文档库 最新最全的文档下载
当前位置:文档库 › 第11章 恒定电流和恒定磁场

第11章 恒定电流和恒定磁场

第11章 恒定电流和恒定磁场
第11章 恒定电流和恒定磁场

第11章恒定电流和恒定磁场

◆本章学习目标

1.理解稳恒电流产生的条件;理解电流密度的概念。

2.熟练掌握欧姆定律及其微分形式。

3.理解电动势的概念;掌握闭合电路的欧姆定律。

4.了解基尔霍夫定律。

◆本章教学内容

1.电流和电流密度;电流的连续性方程。

2 电阻率;欧姆定律的微分形式;焦尔-楞次定律。

3.电源和电动势;闭合电路的欧姆定律。

4.基尔霍夫定律。

◆本章教学重点

1.电流密度。

2.欧姆定律的微分形式。

3.电源的电动势;闭合电路的欧姆定律。

◆本章教学难点

1.电流密度。

2.欧姆定律的微分形式。

3.电源的电动势;闭合电路的欧姆定律。

◆本章学习方法建议及参考资料

在中学有关电路知识的基础上,加深理解电流、稳恒电流及电动势等概念,理解稳恒电场与静电场的异同,明确稳恒电流的条件,理解其数学表达式的物理意义。在此基础上,会计算简单的含源电路。

参考资料

程守洙《普通物理学》(第五版)、张三慧《大学物理基础学》及马文蔚《物理学教程》等教材。

§11.1电流密度 电流连续性方程

一、电流

形成电流的条件:

1.在导体内有可以自由移动的电荷(载流子); 2.导体内部存在电场。

当导体内存在电场时,正电荷沿着电场方向运动,负电荷逆着电场的方向运动,形成电流。习惯上把正电荷运动的方向规定为电流的方向。

电流强度(I ):单位时间内通过导体中某一截面的电量。

如果在dt 时间内通过导体某一截面S 的电量为dq ,则通过该截面的电流强度为

dt

dq

t q I t =

??=→?0lim

(1) 在国际单位制中,单位:安培(A)。 二、电流密度

电流虽能描述导体横截面上的电荷流动的特征,但不能描述导体中每一点的电荷流动的特征。如图所示的不均匀导体内,正电荷在通过A 、B 时运动方向是不同的。

为了更精确地描述导体内各点的电流分布

情况,引入电流密度矢量j ρ

电流密度:对于导体中的任一点,j ρ

的大

小等于通过该点与电流方向垂直的单位面积上的电流;方向为正电荷在该点处的运动方向。

在导体内部某点处取一个与电流方向垂直的面元⊥dS ,设通过该面元的电流为dI ,如图所示,则该点的电流密度的大小为

=

dS dI

j (2) 方向与面元的法线n ρ

的方向一致。单位:2-?m A

如果面元S d ρ的法向n ρ与j ρ

的夹角为θ,如图所示,则通过S d ρ上的电流为 S d j dS j dI ρ

ρ?==θcos (3)

通过导体中任意有限曲面S 上的电流为

???=S d j I ρ

ρ (4) 通过一个曲面上的电流等于该曲面上的电流密度的通量。 三、电流的连续性方程

在电流场中,我们引入电流线来描述它的性质.在电流场中作一些有方向的

曲线,让曲线上的每一点的切线方向与该点j ρ

的方向一致,这些曲线就叫做电流

线。同时规定通过与j ρ垂直的单位面积上的电流条数,等于该点j ρ

的大小。

如图所示:在电流场中任取一闭合曲面S,S 内的电荷为q ,在闭合曲面上j

ρ

的通量就是由S 内向外流出的电流。根据电荷守恒定律,它应等于单位时间内面电荷的减少量,即

??-=?dt dq

s d j ?? (5)

此式叫做电流的连续性方程,它是电荷守恒定律的数学表达式。

四、稳恒电流和稳恒电场

稳恒电流:电流密度j ρ

仅是空间位置的函数,而与时间t 无关。

稳恒条件(产生稳恒电流的必要条件):空间各点的电荷不随时间变化,即

0=dt

dq

,由(5)式可得稳恒条件的数学表达式为 ??=?0s d j ?

?

(6)

★ 由(6)式可得如下结论:

1.流进闭合面的电流,等于流出闭合面的电流。

2.稳恒电流场中的电流线是无头无尾的闭合曲线。

稳恒电场:稳定条件下的电场。且满足环路定理0=??l d E ?

?。

I

§11.2欧姆定律 焦耳—楞次定律

一、欧姆定律

欧姆定律:在温度一定的情况下,流过导体的电流I 与导体两端的电压U 成正比,即

,或GU I =R

U

I =

(1) G 称为电导,R 称为电阻。在国际单位制中,电导的单位:西门子(S),电阻的单位:欧姆(Ω)。 ★ 说明:

1.电阻反映导体对电流的的阻碍程度,电导反映了导体对电流的导通能力。 2.欧姆定律对金属和通常情况下的电解液成立,但对于半导体二极管、真空二极管以及许多气体导电管等元件不成立。

3.当导体内部含有电源时, (1)不再成立,因此(1)式常称为不含源电路的欧姆定律。 二、电阻

实验表明,一段柱形的均匀导体两端的电阻由下式决定,即 S

l

R ρ

= (2) 其中l 是导体的长度,S 是横截面积,ρ是导体的电阻率。电阻率ρ的倒数叫做电导率,用σ表示,即

ρ

σ1

=

(3)

在SI 单位制中,电阻率的单位:m ?Ω,电导率的单位:1-?m S . 实验表明,所有纯金属电阻率都随温度的升高而增大,当温度不太高时,导体的电阻率与温度有线性关系,即

)1(0t t αρρ+= (4)

其中t ρ和0ρ分别为和C t 0C 00时的电导率,α是由材料决定的常数,叫做温度系数。

超导现象:当导体的温度降低到绝对零度附近时,一些导体的电阻率突然减

少到零。

三、欧姆定律的微分形式

如图所示,在导体中沿电流方向取一长为dl 的小圆柱,截面积为dS ,两端的电压分别为U 和U +d U ,通过dS 上的电流为

dI ,由欧姆定律得

R

dU

dI -

= 其中R 是小柱体的电阻。根据(2)式,可得

1dl dl

R ds ds

ρ

σ==

代入可得, dU dI dS dl σ=-,()dI dU

dS dl

σ=- 由于

dI j dS =,dU

E dl

-=,可得 E j σ= 矢量式:E j ?

