通常大于7.5%. 10.4绿泥石 10.4.1形态特征 用扫描电子显微镜观察,自生绿泥石墨绒球状(图版Ⅳ-a)赋存子粒间,或以针叶状(图版Ⅳ-b)赋存于粒表,其单晶结构为叶片状(图版Ⅳ-c). 10.4.2成分特征 用能谱测定绿泥石成分.主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg).除硅、铝外,富含铁、镁是其主要特征. 10.5伊/蒙混层 10.5.1形态特征 用扫描电子显微镜观察,伊/蒙混层呈丝状(图版Va、b、c),是蒙皂石向伊利石过渡期的粘土矿物.形态特征是蒙皂石特征逐渐消失,伊利石特征逐渐增强,赋存于粒表和粒间.10.5.2成分特征 用能谱测定伊/蒙混层成分,主要元素为硅(Si)、铝(Al)、钾(K)、钙(Ca)、钠(Na).其成分特征主要反映在氧化钾(K2O)含量为1.5%~7.5%.确定为过渡期的混层粘土矿物.10.6绿/蒙混层 10.6.1形态特征 用扫描电子显微镜观察,绿/蒙混层粘土矿物呈蜂窝状(图版Ⅵ-a、b)和丝状结构(图版Ⅵ-c).是蒙皂石向绿泥石过渡期的粘土矿物,具有蒙皂石和绿泥石的形态特征. 10.6.2成分特征 用能谱测定绿/蒙混层成分,主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg)、钙(Ca)。其铁、镁含量较高是主要特征.

粘土矿物对储层物性的影响_李娟

中国西部科技
2011年08月(上旬)第10卷第22期总 第255期
粘土矿物对储层物性的影响
李 娟 于 斌
(成都理工大学“油气藏地质及开发工程”国家重点实验室,四川 成都 610059) 摘 要:依据化学成分的不同,可将粘土矿物分为五类,高岭石、蒙皂石、伊利石、绿泥石、伊利石-蒙皂石和绿泥石- 蒙皂石混层。粘土矿物的类型、含量、产状和物理性质对储层的物性有较大的影响,粘土矿物含量越高,砂岩的孔隙度 和渗透率越低,储集性能越差;粘土矿物的产状与油气层的渗透率有密切联系,其中搭桥式对储层的渗透率影响最大; 粘土矿物因其具有膨胀性,对酸敏感性,也严重影响着储层物性。 关键词:粘土矿物;孔隙度;渗透率;含量;产状 DOI:10.3969/j.issn.1671-6396.2011.22.004 1 引言 中的绿泥石富含镁、铁,具有较强的酸敏性。伊利石-蒙皂 石混层和绿泥石-蒙皂石混层以薄膜式贴附在砂岩颗粒表 面,分别具有两种矿物的性质,具有较高的膨胀性。 3 粘土矿物成岩作用 粘土矿物的演化对储层研究有重要意义,它既可以充
在砂岩储层中粘土矿物的组成、含量、产状和分布特 征直接影响到对砂岩储层的评价,它与油层储层敏感性密 切相关,粘土矿物分布的广泛性和特有的物理化学性质, 使它与石油地质和油气田的开发诸多发面联系起来。不同 类型的粘土矿物与砂岩的渗透率有不同的相关关系,同一 种粘土矿物形态和产状的不同与渗透率相关性也有差异, 基于粘土矿物的重要性及复杂性对其做深入的了解。 2 粘土矿物的类型与物理性质 根据化学成分的不同,可将粘土矿物划分为五种类 型:高岭石、蒙皂石、伊利石、绿泥石、伊利石-蒙皂石和 绿泥石-蒙皂石混层。 高岭石在砂岩孔隙中常以书页状、蠕虫状等各种形态 的集合体形式存在,高岭石具有颗粒大、对砂岩颗粒的附 着力弱两大特征。蒙皂石常以薄膜式贴附在碎屑颗粒表 面,具有较大的比表面积,在岩层中的存在形态有多种, 有时呈现出波状、褶皱层状等,蒙皂石是膨胀性很强的粘 土矿物。伊利石是砂岩中最常见的粘土矿物,在地质剖面 上从上至下均有分布,但存在形态有变化,在较浅的砂岩 中呈鳞片状贴附在砂岩颗粒表面;在深部,伊利石呈毛发 状、纤维状或条片状呈搭桥式生长[1],把砂岩中可流动的粒 间孔隙变为微细束缚孔隙,它常常是我国低渗透-特低渗透 砂岩储层及致密非储集砂岩粘土矿物的主要特征之一 。伊 利石膨胀性介于高岭石与蒙皂石之间。绿泥石常见于较深 的地层中,存在形态有板状,柳叶状,集合体状等,油层
[2]
填粒间孔隙,减少孔隙空间,还可以通过影响储层敏感性 降低储层的渗透率。粘土矿物纵向上演化具有一定的规律 性,随着埋藏深度和温度的增加,砂岩中的蒙皂石要向伊 利石或绿泥石转化,同时伊利石的结晶程度随着埋藏深度 的增加而变好。 油气对砂岩粘土矿物的成岩作用的影响。油气进入储 层以后抑制自生粘土矿物的进一步演化,如英国北海盆地 侏罗系Brent砂岩,在油水界面之上的砂岩只含高岭石,很 少含伊利石,而在油水界面之下的砂岩则以含伊利石为 主,而且有证据证明伊利石呈高岭石假象,其是成岩过程 中高岭石与孔隙水不断发生反应的结果。因此,油层粘土 矿物的演化程度可以用来推断油气进入储层的时间[3]。 孔隙水流动特征影响粘土矿物的成岩作用。砂岩储层 中孔隙流体的流动特征决定了成岩过程中物质的迁移和再 分配,影响粘土矿物在砂岩储层中的分布特征。 4 粘土矿物对储层渗透率的影响 4.1 粘土矿物含量的影响 国内外的研究表明,在沉积成岩条件大致相同的情况 下,粘土矿物绝对含量越高,砂岩的孔隙度和渗透率越 低,储集性能越差,砂岩的粘土含量为1%~5%时,为储集
图1 粘土矿物含量与孔渗关系[5] 收稿日期:2011-05-27 修回日期:2011-06-19 作者简介:李娟(1986-),女,硕士,研究方向为矿产普查与勘探。
08

