文档库 最新最全的文档下载
当前位置:文档库 › 多路输出反激式电源

多路输出反激式电源

多路输出反激式电源
多路输出反激式电源

多路输出反激式开关电源设计

随着现代科技的高速发展,功率器件的不断更新,PWM技术的发展日趋完善,开关电源正朝着短、小、轻、薄的方向发展。

本文介绍了一种基于TOPSwith系列芯片设计的小功率多路输出AC/DC开关电源的原理及设计方法。

设计要求

本文设计的开关电源将作为智能仪表的电源,最大功率为10 W。为了减少PCB的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB上。

考虑10W的功率以及小体积的因素,电路选用单端反激电路。单端反激电路的特点是:电路简单、体积小巧且成本低。单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。本电源设计成表面贴装的模块电源,其具体参数要求如下:

输出最大功率:10W

输入交流电压:85~265V

输出直流电压/电流:+5V,500mA;+12V,150mA;+24V,100mA

纹波电压:≤120mV

单端反激式开关电源的控制原理

所谓单端是指TOPSwitch-II系列器件只有一个脉冲调制信号功率输出端一漏极D。反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能,由于开关频率高达100kHz,使得高频变压器能够快速存储、释放能量,经高频整流滤波后即可获得直流连续输出。这也是反激式电路的基本工作原理。而反馈回路通过控制TOPSwitch器件控制端的电流来调节占空比,以达到稳压的目的。

TOPSwitch-Ⅱ系列芯片选型及介绍

TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载电感与主电源相连,在启动状态下通过内部开关式高压电源提供内部偏置电流,并设有电流检测。控制极(C)用于占空比控制的误差放大器和反馈电流的输入引脚,与内部并联稳压器连接,提供正常工作时的内部偏置电流,同时也是提供旁路、自动重起和补偿功能的电容连接点。源极(S)与高压功率回路的MOSFET的源极相连,兼做初级电路的公共点与参考点。内部输出极MOSFET的占空比随控制引脚电流的增加而线性下降,控制电压的典型值为5.7 V,极限电压为9 V,控制端最大允许电流为100 mA。

在设计时还对阈值电压采取了温度补偿措施,以消除因漏源导通电阻随温度变化而引起的漏极电流变化。当芯片结温大于135℃时,过热保护电路就输出高电平,关断输出极。此时控制电压Vc进入滞后调节模式,Vc端波形也变成幅度为4.7V~5.7V的锯齿波.若要重新启动电路,需断电后再接通电路开关,或者将Vc降至3.3V以下,再利用上电复位电路将内部触发器置零,使MOSFET恢复正常工作。

采用TOPSwitch-Ⅱ系列设计单片开关电源时所需外接元器件少,而且器件对电路板布局以及输入总线瞬变的敏感性大大减少,故设计十分方便,性能稳定,性价比更高。

对于芯片的选择主要考虑输入电压和功率。由设计要求可知,输入电压为宽范围输入,输出功率不大于10W,故选择TOP222G。

电路设计

本开关电源的原理图如图1所示。

电源主电路为反激式,C1、L1、C2,接在交流电源进线端,用于滤除电网干扰,C5接在高压和地之间,用于滤除高频变压器初、次级后和电容产生的共模干扰,在国际标准中被称为"Y电容"。C1跟C5都称作安全电容,但C1专门滤除电网线之间的串模干扰,被称为"X电容"。

为承受可能从电网线窜入的电击,可在交流端并联一个标称电压u1mA为275V的压敏电阻VSR。

鉴于在功率MOSFET关断的瞬间,高频变压器的漏感产生尖峰电压UL,另外,在原边上会产生感应反向电动势UOR,二者叠加在直流输入电压上。典型的情况下,交流输入电压经

整流桥整流后,其最高电压UImax=380V,UL≈165V,UOR=135V,贝UOR+UL+UOR≈680V。这就要求功率MOSFET至少能承受700V的高压,同时还必须在漏极增加钳位电路,用以吸收尖峰电压,保护TOP222G中的功率MOSFET。本电源的钳位电路由D2、D3组成。其中D2为瞬态电压抑制器(TVS)P6KE200,D3为超快恢复二极管UF4005。当MOSFET导通时,原边电压上端为正,下端为负,使得D3截止,钳位电路不起作用。在MOSFET截止瞬间,原边电压变为下端为正,上端为负,此时D1导通,电压被限制在200V左右。