ρσ= (5)

(5)式称为欧姆定律的微分形式,它表述了载流导体内部j ρ

和E ρ的点点对应关

系,对非稳恒情况也是适用的。

例题

已知球形电容器的内、外极板的半径分别为A R 和R B,中间充满非理想电解质,其电阻率为ρ ,两极之间的电压为B A U U -,求介质内的电场分布。

解:已知球形电容器的漏电电流是由极板沿径向流向外极板,电介质的电阻可看作由许多半径为r,面积为r π4,厚度为dr 的球壳电阻dR 串联而成,且

2

4r dr

dR πρ=

B A B A B A R R R R R R R R r

dr R B A

πρπρπρ4)

(11442-=???? ??-==?

漏电电流为

)

()(4B A B A B A B A R R U U R R R U U I --=-=

ρπ 在距球心为r 处的球壳上的电流密度的大小为

d U U +d U

2

2

1)()(4r

R R U U R R r I

S I j B A B A B A ?--===ρπ

方向沿矢径向外,由欧姆定律的微分形式,可得介质中各点场强的大小为:

21

)()(r

R R U U R R j E B A B A B A ?--=

方向沿矢径向外。 四、电流的功和电功率

设有一段导体,两端保持恒定电压U ,导体通有电流I ,在t 时间内电场力作的功即电流做的功为

A qU IUt == (6)

对于一段纯电阻电路,用欧姆定律可以把上式改写为

2

2

U A I Rt t R

== (7)

单位时间内电流做的功叫做电功率,用P 表示,即

A

P IU t

=

= (8) 对于纯电阻电路 2

2

U P I R R

== (9)

在SI 中,电功的单位为焦耳(J ),电功率的单位为瓦特(W )。 五、焦耳-楞次定律

如果电流通过一段纯电阻电路,导体内自由电荷在做定向运动的过程中,将动能转化为热能,热能正好等于电流的功,即

Q A IUt == (10)

根据欧姆定律,上式可变为

2Q I Rt = (11)

上式称为焦耳-楞次定律。

意义:电流通过导体放出的热量与电流的平方、导体的电阻和通电时间三者成正比。

在纯电阻电路中:

2Q A IUt I Rt === (12)

★ 注意:如果电路中还有电动机、电解槽等装置存在,2Q I Rt =仍然成立,但两者不再相等,因为电流只把一部分转化为焦耳热,把其余的电能转化为机械能和化学能。

为了能更细致地描述导体各处电能与热能的相互转化的性质,引入了热功率密度。

热功率密度:单位时间内在导体单位体积中放出的热量,用p 表示。在导体中取一小柱体(如上图),在时间t 内,小圆柱体内产生的热量为

2()Q dI Rt ?=

()()

2

2

2dl

jdS t

dI Rt Q

dS p j V t dSdlt

dSdlt

ρ

ρ?=

===??

根据欧姆定律的微分形式,可得 ()2

2p E E ρσσ=?= (13) (13)式即是焦耳—楞次定律的微分形式。

★ 该式说明:热功率密度仅与电场强度的平方及导体的电阻率成正比,它取决于外加电场与导体的性质,而与导体的几何形状与尺寸无关。

§11.3 电动势

一、电动势

在电路中只有静电力存在,不能形成稳恒电流。 如图所示,A 板带正电,B 板带负电,接通时,两板之间存在电势差0A B U U ->,所以正电荷在静电力的作用

下,从A 板经R 流向B 板,在此过程中,导体两端的电压逐渐降低,导体中的电场逐渐减弱,电流逐渐减小,可见仅有静电力存在,不能形成稳恒电流。

要想在导体中形成稳恒电流,电路中必须存在一种本质上与静电力不同的力,我们把它叫做非静电力,它能够把正电荷从电位低的地方移到电位高的地方,能够提供非静电力的装置叫做电源。

把上图中的电容器换成电源,即可维持稳恒电流,下面分析电源中的非静电力如何在闭合电路中维持稳恒电流。

若电源处于开路状态,如图所示。正电荷在如图所示的非静电力作用下,从B 向A 运动,于是A 端带正电B 端带负电,从而在电源内建立一个电场。开始时,静电力F F <非,正电荷继续向A 运动,随着电荷的增加,静电力逐渐增大,直到F F =非,A 、B 两端形成稳定的电位差。

如右图所示,用导线把电源与电阻R 连接起来,A 、B 两端的正负电荷便在导体中激发电场,导体内的正电荷在电场力的作用下做定向运动形成电流,随着该电流的出现,电源中的静电力将出现F F <非的趋势,于是电源的正电荷又从B 向A 运动,整个电路中形成一个稳定的电流。

为了描述电源把其他形式的能量转变为电能的本领,下面讨论一下非静电力做功。

定义非静电性场强: K F

E q

=r

r 非 (1)

在电源内部,电源把电荷q 从负极移到正极的过程中,非静电力所做的功为

K A qE dl +

-

=??