1粘土矿物的结晶结构及基本特征

3粘土矿物的结晶结构及基本特征 3.1粘土矿物概念、类型及其结构化学特征 粘土的本质是粘土矿物。粘土矿物是细分散的含水的层状硅酸盐和含水的非晶质硅酸盐矿物的总称。晶质含水层状硅酸盐矿物有高岭石、蒙脱石、伊利石、绿泥石等: 含水非晶质硅酸盐矿物有水铝英石、胶硅铁石等。粘土矿物决定了整个粘土类或岩石的性质,它是最活泼的组分。 粘土矿物的晶体结构主要是由两个最基本结构单元组成,即硅氧四面体和铝氧八面体,并沿X 轴方向发展。四 面体的中心是四价的硅Si 4+,而四个二价的氧O 2- 分布于四面体的四个顶角,四面体的四个面均为等边三角形(如图3.1- (a)),有时四面体中的氧原子为氢氧原子所代替,四面体的底面落在同一平面上,以三个尖顶彼此连结,第四个尖顶均指向同一个方向,在平面上组成六角形网格状结构或链状结构(如图3.1- (b)),成为四面体层(片)。八面体由六 个氧或氢氧原子以等距排列而成,A13+(或Mg 2+ )居于中心(如图3.2- ( a )),八面体亦排列成层状态结构,成为八面体层(片)(如图3.2- (b))。 由于单位晶格的大小相近似,四面体层与八面体层很容易沿C 轴叠合而成为统一的结构层,此结构层称为结构单位层,简称晶层,几个结构层组成晶胞。四面体层与八面体层的不同组合堆叠重复,便构成了各种粘土矿物的不同层状结构。由一个四面体层与一个八面体层重复堆叠的称为1:1型结构单位层(如高岭石等),也称为二层型; 由两个四面体层间夹一个八面体层重复堆叠的称为2:1型结构单位层(如蒙脱石、伊利石等),也称为三层型;在层状结构中,四面体层与八面体层间共用一个氧原子层,故四面体层与八面体层间的键力大,联结较强,但在1:1型或2:1型结构单位层间并不共用氧原子层,层间的联结较弱。 在高岭石类粘土矿物中,结构单位层间为O 与HO(或OH 与OH)相邻(如图3.3 ),堆叠时,在相邻两晶层之间,除了范德华(Van der waals)力增扩的静电能外,主要为表层(羟)基及氧原子之间的氢键力,将相邻两晶层紧密地结合起来,使水不易进入晶层之间。即使有表面水合能撑开晶层,但不足以克服晶层间大的内聚力,几乎无阳离子交换(阳离子交换容量很小,其CEC 值为3-15毫克当量/100克干土)和类质同象置换现象,其基本层是中性的。同时,高岭石晶体基面间距(C 轴间距或doo1值)小(约7.2 A ),没有容纳阳离子的地方,即晶层无阳离子存在。高岭石晶体只有外表面,没有内表面,比表面积很小(一般远小于100m 2 /g ),被吸附的交换性阳 离子(如Na + 、Ca 2+等)仅存于高岭石矿物外表面,这对晶层水合无重要影响,所以高岭石是较稳定的非膨胀性粘土矿物,层间联结强,晶格活动性小,最活跃的表面是在晶体断口、破坏的及残缺部位的边缘部分,浸水后结构单位层间的距离(C 轴间距或doo1值)不变,使高岭石膨胀性和压缩性都较小,但有较好的解理面。 蒙脱石类粘土矿物中的结构单位层间为O 与 O(如图3.4 ),相邻两晶层之间的联结力主要为范德华(Van der waals)力,层间联结极弱,易于拆开。蒙脱石既有外表

粘土类矿物的概述

立志当早,存高远 粘土类矿物的概述 在可浮性分类中粘土类矿物属氧化物及硅酸盐、铝硅酸盐类矿物。粘土 一般指天然产出,以含水铝硅酸为主的土状集合体。除含少量粗粒外,大部分 粒度很细,直径数微米或1 微米以上,其矿物组成复杂。本节的粘土(类)是 指粒度极细、可浮性较差的各种极性硅(铝—硅)酸盐土状矿物原料,可以包 括高岭土、耐火粘土、膨润土(蒙脱石土)、酸性白土和海泡石等。其中几个 代表矿物的组成如表1。这些粘土类矿物原料,用途相当广泛。可用作陶瓷和 耐火材料的原料、纸张、橡胶、肥皂的充填剂、脱色剂、粘合剂、钻探泥浆、 催化剂等等。对这类矿物原料的技术加工和产品要求,因用途不同差别很大。 本节以研究较深入的高岭土为基础从浮选加工的角度,对极性粘土原料的浮选 略加介绍。高岭土原料的加工,可能包括下列过程:破碎—磨矿—浮选(磁选)—分级—漂白—浓密—过滤—干燥。其中:浮选用于脱去锐钛矿 (TiO2),磁选(强磁或高梯度磁选)用于除去氧化铁。漂白用氯气、二氧化 硫或硫氰化锌作漂白剂,目的是溶去铁锈等有色物质,增加产品白度(对某些 粘土矿物,还要进行活化处理)。其余过程的目的和原理与一般选矿过程相 同。表1 代表性的极性粘土矿物矿物化学式比重零电点其它高岭土埃洛石蒙脱 石海泡石坡缕石Al2Si2O3(OH)4(Na,Ca)0.33(Al,Mg)2Si4O10(OH)2 H2OAl2Si2O3 (OH)4·nH2OMg3Si12O30 (OH)4·(OH2)4·8H2OMg3Si8O20 (OH)2·(OH2)4·4H2O2.6092-2.83.4 其主要成分为硅酸盐或铝硅酸盐的粘土矿物,表面电位多为3~4。由于粒度小,比表面大,特别是海泡石等矿物晶体呈 凹凸交替的长条形,有很大的离子交换容量,在浮选中有如下几个共同的特 点:(1)药剂消耗量大(脂肪酸类用量可以高达2.5gk/t)(2)浮选浓度低,有较好的选择性。浮选的矿浆浓度以10%最适宜,载体浮选(背负浮选)

(完整word版)1粘土矿物的结晶结构及基本特征

3粘土矿物的结晶结构及基本特征 3.1粘土矿物概念、类型及其结构化学特征 粘土的本质是粘土矿物。粘土矿物是细分散的含水的层状硅酸盐和含水的非晶质硅酸盐矿物的总称。晶质含水层状硅酸盐矿物有高岭石、蒙脱石、伊利石、绿泥石等: 含水非晶质硅酸盐矿物有水铝英石、胶硅铁石等。粘土矿物决定了整个粘土类或岩石的性质,它是最活泼的组分。 粘土矿物的晶体结构主要是由两个最基本结构单元组成,即硅氧四面体和铝氧八面体,并沿X轴方向发展。四面体的中心是四价的硅Si4+,而四个二价的氧O2-分布于四面体的四个顶角,四面体的四个面均为等边三角形(如图3.1- (a)),有时四面体中的氧原子为氢氧原子所代替,四面体的底面落在同一平面上,以三个尖顶彼此连结,第四个尖顶均指向同一个方向,在平面上组成六角形网格状结构或链状结构(如图3.1- (b)),成为四面体层(片)。八面体由六个氧或氢氧原子以等距排列而成,A13+(或Mg2+)居于中心(如图3.2- ( a )),八面体亦排列成层状态结构,成为八面体层(片)(如图3.2- (b))。 由于单位晶格的大小相近似,四面体层与八面体层很容易沿C轴叠合而成为统一的结构层,此结构层称为结构单位层,简称晶层,几个结构层组成晶胞。四面体层与八面体层的不同组合堆叠重复,便构成了各种粘土矿物的不同层状结构。由一个四面体层与一个八面体层重复 堆叠的称为1:1型结构单位层(如高岭石等),也称为 二层型; 由两个四面体层间夹一个八面体层重复堆 叠的称为2:1型结构单位层(如蒙脱石、伊利石等), 也称为三层型;在层状结构中,四面体层与八面体层 间共用一个氧原子层,故四面体层与八面体层间的 键力大,联结较强,但在1:1型或2:1型结构单位层 间并不共用氧原子层,层间的联结较弱。 在高岭石类粘土矿物中,结构单位层间为O 与HO(或OH与OH)相邻(如图3.3 ),堆叠时,在相 邻两晶层之间,除了范德华(Van der waals)力增扩的 静电能外,主要为表层(羟)基及氧原子之间的氢键 力,将相邻两晶层紧密地结合起来,使水不易进入 晶层之间。即使有表面水合能撑开晶层,但不足以 克服晶层间大的内聚力,几乎无阳离子交换(阳离子 交换容量很小,其CEC值为3-15毫克当量/100克 干土)和类质同象置换现象,其基本层是中性的。同 时,高岭石晶体基面间距(C轴间距或doo1值)小(约 7.2 A ),没有容纳阳离子的地方,即晶层无阳离子 存在。高岭石晶体只有外表面,没有内表面,比表 面积很小(一般远小于100m2/g ),被吸附的交换性阳 离子(如Na+、Ca2+等)仅存于高岭石矿物外表面,这 对晶层水合无重要影响,所以高岭石是较稳定的非 膨胀性粘土矿物,层间联结强,晶格活动性小,最 活跃的表面是在晶体断口、破坏的及残缺部位的边 缘部分,浸水后结构单位层间的距离(C轴间距或 doo1值)不变,使高岭石膨胀性和压缩性都较小,但 有较好的解理面。 蒙脱石类粘土矿物中的结构单位层间为O与 O(如图3.4 ),相邻两晶层之间的联结力主要为范德华(Van der waals)力,层间联结极弱,易于拆开。蒙脱石既有外表