r r

电源的电动势 K A

E dl q

ε+-==??r r (2)

★说明:

1.电动势是描述电源内部非静电力做功本领的物理量,由电源本身的性质决定,与外电路的性质无关。

2.电动势是标量。为了方便,规定电动势的方向:在电源内部从正→负。 若整个闭合电路中都有非静电力存在,则电动势定义为

K L

E dl ε=??r r

? (3)

若回路中有i 个电源,则回路中总的电动势为

12K i i

L

E dl K K K i E dl E dl E dl εε+++=?=++=---???∑????r r L r r r r r r ?(经电源1内)

(经电源2内)

(经电源i 内)

二、闭合电路的欧姆定律

如图所示的闭合电路,在时间t 内,通过电路任一横截面的电荷为q It =,则电源所作的功为q I t εε=,根据能量守恒定律,这些能量全部转化为焦耳热,则

22I t I Rt I rt ε=+?I R r

ε

=

+ (4)

(4)式即为闭合电路的欧姆定律。

若电路中有多个电源,则 i i i k

i

k

I r R

ε=

+∑∑∑ (5)

在上图中,由欧姆定律可得AB U IR =,代入(4)可得

AB IR Ir U Ir ε=+=+ (6)

(6)式表明:当闭合电路中有电流通过时,电源电动势等于路端电压与内阻上的电压降的代数和。 ★ 讨论:

1.当R →∞,即外电路处于开路状态时,0I =,则AB U ε=

2.当0R →,即电源短路时,则短路电流/I r ε=

3.当电源内阻0r =时,则AB U ε=,即电源的路端电压等于电源的电动势,该电源称为理想电源。 三、一段含源电路的欧姆定律

含源电路:一段电路中既有电阻又有电源,如图所示。

计算图示中的A 、B 两点间的电位差:

首先假定各段电路中电流的方向,若求得电流为正,说明实际电流方向与假定方向相同,否则相反。

各段电路中的电流方向假定如图所示的方向,在A C B 这段电路上的总压降为

1111122222233A B U U I R I r I r I R I r εεε-=++----+

1231111222223()()I R I r I r I R I r εεε=-+++---

由此式可知:A 、B 两点间的电压降等于各电动势与各个电阻上电压降的代数和。

推广至一般电路:

()()()AB i i i k k i

i

k

U I r I R ε=±+±+±∑∑∑ (7)

(7)式即是含源电路的欧姆定律。 ★ 对ε、IR 和Ir 的符号作如下规定:

1.在电阻上,当电流方向与约定方向相同时,IR 或Ir 前写正号,反之为负号;

2.在电源上,当电动势的方向与约定方向相反时,ε前写正号,反之为负号。

§11.4 基尔霍夫定律及其应用

一、支路 节点 回路

支路:由电源、电阻或由它们串连而成的一条电路。 节点:电路中三条或三条以上支路的会合点称为节点。 回路:几条支路所构成的闭合电路。 二、基尔霍夫定律

1.基尔霍夫第一定律:在任一节点处,流进节点的电流之和等于流出节点的电流之和,即0=∑I 。

一般把流向节点的电流取为负值,从节点流出的电流取为正值,当然,相反的规定也可以。

2.基尔霍夫第二定律:沿任一闭合回路的电压降的代数和等于零,即

0=∑+∑IR E 。

如图所示的回路,应用基尔霍夫第二定律,可得

12112233()()0I R I R I R εε-++-+=

★ 注意:

1.在写回路电压方程以前,首先选定一个回路绕行的方向。

2.在写回路电压方程时,电动势的方向与绕行方向相反(即绕行方向从正极进入电源)时,ε取正,反之,取负。

3.在写回路电压方程时,当绕行方向与电流方向相同时,IR 前取正,反之取负。

★ 应用基尔霍夫定律注意事项:

1.若电路中有n 个节点,那么只有(n -1)个节点的方程是独立的。 2.在写回路方程时,要选独立回路。独立回路:回路里至少有一条支路是别的回路所不包含的。 三、应用举例(略)

恒定电流的磁场汇总

潍坊科技学院教案 课程名称:大学物理(一)授课人:郑海燕

19 电流电流密度 电流就是带电粒子(载流子)的定向运动。 正电荷的运动方向规定为电流的方向。电流还可以分为传导电流和运流电流两种类型。传导电流是指在导线中的电流,其载流子在导体上的每个局部区域都是正负抵消的,是电中性的;而运流电流是指裸露的电荷运动,由于电荷是裸露的,它周围有电场存在。 描述电流的物理量主要有两个:电流强度和电流密度。电流强度描述在一个截面上电流的强弱。电流强度定义为单位时间内通过导体中某一截面的电量。如果在dt时间内通过导体某一横截面S的电量 为dq,则通过该截面的电流强度为 国际单位制中,电流强度单位是安培(A)。1A=1C/s。电流强度是标量,电流强度没有严格方向含义。 电流密度矢量j 电流密度j的方向和大小定义如下:在导体中任意一点,j的方向为该点电流的流向,j的大小等于通过该点垂直于电流方向的单位面积的电流强度(即单位时间内通过单位垂面的电量)。 如下图(a)所示,设想在导体中某点垂直于电流方向取一面积元dS,其法向n取作该点电流的方向。 如果通过该面积元的电流为dI,按定义,该点处电流密度为 在导体中各点的j可以有不同的量值和方向,这就构成了一个矢量场,叫做电流场。象电场分布可以用电场线形象描绘一样,电流场也可用电流线形象描绘。所谓电流线是这样一些曲线,其上任意一点的切线方向就是该点j的方向,通过任一垂直截面的电流线的数目与该点j的大小成正比。 电流密度能精确描述电流场中每一点的电流的大小和方向,其描述能力优于电流强度。通常所说的电流分布实际上是指电流密度j的分布,而电流强弱和方向在严格意义上应指电流密度的大小和方向。 如下图所示(b),一个面积元dS的法线方向与电流方向成角,由于通过dS的电流dI与通过面积 元的电流相等,所以应有 (a) (b) 电流密度的定义 若将面积元dS用矢量dS=dS?n表示,其方向取法线方向,则上式可写成