粘土矿物分析

作为岩石组分的粘土矿物其含量、种类及其分布、产状等对地层伤害有着非常密切的关系。由于粘土矿物颗粒细小(<0.01mm),比表面极大,并具有特殊的结构组成,因此它们对外来作业流体如注入水、压裂液、酸化液、压井液等的侵入极为敏感。当与外来流体接触时,粘土矿物往往会发生膨胀、微粒运移、生成某种沉淀等从而堵塞储层油气流动的孔隙通道,造成储层渗流能力的下降,损害油气层。因此了解粘土矿物的性质对油田开发十分重要。 通过X射线衍射分析和扫描电子显微镜技术可以确定岩石中粘土矿物的含量、分布及产状等。选取了西泉5井的部分岩石样品进行了上述测定,测定结果见表1。 表1 西泉5井区三叠系储层粘土矿物含量统计表 根据X衍射和扫描电镜分析,韭菜园子组砂层以蒙皂石(包括蒙脱石和皂石两个亚族)为主,63%~98%,平均87.8%;其次为伊/蒙混层(20%~99%,平均72.76%),绿泥石(1%~55%,平均9.33%),另有高岭石(1%~12%,平均5.74%)和伊利石(2%~16%,平均6.24%)(见表1)。 对韭菜园子组敏感性的简单分析:(供参考) 韭菜园子组伊/蒙混层和绿/蒙混层含量较多,伊/蒙混层和绿/蒙混层是遇水易膨胀的矿物,易发生粘土膨胀和分散造成地层伤害。 韭菜园子组绿泥石含量相对较高(平均9.33%),绿泥石是酸敏性矿物,酸化时易造成氢氧化铁胶体沉淀(酸敏)。另外伊利石和高岭石是速敏性矿物,易造成颗粒运移堵塞地层。

粘土矿物分析在储层潜在敏感性评价中的应用 一、粘土矿物类型 粘土矿物(clay minerals)是粘土和粘土岩中晶体一般小于2微米,主要是含水的铝、铁和镁的层状结构硅酸盐矿物。有的在其成分中还有某些碱金属或碱土金属存在。粘土矿物包括高岭石族矿物、蒙皂石、蛭石、粘土级云母、伊利石、海绿石、绿泥石和膨胀绿泥石以及有关的混层结构矿物,此外还包括具过渡性的层链状结构的坡缕石(凹凸棒石)和海泡石以及非晶质的水铝英石。除水铝英石外均属层状或层链状结构硅酸盐,因此粘土矿物可按层状结构硅酸盐矿物的分类来划分。粘土矿物按成因可分为他生粘土矿物和自生粘土矿物两类,他生粘土矿物主要是来自沉积物源区的陆源矿物,矿物成分与母源区岩石类型关系密切;自生粘土矿物为储层在特定成岩阶段化学反应析出的矿物,如自生绿泥石、自生高岭石等。不同成因粘土矿物通常具有不同的矿物组合、产状、晶形和分布规律等特征。 粘土矿物的粒度细小,其大小和形态需用电子显微镜才能测定。多数粘土矿物如伊利石等呈鳞片状,结晶良好的高岭石则呈完整的假六方片状。少数粘土矿物呈管状(埃洛石)或纤维状(坡缕石和海泡石)。 晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、CI-、(PO4)3-、(NO3)-。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。 粘土矿物的形成方式有三种:①与风化作用有关。风化原岩的种类和介质条件如水、气候、地貌、植被和时间等因素决定了矿物种和保存与否。②热液和温泉水作用于围岩,可以形成粘土矿物的蚀变富集带。③由沉积作用、成岩作用生成粘土矿物。 高岭土主要用作陶瓷原料、造纸的填料和涂层;主要由蒙脱石构成的膨润土用于作

粘土主要矿物的结构与性质

粘土主要矿物的结构与性质 摘要 主要论述了粘土中主要矿物的结构特点,并对各种矿物的主要性能(如可塑性、干燥收缩和膨润性等)进行了综述。 关键词:粘土,高岭石,蒙脱石,伊利石,晶体结构,可塑性,膨润性 ABSTRACT Mainly discusses the main structure characteristics of clay minerals, and a variety of mineral properties ( such as plasticity, drying shrinkage and swelling etc.) are reviewed. KEY WORDS: Clay, kaolinite, montmorillonite, illite, crystal structure, plasticity, swelling 粘土类原料是日用陶瓷、耐火材料等的主要原料之一,它主要是由粘土矿物和其它矿物组成的并具有一定特性的(其中主要是具有可塑性)土状岩石。粘土矿物主要是一些含水铝硅酸盐矿物,其晶体结构是由[SiO4]四面体组成的(Si2O5)n层和一层由铝氧八面体组成的AlO(OH)2层相互以顶角联接起来的层状结构,这种结构在很大程度上决定了粘土矿物的各种性能。 粘土很少由单一矿物组成,而是多种微细矿物的混合体,其主要矿物是被统称为“粘土矿物”的一些含水铝硅酸盐矿物。根据矿物的结构和组成的不同,可把粘土中的主要矿物分为高岭石类、蒙脱石类和伊利石类等三种。 在粘土的使用过程中,由于对各种主要矿物的结构认识不足,常常在生产中造成资源的浪费,并且产品达不到理想的性能。材料的结构决定性能,只有掌握了矿物的的结构与性能的关系,才能对矿物进行合理、充分的利用。为此,我主要分析一下三种主要粘土矿物的结构与性能。

粘土矿物分析在储层潜在敏感性评价中的应用

粘土矿物分析在储层潜在敏感性评价中的应用 一、粘土矿物类型 粘土矿物(clay minerals)是粘土和粘土岩中晶体一般小于2微米,主要是含水的铝、铁和镁的层状结构硅酸盐矿物。有的在其成分中还有某些碱金属或碱土金属存在。粘土矿物包括高岭石族矿物、蒙皂石、蛭石、粘土级云母、伊利石、海绿石、绿泥石和膨胀绿泥石以及有关的混层结构矿物,此外还包括具过渡性的层链状结构的坡缕石(凹凸棒石)和海泡石以及非晶质的水铝英石。除水铝英石外均属层状或层链状结构硅酸盐,因此粘土矿物可按层状结构硅酸盐矿物的分类来划分。粘土矿物按成因可分为他生粘土矿物和自生粘土矿物两类,他生粘土矿物主要是来自沉积物源区的陆源矿物,矿物成分与母源区岩石类型关系密切;自生粘土矿物为储层在特定成岩阶段化学反应析出的矿物,如自生绿泥石、自生高岭石等。不同成因粘土矿物通常具有不同的矿物组合、产状、晶形和分布规律等特征。 粘土矿物的粒度细小,其大小和形态需用电子显微镜才能测定。多数粘土矿物如伊利石等呈鳞片状,结晶良好的高岭石则呈完整的假六方片状。少数粘土矿物呈管状(埃洛石)或纤维状(坡缕石和海泡石)。 晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、CI-、(PO4)3-、(NO3)-。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。 粘土矿物的形成方式有三种:①与风化作用有关。风化原岩的种类和介质条件如水、气候、地貌、植被和时间等因素决定了矿物种和保存与否。②热液和温泉水作用于围岩,可以形成粘土矿物的蚀变富集带。③由沉积作用、成岩作用生成粘土矿物。 高岭土主要用作陶瓷原料、造纸的填料和涂层;主要由蒙脱石构成的膨润土用于作钻井泥浆、精炼石油的催化剂和漂白剂、铁矿球团的粘结剂和铸形砂粘合剂;凹凸棒石粘土和海泡石粘土是制造抗盐泥浆的优质原料、油脂的脱色剂和吸收剂。 下面我们介绍一下常见的几种粘土矿物: 1、蒙脱石

粘土矿物

主要粘粒矿物的形成环境

影响粘粒矿物形成的环境因素主要有:酸度、盐基物质、有关离子的浓度、湿度等。 例如高岭石的形成条件是高温多湿与少盐基、强酸性等,则必然以分布在华南的红壤地带为主,但它在北方的古红土母质中也会出现,那是古气候影响的残迹;又如蒙脱石的形成条件是碱性与高镁等,则必然以出现在北方土壤中为主,但它在热带的燥红土中也有,则表明燥红土有特殊的干燥气候与酸度偏碱的成土环境;再如赤铁矿与三水铝石等氧化物矿物都属于风化阶段的最后产物,一般来说,他们应分布在以红壤与砖红壤地带为主,如果不是,则表明另有特殊的局部成土环境。 ——陆景岗《土壤地质学》(1997)

粘土矿物自然色 无色——高岭石矿物、蒙脱石、绢云母 绿色——绿泥石、蛇纹石、铁蒙脱石、滑石、黑高岭土 褐色——铁蒙脱石、黑铁高岭土、黑硬绿泥石 黄色——囊脱石 蓝绿色——海绿石、绿鳞石 PS:采集时为绿色,在空气中放置后变成褐色粘土矿物为多铁的蒙脱石或多铁的蛇纹石,可能是由于亚铁被氧化。 ——须腾俊男《粘土矿物》(1959) 粘土矿物在石油地质中地应用 (A)粘土矿物判断古环境: 1、代表干旱气候的矿物组合类型 粘土矿物对周围环境很敏感,干旱的古气候通过具有较高盐度和某些离子的水介质而影响粘土矿物组合类型。根据粘土矿物组合类型研究古气候效果较好。 (1)以伊利石含量占优势的伊利石+绿泥石矿物组合和伊利石+伊/蒙有序间层+绿泥石矿物组合,一般代表干旱古气候和富含K+离子的盐湖水介质。 (2)伊利石+绿/蒙间层(包括柯绿泥石)+绿泥石矿物组合,则往往代表干旱-半干旱古气候和富Fe2+、Mg2+离子中等盐度且偏碱性的水介质。 (3)伊利石+蒙皂石(或伊/蒙无序问层)+坡缕石+绿泥石矿物组合,则代表干旱-半干旱古气候和碱性(pH值为8~9)且富Mg2+离子的水介质。 (4)伊利石+伊/蒙无序间层+绿泥石矿物组合,往往处于(1)与(3)之间的古气候和古水介质。 以上几种组合的共同特点是不含高岭石。 2.代表潮湿气候的矿物类型