电磁场HFSS实验报告

实验一? T形波导的内场分析 实验目的? 1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。????? 2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。?实验仪器 1、装有windows 系统的PC 一台 2、或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导 实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\ Insert HFSS Design,

在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选 3D Modeler\Units ,在 Set Model Units 对话框中选中 in 项。。 2、创建T形波导模型: 创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,处,作为端口终点。 复制长方体:展开绘图历史树的 Model\Vacuum\Tee节点,右键点击Tee项,选择 Edit\Duplicate\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.

大学物理第六章-恒定磁场习题解劝答

第6章 恒定磁场 1. 空间某点的磁感应强度B 的方向,一般可以用下列几种办法来判断,其中哪个是错误的? ( C ) (A )小磁针北(N )极在该点的指向; (B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向; (D )载流线圈稳定平衡时,磁矩在该点的指向。 2. 下列关于磁感应线的描述,哪个是正确的? ( D ) (A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。 3. 磁场的高斯定理 0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; d 一根磁感应线可以完全处于闭合曲面内。 (A )ad ; (B )ac ; (C )cd ; (D )ab 。 4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量 和面上各点的磁感应强度B 将如何变化? ( D ) (A ) 增大,B 也增大; (B ) 不变,B 也不变; (C ) 增大,B 不变; (D ) 不变,B 增大。 5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少? ( C ) (A )0; (B )R I 2/0 ; (C )R I 2/20 ; (D )R I /0 。 6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A ) A 、等于零 B 、不一定等于零 C 、为μ0I D 、为 i n i q 1 1 7、一带电粒子垂直射入磁场B 后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B ) A 、 B /2 B 、2B C 、B D 、–B 8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。若匀强磁场磁感应强度大小为B ,导线质量为m , I

11稳恒电流和稳恒磁场习题解答

第十一章 稳恒电流和稳恒磁场 一 选择题 1. 两根截面大小相同的直铁丝和直铜丝串联后接入一直流电路,铁丝和铜丝内的电流密度和电场强度分别为J 1,E 1和J 2,E 2,则:( ) A. J 1=J 2,E 1=E 2 B. J 1>J 2,E 1=E 2 C. J 1=J 2,E 1E 2 解:直铁丝和直铜丝串联,所以两者电流强度相等21I I =,由???=S J d I ,两者截面积相等,则21J J =,因为E J γ=,又铜铁γγ<,则E 1>E 2 所以选(D ) 2. 如图所示的电路中,R L 为可变电阻,当R L 为何值时R L 将有最大功率消耗: ( ) A. 18Ω B. 6Ω C. 4Ω D. 12Ω 解:L L R R R +=1212ab , L L R R R R U 3122006ab ab ab +=+?=∴ε 22ab 31240000)R (R R U P L L L L +==,求0d d =L L R P ,可得当Ω=4L R 时将有最大功率消耗。 所以选(C ) 3. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感应强度B 的大小为( ) A. l I μπ420 B. l I μπ20 C . l I μπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应 强度由 )cos (cos π4210θθμ-=d I B ,可得 l I l I B BC π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里 l I l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里 L 选择题2图 选择题3图

恒定电流的磁场(一)答案

一.选择题: [D ]1. 载流的圆形线圈(半径a1)与正方形线圈(边长a2) 通有相同电流I.若两个线圈的中心O1、O2处的磁感强度大小相 同,则半径a1与边长a2之比a1∶a2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 参考答案: 1 12a I B μ =) 135 cos 45 (cos 2 4 4 2 2 ? - ? ? ? = a I B π μ [B]2.有一无限长通电流的扁平铜片,宽度为a,厚度不计,电流I在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b处的P点(如图)的磁感强度B 的大小为 (A) ) ( 2 b a I + π μ .(B) b b a a I+ π ln 2 μ . (C) b b a b I+ π ln 2 μ .(D) ) 2 ( b a I + π μ . 参考答案: 建立如图坐标,取任意x处宽度为dx的电流元 dI’=Idx/a, b b a a I x b a a Idx x b a dI B a+ = - + = - + =??ln 2 ) ( 2 ) ( 2 '0 π μ π μ π μ [D]3. 如图,两根直导线ab和cd沿半径方向被接到一个截面 处处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感 强度B 沿图中闭合路径L的积分?? L l B d (A) I0μ.(B) I0 3 1 μ. (C) 4/ I μ.(D) 3/ 2 I μ. 参考答案: 设优弧长L1,电流I1, 劣弧长L2,电流I2 由U bL1c=U bL2c得I1ρL1/S= I2ρL2/S I1/I2=1/2 有I1=I/3, I2=2I/3 故 3 20I L d B μ = ? ? [ B ] 4. 无限长载流空心圆柱导体的内外半径分别 为a、b,电流在导体截面上均匀分布,则空间各处的B 的 大小与场点到圆柱中心轴线的距离r的关系定性地如图所 示.正确的图是 参考答案: 由环路定理I L d B μ = ? ? 当r