粘土矿物分析

粘土矿物分析 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

作为岩石组分的粘土矿物其含量、种类及其分布、产状等对地层伤害有着非常密切的关系。由于粘土矿物颗粒细小(<0.01mm),比表面极大,并具有特殊的结构组成,因此它们对外来作业流体如注入水、压裂液、酸化液、压井液等的侵入极为敏感。当与外来流体接触时,粘土矿物往往会发生膨胀、微粒运移、生成某种沉淀等从而堵塞储层油气流动的孔隙通道,造成储层渗流能力的下降,损害油气层。因此了解粘土矿物的性质对油田开发十分重要。 通过X射线衍射分析和扫描电子显微镜技术可以确定岩石中粘土矿物的含量、分布及产状等。选取了西泉5井的部分岩石样品进行了上述测定,测定结果见表1。 表1 西泉5井区三叠系储层粘土矿物含量统计表 根据X衍射和扫描电镜分析,韭菜园子组砂层以蒙皂石(包括蒙脱石和皂石两个亚族)为主,63%~98%,平均%;其次为伊/蒙混层(20%~99%,平均%),绿泥石(1%~55%,平均%),另有高岭石(1%~12%,平均%)和伊利石(2%~16%,平均%)(见表1)。 对韭菜园子组敏感性的简单分析:(供参考) 韭菜园子组伊/蒙混层和绿/蒙混层含量较多,伊/蒙混层和绿/蒙混层是遇水易膨胀的矿物,易发生粘土膨胀和分散造成地层伤害。 韭菜园子组绿泥石含量相对较高(平均%),绿泥石是酸敏性矿物,酸化时易造成氢氧化铁胶体沉淀(酸敏)。另外伊利石和高岭石是速敏性矿物,易造成颗粒运移堵塞地层。 粘土矿物分析在储层潜在敏感性评价中的应用

一、粘土矿物类型 粘土矿物(clay minerals)是粘土和粘土岩中晶体一般小于2微米,主要是含水的铝、铁和镁的层状结构硅酸盐矿物。有的在其成分中还有某些碱金属或碱土金属存在。粘土矿物包括高岭石族矿物、蒙皂石、蛭石、粘土级云母、伊利石、海绿石、绿泥石和膨胀绿泥石以及有关的混层结构矿物,此外还包括具过渡性的层链状结构的坡缕石(凹凸棒石)和海泡石以及非晶质的水铝英石。除水铝英石外均属层状或层链状结构硅酸盐,因此粘土矿物可按层状结构硅酸盐矿物的分类来划分。粘土矿物按成因可分为他生粘土矿物和自生粘土矿物两类,他生粘土矿物主要是来自沉积物源区的陆源矿物,矿物成分与母源区岩石类型关系密切;自生粘土矿物为储层在特定成岩阶段化学反应析出的矿物,如自生绿泥石、自生高岭石等。不同成因粘土矿物通常具有不同的矿物组合、产状、晶形和分布规律等特征。 粘土矿物的粒度细小,其大小和形态需用电子显微镜才能测定。多数粘土矿物如伊利石等呈鳞片状,结晶良好的高岭石则呈完整的假六方片状。少数粘土矿物呈管状(埃洛石)或纤维状(坡缕石和海泡石)。 晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、CI-、(PO4)3-、(NO3)-。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。 粘土矿物的形成方式有三种:①与风化作用有关。风化原岩的种类和介质条件如水、气候、地貌、植被和时间等因素决定了矿物种和保存与否。②热液和温泉水作用于围岩,可以形成粘土矿物的蚀变富集带。③由沉积作用、成岩作用生成粘土矿物。

粘土矿物

10.1.1形态特征 用扫描电子显微镜观察,沉积岩中自生高岭石呈蠕虫状(图版I-b)、书页状(图版I-c)集合体赋存子粒间.其单晶为六方板状(图版I—a),常与自生石英、方解石等自生矿物共生. 10.1.2成分特征 用能谱测定高岭石的化学成分.主要元素为硅(Si)、铝(Al),其Si02/Al2O3的比值为1·。蒙皂石 10.2.1形态特征 用扫描电子显微镜观察.沉积岩中自生蒙皂石呈蜂窝状(图版I-a、b、c)赋存子粒表,星棉絮状、片状赋存予粒间. 10.2.2成分特征 用能谱测定其成分.主要成分为硅(Si)、铝(Al)、钙(Ca)、钠(Na),氧化钾(K2O)含量低,通常小于%. 伊利石 10.3.1形态特征 用扫描电子显微镜观察,自生伊利石呈片状(图版I-a、c)或丝状(图版I-b)集合体,赋存子粒表和粒同. 10.3.2成分特征 用能谱测定伊利石成分.主要元素为硅(Si)、铝(Al)、钾(K).其氧化钾(K20)值通常大于%. 绿泥石 10.4.1形态特征 用扫描电子显微镜观察,自生绿泥石墨绒球状(图版Ⅳ-a)赋存子粒间,或以针叶状(图版Ⅳ-b)赋存于粒表,其单晶结构为叶片状(图版Ⅳ-c). 10.4.2成分特征 用能谱测定绿泥石成分.主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg).除硅、铝外,富含铁、镁是其主要特征. 伊/蒙混层 10.5.1形态特征