磁场的研究实验报告

实验题目: 磁场的研究 实验目的: 1、研究载流圆线圈轴线上各点的磁感应强度,把测量的磁感应强度与理论计算值比较, 加深对毕奥-萨伐尔 定律的理解; 2、在固定电流下,分别测量单个线圈(线圈a 和线圈b )在轴线上产生的磁感应强度B (a )和B(b),与亥姆 霍兹线圈产生的磁场B(a+b )进行比较, 3、测量亥姆霍兹线圈在间距d=R /2、 d=2R 和d=2R, (R 为线圈半径),轴线上的磁场的分布,并进行比较, 进一步证明磁场的叠加原理; 4、描绘载流圆线圈及亥姆霍兹线圈的磁场分布。 实验仪器: (1)圆线圈和亥姆霍兹线圈实验平台,台面上有等距离1.0cm 间隔的网格线; (2)高灵敏度三位半数字式毫特斯拉计、三位半数字式电流表及直流稳流电源组合仪一台; (3)传感器探头是由2只配对的95A 型集成霍尔传感器(传感器面积4mmx 3mmx 2mm)与探头盒(与台面接触面 实验原理: (1)根据毕奥一萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: 232220)(2x R N R I B +=μ (5-1) 式中μ0为真空磁导率,R 为线圈的平均半径,x 为圆心O A 到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度B 0 为: R IN B 20μ= (5-2) 轴线外的磁场分布计算公式较为复杂,这里简略。 (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,所以在生产和科研中有较大的使用价值,也常用于弱磁场的计量标准。 设:z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: ????????????????????? ??-++??????????? ??++='--23222322202221z R R z R R NIR B μ(5-3) 而在亥姆霍兹线圈上中心O 处的磁感应强度B 0′为 .毫特斯拉计 .电流表 .直流电流源 .电流调节旋钮 .调零旋钮 .传感器插头 .固定架 .霍尔传感器 .大理石 .线圈 ABCD 为接线柱

第十一章稳恒电流的磁场(一)作业解答

一、利用毕奥—萨法尔定律计算磁感应强度 毕奥—萨法尔定律:3 04r r l Id B d ?=πμ 1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a I B πμ20= 半无限长载流直导线a I B πμ40=,直导线延长线上0=B 2. 圆环电流的磁场2 32220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθ μ220?=R I B 电荷转动形成的电流:π ω ωπ22q q T q I = == 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上 均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) ) 2(0b a I +πμ. 解法: 【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感 强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:

07《大学物理学》恒定磁场练习题(马)分析

《大学物理学》恒定磁场部分自主学习材料 要掌握的典型习题: 1. 载流直导线的磁场:已知:真空中I 、1α、2α、x 。 建立坐标系Oxy ,任取电流元I dl v ,这里,dl dy = P 点磁感应强度大小:02 sin 4Idy dB r μα π= ; 方向:垂直纸面向里?。 统一积分变量:cot()cot y x x παα=-=-; 有:2 csc dy x d αα=;sin()r x πα=-。 则: 2022sin sin 4sin x d B I x μαααπα =?21 0sin 4I d x ααμααπ=?012(cos cos )4I x μααπ-=。 ①无限长载流直导线:παα==210,,02I B x μπ=;(也可用安培环路定理直接求出) ②半无限长载流直导线:παπα==212,,04I B x μπ=。 2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。 建立坐标系Oxy :任取电流元Idl v ,P 点磁感应强度大小: 2 04r Idl dB πμ= ;方向如图。 分析对称性、写出分量式: 0B dB ⊥⊥==?r r ;??==20 sin 4r Idl dB B x x α πμ。 统一积分变量:r R =αsin ∴??==20sin 4r Idl dB B x x απμ?=dl r IR 304πμR r IR ππμ2430?=232220)(2x R IR +=μ。 结论:大小为2 022322032()24I R r IR B R x μμππ??= =+;方向满足右手螺旋法则。 ①当x R >>时,2 20033224IR I R B x x μμππ= =??; ②当0x =时,(即电流环环心处的磁感应强度):00224I I B R R μμππ= = ?; ③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04I R B μθπ=。 B v ? R I dl B v

电磁场HFSS实验报告

实验一 T形波导的内场分析 实验目的 1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。 2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。实验仪器 1、装有windows 系统的PC 一台 2、HFSS15.0 或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导

实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开HFSS 软件后,自动创建一个新工程:Project1,由主菜单选File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选Project\ Insert HFSS Design,在工程树中选择HFSSModel1,点右键,选择Rename项,将设计命名为TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选3D Modeler\Units ,在Set Model Units 对话框中选中in 项。。 2、创建T形波导模型: 创建长方形模型:在Draw 菜单中,点击Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为0.8。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于yz 面、x=2 的平面;单击右键,选择Assign Excitation\Wave port项,弹出Wave Port界面,输入名称WavePort1;点击积分线(Integration Line) 下的New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。 复制长方体:展开绘图历史树的Model\Vacuum\Tee节点,右键

恒定电流的磁场(二)答案

一. 选择题 [ B ]1. 一个动量为p 的电子,沿图示方向入射并能穿过一个宽 度为D 、磁感强度为B (方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A) p eBD 1 cos -=α. (B) p eBD 1sin -=α. (C) ep BD 1 sin -=α. (D) ep BD 1cos -=α. [ D ]2. A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则 (A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 2 1 =,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 1 =. (D) R A ∶R B =2,T A ∶T B =1. [ C ]3. 三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是: (A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4. 提示: [ B ]4.如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动. 提示:,B p M m ?= F 1 F 2F 3 1 A 2 A 3 A ⅠⅡⅢ I 1 I 2

北京大学物理实验报告:霍尔效应测量磁场(pdf版)