用扫描电子显微镜观察,伊/蒙混层呈丝状(图版Va、b、c),是蒙皂石向伊利石过渡期的粘土矿物.形态特征是蒙皂石特征逐渐消失,伊利石特征逐渐增强,赋存于粒表和粒间. 10.5.2成分特征 用能谱测定伊/蒙混层成分,主要元素为硅(Si)、铝(Al)、钾(K)、钙(Ca)、钠(Na).其成分特征主要反映在氧化钾(K2O)含量为%~%.确定为过渡期的混层粘土矿物. 绿/蒙混层 10.6.1形态特征 用扫描电子显微镜观察,绿/蒙混层粘土矿物呈蜂窝状(图版Ⅵ-a、b)和丝状结构(图版Ⅵ-c).是蒙皂石向绿泥石过渡期的粘土矿物,具有蒙皂石和绿泥石的形态特征. 10.6.2成分特征 用能谱测定绿/蒙混层成分,主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg)、钙(Ca)。其铁、镁含量较高是主要特征. 11分析结果发布 鉴定粘土矿物的名称. 对于石油地质样品,要说明样品相应的地区、井号、层位、岩性。 说明粘土矿物的赋存状态及形态特征. 说明粘土矿物的元素成分特征及标样编号、名称。 使用标样说明. GB/T 17361-1998 附录A (提示的附录) 几种常见粘土矿物元素成分特征参考表 矿物类型Na2O Mg0 Al2O2 Si02 K20 Ca0 Mn02 Fe0 Ti0 可测总量 值,% 高岭石--0. 75 -86~88 蒙皂石-- 3. 79 -78~95 伊利石 2. 03 90~95

粘土矿物

用扫描电子显微镜观察,沉积岩中自生高岭石呈蠕虫状(图版I-b)、书页状(图版I-c)集合体赋存子粒间.其单晶为六方板状(图版I—a),常与自生石英、方解石等自生矿物共生. 10.1.2成分特征 用能谱测定高岭石的化学成分.主要元素为硅(Si)、铝(Al),其Si02/Al2O3的比值为1·1-1.3。 10.2蒙皂石 10.2.1形态特征 用扫描电子显微镜观察.沉积岩中自生蒙皂石呈蜂窝状(图版I-a、b、c)赋存子粒表,星棉絮状、片状赋存予粒间. 10.2.2成分特征 用能谱测定其成分.主要成分为硅(Si)、铝(Al)、钙(Ca)、钠(Na),氧化钾(K2O)含量低,通常小于1.5%. 10.3伊利石 10.3.1形态特征 用扫描电子显微镜观察,自生伊利石呈片状(图版I-a、c)或丝状(图版I-b)集合体,赋存子粒表和粒同. 10.3.2成分特征 用能谱测定伊利石成分.主要元素为硅(Si)、铝(Al)、钾(K).其氧化钾(K20)值通常大于7.5%. 10.4绿泥石 10.4.1形态特征 用扫描电子显微镜观察,自生绿泥石墨绒球状(图版Ⅳ-a)赋存子粒间,或以针叶状(图版Ⅳ-b)赋存于粒表,其单晶结构为叶片状(图版Ⅳ-c). 10.4.2成分特征 用能谱测定绿泥石成分.主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg).除硅、铝外,富含铁、镁是其主要特征. 10.5伊/蒙混层

用扫描电子显微镜观察,伊/蒙混层呈丝状(图版Va、b、c),是蒙皂石向伊利石过渡期的粘土矿物.形态特征是蒙皂石特征逐渐消失,伊利石特征逐渐增强,赋存于粒表和粒间. 10.5.2成分特征 用能谱测定伊/蒙混层成分,主要元素为硅(Si)、铝(Al)、钾(K)、钙(Ca)、钠(Na).其成分特征主要反映在氧化钾(K2O)含量为1.5%~7.5%.确定为过渡期的混层粘土矿物.10.6绿/蒙混层 10.6.1形态特征 用扫描电子显微镜观察,绿/蒙混层粘土矿物呈蜂窝状(图版Ⅵ-a、b)和丝状结构(图版Ⅵ-c).是蒙皂石向绿泥石过渡期的粘土矿物,具有蒙皂石和绿泥石的形态特征. 10.6.2成分特征 用能谱测定绿/蒙混层成分,主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg)、钙(Ca)。其铁、镁含量较高是主要特征. 11分析结果发布 11.1鉴定粘土矿物的名称. 11.2对于石油地质样品,要说明样品相应的地区、井号、层位、岩性。 11.3说明粘土矿物的赋存状态及形态特征. 11.4说明粘土矿物的元素成分特征及标样编号、名称。 11.5使用标样说明. GB/T 17361-1998 附录A (提示的附录) 几种常见粘土矿物元素成分特征参考表