霍尔效应测量磁场 【实验目的】 (1) 了解霍尔效应的基本原理 (2) 学习用霍尔效应测量磁场 【仪器用具】 仪器名参数 电阻箱? 霍尔元件? 导线? SXG-1B毫特斯拉仪±(1% +0.2mT) PF66B型数字多用表200 mV档±(0.03%+2) DH1718D-2型双路跟踪稳压稳流电源0~32V 0~2A Fluke 15B数字万用表电流档±(1.5%+3) Victor VC9806+数字万用表200 mA档±(0.5%+4) 【实验原理】 (1)霍尔效应法测量磁场原理 若将通有电流的导体至于磁场B之中,磁场B(沿着z轴)垂直于电流I S(沿着x轴)的方向,如图1所示则在导体中垂直于B和I S方向将出现一个横向电位差U H,这个现象称之为霍尔效应。 图 1 霍尔效应示意图 若在x方向通以电流I S,在z方向加磁场B,则在y方向A、A′两侧就开始聚积异号电荷而产生相应的附加电场.当载流子所受的横向电场力F E洛伦兹力F B相等时: q(v×B)=qE 此时电荷在样品中不再偏转,霍尔电势差就有这个电场建立起来。 N型样品和P型样品中建立起的电场相反,如图1所示,所以霍尔电势差有不同的符号,由此可以判断霍尔元件的导电类型。

设P型样品的载流子浓度为p,宽度为w,厚度为的d。通过样品电流I S=pqvwd,则空穴速率v=I S/pqwd,有 U H=Ew=I H B =R H I H B =K H I H B 其中R H=1/pq称为霍尔系数,K H=R H/d=1/pqd称为霍尔元件灵敏度。(2)霍尔元件的副效应及其消除方法 在实际测量过程中,会伴随一些热磁副效应,这些热磁效应有: 埃廷斯豪森效应:由于霍尔片两端的温度差形成的温差电动势U E 能斯特效应:热流通过霍尔片在其端会产生电动势U N 里吉—勒迪克效应:热流通过霍尔片时两侧会有温度差产生,从而又产生温差电动势U R 除此之外还有由于电极不在同一等势面上引起的不等位电势差U0 为了消除副效应,在操作时我们需要分别改变IH和B的方向,记录4组电势差的数据 当I H正向,B正向时:U1=U H+U0+U E+U N+U R 当I H负向,B正向时:U2=?U H?U0?U E+U N+U R 当I H负向,B负向时:U3=U H?U0+U E?U N?U R 当I H正向,B负向时:U4=?U H+U0?U E?U N?U R 取平均值有 1 (U1?U2+U3?U4)=U H+U E≈U H (3)测量电路 图 2 霍尔效应测量磁场电路图 霍尔效应的实验电路图如图所示。I M是励磁电流,由直流稳流电源E1提供电流,用数字万用表安培档测量I M。I S是霍尔电流,由直流稳压电源E2提供电流,用数字万用表毫安档测量I S,为了保证I S的稳定,电路中加入电阻箱R进行微调。U H是要测的霍尔电压,接入高精度的数字多用表进行测量。 根据原理(2)的说明,在实验中需要消除副效应。实际操作中,依次将I S、 I M的开关K1、K2置于(+,+)、(?,+)、(?,?)、(+,?)状态并记录U i即可,其 中+表示正向接入,?表示反向接入。

第十一章 恒定电流的磁场习题解

第十一章 恒定电流的磁场 11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。 (1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。 (2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。 解:(1)如图11-2所示,中心O 点到每一边的距离为13 OP h =,BC 边上的电流产生的磁场在O 处的磁感应 强度的大小为 012(cos cos )4πBC I B d μββ=- 00(cos30cos150)4π/3 4πI I h h μ??= -= 方向垂直于纸面向外。 另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即 0033 4π4πBC I I B B h h === 方向垂直于纸面向外。 (2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。由载流直导线的磁感强度一般公式 012(cos cos )4πI B d μββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为 01(cos0cos30)4cos60) I B R μ= ?-? π(0(12πI R μ= 031(cos150cos180)4πcos60 I B B R μ?== ?- ?0(12πI R μ= I B 图11–2 图11–1 (a ) A E (b )

亥姆霍兹线圈磁场测定-实验报告

开放性实验实验报告—— 亥姆霍兹线圈磁场测定 姓名学号班级 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N匝的圆环电流。当它们的间距正好等于其圆环半径R时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1. 熟悉霍尔效应法测量磁场的原理。 2. 学会亥姆霍兹磁场实验仪的使用方法。 3. 测量圆线圈和亥姆霍兹线圈上的磁场分布,并验证磁场的叠加原理 二、实验原理 同学们注意,根据自己的理解,适当增减,不要太多,有了重点就可以了。 1.霍尔器件测量磁场的原理 图3—8—1 霍尔效应原理

如图3—8—1所示,有-N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,电流密度为J,则电子将沿负J方向以速度运动,此电子将受到垂直方向磁场B的洛仑兹力 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场,该电场对电子的作用力,与反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压,此种效应为霍尔效应,由此而产生的电压叫霍尔电压,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,则电流密度J的大小为

(3—8—1) 式中b为矩形导体的宽,d为其厚度,则bd为半导体垂直于电流方向的截面积。 如果半导体所在范围内,磁场B也是均匀的,则霍耳电场也是均匀的,大小为 (3—8—2) 霍耳电场使电子受到一与洛仑兹力F m相反的电场力F e,将阻止电子继续迁移,随着电荷积累的增加,霍耳电场的电场力也增大,当达到一定程度时,F m与F e大小相等,电荷积累达到动态平衡,形成稳定的霍耳电压,这时根据F m=F e有 (3—8—3) 将(3—8—2)式代入(3—8—3)式得 (3—8—4) 式中、容易测量,但电子速度难测,为此将变成与I有关的参数。根据欧姆定理电流密度,为载流子的浓度,得,故有 (3—8—5) 将(3—8—5)式代入(3—8—4)式得