粘土矿物鉴定与XRD判读

实验二 粘土矿物制片与x射线衍射图谱的判读 一、实验目的 土壤粘土矿物是土壤中带电荷粒子之间进行相互作用的主体。其类型、数量及相互作用和化学表现影响矿质土壤的物理、化学性质。本实验目的是学习掌握层状粘土矿物定向薄片的制片和x射线衍射分析测试技术及图谱的判读。 二、实验原理 x射线衍射鉴定是基于一定波长的x射线在晶质矿物中的衍射,服从布拉格(Brag)定律,即2d = nλsin2θ,式中d 为矿物的层间距,n为整数,λ为波长,θ为入射角。可根据不同结构矿物的不同衍射特点及其经化学处理后的变化,判读晶质矿物的类型。 三、试剂、仪器和器皿 1.试剂: (1)1mol·L-1KCl溶液; (2)0.5mol·L-1MgC12溶液; (3)5%甘油溶液(体积比); (4)2mol·L-1HCl溶液; (5)0.3mol·L-1柠檬酸钠溶液; (6)柠檬酸钠一重碳酸钠混合液:0.3mol·L-1柠檬酸钠与1mol·L-1重碳酸钠按20:2.5混合配制; 2.仪器和器皿: (1)x射线衍射仪; (2)马福炉,水浴锅,离心机; (3)干燥器,5ml指形管,小玻片(3X4cm2),一端带玻球的小玻棒。 四、实验步骤 (一)粘粒定向薄片的制备方法 1.镁饱和甘油定向片。称50mg原胶于5ml指形管中,加柠檬酸钠一重碳酸钠混合液3ml和0.1g固体连二亚硫酸钠,在80℃水浴锅中加热15min(经常搅动)。冷却,离心,弃去清液,以脱去样品中的游离铁(在其它处理方法中均需先进行此步骤)。然后加0.5mol·L-1MgCl2溶液3ml,搅拌,洗净玻棒后离心,重复饱和二次,再加5%甘油溶液饱和一次。离心,弃去清液后加lml蒸馏水搅匀,最后顺玻棒将悬液均匀地倾倒在放平的小玻片上,室温下风干后放入装有饱和Ca(N03)2溶液的干燥器,平衡一天,供衍射分析用。 2.钾饱和定向片。按上法称样,脱铁后加lmol·L-1KCl溶液饱和处理三次。并用蒸馏水洗—次,用蒸馏水按上法制片(不放人干燥器)。钾片风干衍射扫描后,根据需要,可在马福炉中依次加温300℃和550℃(2h)后再进行衍射。 (二)x射线衍射分析 Fe靶辐射,36kV,20mA,镁饱和甘油定向片用步进扫描,步宽0.02°,预置时间0.5s,扫描角度范围(2θ)5°一35°。钾饱和定向片用连续扫描,扫描速度2° /min,角度范围5° 一18° ,时间常数2s。 五、判读方法 判读就是识别图谱。判读的第一步是测量d值和衍射强度。这两项数据是矿物晶体结构的反映。据此鉴定矿物的种类和大致含量,有时还可藉谱线的宽窄或峰形推知晶体结构的有序度和晶粒大小。衍射峰的d值、强度和形态是三个不可偏废的判读依据。 (一)根据粘土矿物的d值及变化,鉴定出矿物种类 主要粘土矿物的x射线衍射特征如下: 1.高岭石。在定向薄片x射线衍射图上,高岭石d001=0.715nm,d002=0.356—0.358nm,

粘土矿物分析方法

粘土矿物分析方法 粘土矿物的分离提取将需要进行分离提取粘土的沉积物原样(约50~100 g),在低于60℃的温度下烘干(约12 h),称取干质量。后将干样放入1 L的长型大烧杯(高度>10 cm)中,加入1 L纯净水浸泡5~10 min。后将其搅拌成悬浮液,通过多次搅拌,促使粘土质物质充分扩散悬浮,在本次检测测试中,没有添加分散剂以保证原组分不被破坏。静置2 h后,抽出上层清液再加入纯水搅拌成悬浮液;根据Stoke沉降定律,再将悬浮液静置2 h,用吸管小心吸取大烧杯上层约2·5 cm的悬浮液滴入500 mL小烧杯,提取至小烧杯中有200~300 mL的量。静置24 h,吸除杯中上清液,剩余粘土泥浆倒入表面皿入烘箱烘干(≤60℃,12 h左右)备用。大烧杯中剩余溶液及沉淀物过筛(240目),取≥0·063mm颗粒并烘干(≤60℃),再过120目筛,得0·063~0·125 mm粒级碎屑矿物颗粒备矿物鉴定用。 定向片制作和X射线衍射(XRD)测试经分离提取后,获取所需粒级干粘土50~200 mg,取出40 mg加0·7 mL蒸馏水搅匀并在超声波中分散10min,然后滴涂到4 cm×2·5 cm玻璃载片上,自然风干,制成自然定向片(N片),对N片X射线扫描。将测试过的N片置于含乙二醇饱和蒸汽的干燥器中,40~50℃恒温7 h,冷却至室温后制成乙二醇饱和片(EG片)作X射线衍射分析。EG片测得XRD图谱后,放入马弗炉中加热至550℃并恒温2 h,自然冷却至室温制成加热片(T片),立即作X射线衍射分析。 XRD测试条件日本理学(Rigaku)D/max2500全自动(18 kW)转靶X射线衍射仪。工作条件:电压为40 kV,电流为100 mA;Cu-Kα辐射;连续扫描,扫描速度4°/min;采样步宽为0·01°(2θ),扫描范围为2·6°~30°。其中N片,2·6°~15°(2θ);EG片,2·6°~30°(2θ);加热片,2·6°~15°(2θ)。 粘土矿物的定性、定量计算方法按中国石油天然气行业标准《沉积岩粘土矿物相对含量X射线衍射分析方法》(SY/T 5163-1995)进行。其中X射线图谱定性分析采用MDI Jade 5·0软件进行;粘土矿物半定量计算用基于Biscaye方法编制的CXAN计算软件进行,采用了LANSON等人提出来的利用计算机模拟多重峰分离技术将伊利石(1·0nm)剥离出来定量。以上工作均在中国石油勘探开发研究院(北京)XRD实验室完成。

相关文档