第11章稳恒磁场

第十一章 稳恒磁场习题 (一) 教材外习题 一、选择题: 1.如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向 (A )向外转90? (B )向里转90? (C )保持图示位置不动 (D )旋转180? (E )不能确定。 ( ) 2 i 的大小相等,其方向如图所示,问哪些区域中某些点的磁感应强度B 可能为零? (A )仅在象限Ⅰ (B )仅在象限Ⅱ (C )仅在象限Ⅰ、Ⅲ (D )仅在象限Ⅰ、Ⅳ (E )仅在象限Ⅱ、Ⅳ ( ) 3.哪一幅曲线图能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系?(x 坐标轴垂直于圆线圈平面,原点在圆线圈中心O ) ( ) (A ) (B ) (C ) (D ) (E ) 4q 的点电荷。此正方形以角速度ω绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为: (A )B 1=B 2 (B )B 1=2B 2 (C )B 1= 2 1B 2 (D )B 1=B 2/4 ( ) x B x x B x B x B q q C

5.电源由长直导线1沿平行bc 边方向经过a 点流入一电阻均匀分布的正三角形线框,再由b 点沿cb 方向流出,经长直导线2返回电源(如图),已知直导线上的电流为I ,三角框的 每一边长为l 。若载流导线1、2和三角框在三角框中心O 点产生的磁感应强度分别用1B 、2B 和3B 表示,则O 点的磁感应强度大小 (A )B =0,因为B 1=B 2, B 3=0 (B )B =0,因为021=+B B ,B 3=0 (C )B ≠0,因为虽然021=+B B ,但B 3≠0。 (D )B ≠0,因为虽然B 3=0,但021≠+B B 。 ( ) 6.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上,图(A )~(E )哪一条曲线表示B -x 的关系? ( ) (A ) (B ) (C ) (D ) (E ) 7.A 、B A 电子的速率是B 电子速率的两倍。设R A 、R B 分别为A 电子与B 电子的轨道半径;T A 、T B 分别为它们各自的 周期。则: (A )R A ∶R B =2, T A ∶T B =2。 (B )R A ∶R B = 2 1 , T A ∶T B =1。 (C )R A ∶R B =1, T A ∶T B = 2 1 。 (D )R A ∶R B =2, T A ∶T B =1。 8.把轻的正方形线圈用细线挂在截流直导线AB 的附近,两者在同一平面内,直导线AB 固定,线圈可以活动。当正方形线圈通以如图所示的电流时线圈将 (A )不动 c x B B x x B x B x B 电流

恒定电流和磁场知识点总结

恒定电流 一、电流:电荷的定向移动行成电流。 1、产生电流的条件:(1)自由电荷;(2)电场; 2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向; 注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A (3)常用单位:毫安mA、微安uA; 二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比; 1、定义式:I=U/R; 2、推论:R=U/I; 3、电阻的国际单位时欧姆,用Ω表示; 三、闭合电路:由电源、导线、用电器、电键组成; 1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示; 2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压; 3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻; 4、电源的电动势等于内、外电压之和; E=U内+U外 U外=RI E=(R+r)I 四、闭合电路的欧姆定律: 闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比; 1、数学表达式:I=E/(R+r) 2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义; 3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路; 五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导; 补充: 1.电阻定律:导体两端电阻与导体长度、横截面积及材料性质有关。 R=pl/S(电阻的决定式)P只与导体材料性质有关。R与温度有关。 二极管:单向导电性;正极与电源正极相连。 2.串联特点:①总电压等于各部分电压之和。 ②电流处处相等 ③总电阻等于各部分电阻和 ④总功率等于各部分功率和

磁悬浮实验报告67796

实验报告 课程名称: 工程电子场与电磁波 指导老师:________熊素铭________ 成绩:__________________ 实验名称:_ 磁悬浮 _实验类型: 动手操作及仿真 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、观察自稳定的磁悬浮物理现象; 2、了解磁悬浮的作用机理及其理论分析的基础知识; 3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等知识点的理解。 二、实验内容 1、观察自稳定的磁悬浮物理现象 2、实测对应于不同悬浮高度的盘状线圈的激磁电流 3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 实验原理 专业: 姓名: 学号: 日期: 地点:

1、自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,如图2-6所示。该系统中可调节的扁平盘状线圈的激磁电流由自耦变压器提供,从而在50 Hz正弦交变磁场作用下,铝质导板中将产生感应涡流,涡流所产生的去磁效应,即表征为盘状载流线圈自稳定的磁悬浮现象。 2、基于虚位移法的磁悬浮机理的分析 在自稳定磁悬浮现象的理想化分析的前提下,根据电磁场理论可知,铝质导板应被看作为完纯导体,但事实上当激磁频率为50 Hz时,铝质导板仅近似地满足这一要求。为此,在本实验装置的构造中,铝质导板设计的厚度b 还必须远大于电磁波正入射平表面导体的透入深度d(b )。换句话说,在理想化的理论分析中,就交变磁场的作用而言,此时,该铝质导板可被看作为“透不过的导体”。 对于给定悬浮高度的自稳定磁悬浮现象,显然,作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。本实验中,当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。现应用虚位移法来求取作用于该磁悬浮系统的电动推斥力。

第八章 恒定电流的磁场(二)

一. 选择题 [ C ]1. (基础训练2)三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是: (A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4. 提示:设导线Ⅰ、Ⅱ、Ⅲ的电流强度分别为321,,I I I ,产生的磁感应强度分别为 321,,B B B ,相邻导线相距为 a ,则 a a I a I l I B l I B l I F a a I a I l I B l I B l I F πμπμπμπμπμπμ0103022122322203020113112111222 ,47222= ??? ??-=-== ??? ???+=+= 式中3A.I A,2I 1A,I ,1 ,132121=====m l m l 故8/7/21=F F . [ D ]2. (基础训练6)两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) R r I I 22 210πμ. (B) R r I I 22 210μ. (C) r R I I 22 210πμ. (D) 0. 提示:大圆电流在圆心处的磁感应强度为,方向垂直纸面朝内 2R I B 1 01μ=;小 圆电流的磁矩为方向垂直纸面朝内, ,222 r I p m π=所以,小圆 电流受到的磁力矩为 012=?=B p M m [ B ]3.(自测提高4) 一个动量为p 的电子,沿图示方向入射 并能穿过一个宽度为D 、磁感强度为B (方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A) p eBD 1cos -=α. (B) p eBD 1sin -=α. F 1 F 2F 3 1 A 2 A 3 A ⅠⅡⅢ O r R I 1 I 2

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图 2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

第十一章稳恒电流的磁场一作业答案

第十一章 稳恒电流的磁场(一) 一、利用毕奥—萨法尔定律计算磁感应强度 毕奥—萨法尔定律:3 04r r l Id B d ?=πμ 1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a I B πμ20= 半无限长载流直导线a I B πμ40=,直导线延长线上0=B 2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθ μ220? =R I B 电荷转动形成的电流:π ω ωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 () 8 2,,22135cos 45cos 2 44, 2212 000201 02121ππμπμμ=== -?? ? == a a B B a I a I B a I B o o o o 得 由【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上 均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I +πμ. 解法: b b a a I r dr a I r r dI dB dr a I dI a b b +===== =???+ln 222dI B B B ,B d B ,2P ,)(dr r P 0000πμπμπμπμ的大小为:,的方向也垂直纸面向内据方向垂直纸面向内;根处产生的它在,电流为导线相当于一根无限长的直的电流元处选取一个宽度为点为在距离 【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感 强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:

最新整理恒定电流的磁场.doc

第一章电磁场的基本定律 §1.1、1.2电场与高斯定律 1 库仑定律:A 平方反比。B 介电系数 2 电场强度:电荷为的载流子受到的电场力为: 点电荷限制的意义:A 不扰动被测对象,操作意义。B 最小电荷量与最小载流子量子电动力学与宏观电动力学研究对象的不同。 3 电场的计算: 1)点电荷:条件是线性媒质 2)多个点电荷;叠加原理成立,意味着求和 3)场点、与源点、:带撇与不带撇 从源点到场点的矢径: 其中 4)连续分布电荷:A 概念:三种电荷密度、B计算方法:求和变为积分 3 电力线:及其重要。静电场:始于正电荷或无穷远,终于负电荷或无穷远。时变场:环,电力线环套着磁力线环,磁力线环套着电力线环。 4 高斯定律:1)通量:面积分与矢量点乘 方向的定义:闭合曲面与非闭合曲面 2)电通量密度::仅适用于线性、各向异性媒质 3)高斯定律:A 关于与两种:后者于媒质无关。 4)用高斯定律计算电场:对称性的要求,高斯面。 5.静电场的环路积分: §1.3、1.4 磁场、毕澳-沙伐尔定律、安培环路定律 1.磁感应强度:1)速度为的运动电荷在磁感应强度为的磁场中受到的磁场力 2)载流导体: 2.毕澳-沙伐尔定律: 其中为(源点)到场点的距离,为(源点)到场点的单位矢量。 电流与电流密度: 则有 3磁通连续性原理(关于磁场的面积分):1)磁力线;任何情况下是闭合环形2)磁通量(磁通): 3)磁通连续性原理:该原理可以由毕澳-沙伐尔定律证明。 4 安培环路定律(关于磁场的线积分) 1)

电流与闭合曲线方向的规定;右手螺旋法则。 2)磁场强度: 适用于线性、各向异性的媒质。 3)安培环路定律求解磁场:利用对称性。 5麦克斯韦对安培环路定律的推广-全电流定律: i.推广线索:A 电容器充放电回路(参考教科书或普通物理)B 对 称性的要求:磁场生电场(法拉第电磁感应定律),电场为何不 能生磁场。来而不往非礼也,非礼则不能长久。只能磁生电,最 后只剩电了。 ii.麦克斯韦磁场环路定律 iii.全电流: 传导电流密度(欧姆定律) 运流电流密度 位移电流密度 §1.5 电磁感应定律 1.法拉第电磁感应定律 一个闭合导电回路的感应电动势 方向参考教科书16页图1.5.1 磁通的变化可以仅仅由磁场变化引起,也可以仅仅由导电回路的变化引起,也可以是两者皆有。 2.法拉第电磁感应定律的意义: 感应电动势 我们知道对于由电荷产生的电场-静电场的环路积分为零: 故环路积分不为零说明一定有其它类型的源产生了电场,并且这种电场的性质不同于静电场。 也就是电场的源除了电荷外,还有变化的磁通。即磁能生电。 3.麦克斯韦对法拉第电磁感应定律的推广:不但适用于闭合导电回路,也适用于任意空间的任何回路(不需要导电) §1.6电磁场(麦克斯韦)方程的积分形式 1.第一积分方程: 第二积分方程: 第三方程: 第四方程: 几点注解:1)偏导数代替了全导数,2)第二方程为什么有个负号?若 正号会发生什么。 补充内容:矢量场的数学性质 1.如果一个矢量场的散度和旋度已知,则该矢量场被唯一的确定。 2.任何矢量场最多只有两种源:散度源和旋度源 3.散度与闭合面积分通量有关:-高斯定理 旋度与闭合回路线积分有关:-斯托克斯定理

相关文档
相关文档 最新文档