输出环节设计

以+5V输出环节为例,次级线圈上的高频电压经过UF5401型100V/3A的超快恢复二极管D7,由于+5V输出功率相对较大,于是增加了后级LC滤波器,以减少输出纹波电压。滤波电感L2选用被称作"磁珠"的3.3μH穿心电感,可滤除D7在反向恢复过程中产生的开关噪声。

对于其他两路输出,只需在输出端分别加上滤波电容。其中R3、R4分别为输出的假负载,它们能降低各自输出端的空载和轻载电压。

反馈环节设计

反馈同路主要由PC817和TL431及若干电容、电阻构成。其中U2为TL431,它为可调试精密并联稳压器,利用电阻R5、R6分压获得基准电压值。通过调节R5、R6的值可以调节输出电压的稳压值。C8为TL431的频率补偿电容,可以提高TL43l的瞬态频率响应。C7为软启动电容,取C7=22μF时可增加4ms的软启动时间,在加上TOP222G本身已有的10ms 软启动时间,则总共为14ms。

U3为PC817型线性光耦合器,其电流传输比(CTR)范围为80%~160%,,能够较好地满足反馈回路的设计要求,而目前国内常用的4N25、4N26属于非线性光耦合器,不宜采用。反馈绕组上产生的电压经D4、C9整流滤波,获得非隔离式+12V输出,为PC817接收管的集电极供电。由于反馈绕组输出电流较小,次级采用D4硅高速开关管1N4148。光耦PC817能将+5V输出与电网隔离,其发射极电流送至TOP222G的控制端,用来调节占空比。

C3为控制端旁路电容,它能对控制回路进行补偿并设定自动重启频率。当C3=47μF时,自动重启频率为1.2Hz,即每隔0.83s检测一次调节失控故障是否已经被排除,若确认已被排除,就自动重启开关电源恢复正常工作。

R2为PC817中LED的外部限流电阻。实际上除了限流保护作用外,他对控制回路的增益也具有重要影响。当R2改变时,会依次影响到下列参数值:IF→IC→D→UO,也就相当于改变了控制回路的电流放大倍数。

下面简要分析一下反馈回路实现稳压的工作原理。当输出电压UO发生波动且变化量为UO 时,通过取样电阻R5、R6分压后,就使TL431的输出电压UK也产生相应的变化,进而使PC817中LED的工作电流IF改变,最后通过控制端电流IC的变化量来调节占空比D,使UO产生相反的变化,从而抵消UO的波动。上述稳压过程可归纳为:

UO ↑→UK ↓→IF ↑→IC ↑→D ↓→UO↓→最终使UO不变。

其余各路输出未加反馈,输出电压均由高频变压器的匝数来确定。

变压器设计

变压器的设计是整个电源设计的关键,它的好坏直接影响电源性能。

磁芯及骨架的确定

由于本文选用漆包线绕制,而且EE型磁芯的价格低廉,磁损耗低且适应性强,故选择EE22,其磁芯长度A=22mm。从厂家提供的磁芯产品手册中可查得磁芯有效横截面积SJ=0.41cm2,有效磁路长度1=3.96cm,磁芯等效电感AL=2.4μH/匝2,骨架宽度b=8.43mm。

确定最大占空比Dmax

根据公式:

其中,UOR=135V,直流输入最小电压值UImin=90V,MOSFET的漏-源导通电压UDS(ON)=10V,代入上式得:Dmax=64.3%,接近典型值67%。Dmax随着输入电压的升高而减小。

计算初级线圈中的电流

输入电流的平均值IA VG为

初级峰值电流IP为:

其中,KRP为初级纹波电流IR与初级峰值电流IP的比值,当电压为宽范围输入时,可取0.9。将Dmax=64.3%代入得,IP=0.518A。

确定初级绕组电感LP

其中,损耗分配系数Z=0.5,IP=0.518A,KRP=0.4,PO=10W,代入得:LP≈1265μH。

确定绕组绕制方法

并计算各绕组的匝数

初级绕组的匝数NP可以通过下式计算:

其中,磁芯截面积SJ=0.41cm2,磁芯最大磁通密度BM=60,IP=0.518A,LP≈1265μH,代入可得NP=26.6,实取30匝。

次级绕组采用堆叠式绕法,这也是变压器生产厂家经常采用的方法,其特点是由5V绕组给12V绕组提供部分匝数,而24V绕组中则包含了5V、12V的绕组和新增加的匝数。堆叠式绕法技术先进,不仅可以节省导线,减小线圈体积,还可以增加绕组之间的互感量,加强耦合程度。以本电源为例,当5V输出满载而12V和24V输出轻载时,由于5V绕组兼作12V、24V绕组的一部分,因此能减小这些绕组的漏感,可以避免因漏感使12V、24V输出电路中的滤波电容被尖峰电压充电到峰值,即产生所谓的峰值充电效应,从而引起输出电压不稳定。这里将5V绕组作为次级的始端。

对于多输出高频变压器,各输出绕组的匝数可以取相同的每伏匝数。每伏匝数nO可以由下式确定:

其单位是匝/VO将NS取5匝,UO1=5V,UF1=0.4V(肖特基整流管导通压降)代入上式得到nO=0.925匝/V。

对于24V输出,已知UO2=24V,UF2=0.4V,则该路输出绕组匝数为NS2=0.925 匝/V×(24V 十0.4V)=22.57匝,实取22匝。

对于12V输出,已知UO3=12V,UF2=0.4V,则该路输出绕组匝数为NS2=0.925匝/V ×(12V+0.4V)=11.47匝,实取11匝。

对于反馈绕组,已知UF=12V,UF3=0.7V(硅快速恢复整流二极管导通压降),则该路输出绕

组匝数为NS2=0.925匝/V×(12V+0.4V)=11.47匝,实取11匝。

确定初/次级导线的内径

首先根据初级层数d、骨架宽度b和安全边距M,利用下式计算有效骨架宽度bE(单位是mm):

bE=d(b-2M) (7)

将d=2,b=8.43mm,M=0代入上式可得bE=16.86mm。

利用下式计算初级导线的外径(带绝缘层)DPM:

DPM=bE/NP (8)

将bE=16.86mm,NP=78匝代人得DPM=0.31mm,扣除漆皮厚度,裸导线内径DPM=0.26mm。与直径0.26mm接近的公制线规为0.28mm,比0.26mm略粗完全可以满足要求,而0.25mm 的公制线规稍细,不宜选用。而次级绕组选用与初级相同的导线,根据电流的大小,采用多股并绕的方法绕制。

试验数据

该开关电源的输人特性数据见表1,在u=85~245V的宽范围内变化时,主路输出UO1=5V(负载为65Ω)的电压调整率SV=±0.2%,输出纹波电压最大值约为67mV;辅助输出UO2=24V(负载为250Ω),输出纹波电压最大值约为98mV;辅助输出UO3=12V(负载为100Q),输出纹波电压最大值约为84mV。

多路输出开关电源设计

多路输出开关电源设计 安森美半导体公司的NCP1252是一款电流模式PWM控制器,它使用内部固定的定时器,可以不依赖于辅助电压来检测输出过载。文章介绍了基于NCP1252芯片的多路输出开关电源设计,分析了开关电源的工作原理,给出了设计步骤。该开关电源可提供软起动、短路保护、过流保护等功能,并将该电源成功用于某型雷达收发机,验证了分析、设计的有效性。 标签:NCP1252芯片;多路输出;开关电源 Abstract:The ON Semiconductor’s NCP1252 is a current-mode PWM controller that uses internally fixed timers to detect output overload without relying on auxiliary voltages. This paper introduces the design of multi-output switching power supply based on NCP1252 chip,analyzes the working principle of switch power supply,and gives the design steps. The switching power supply can provide soft start,short circuit protection,over-current protection and so on. The power supply has been successfully used in a certain type of radar transceiver,which verifies the effectiveness of the analysis and design. Keywords:NCP1252 chip;multiplex output;switching power supply 引言 电源如同人的心脏,为各种电子设备提供电能,性能优劣直接影响到整个电子系统的稳定性。目前常用的直流稳压电源根据调整管的工作状态分为线性电源和开关电源两大类,线性电源应用较早,电路简单,元器件少,但随着输出功率的增加,工频变压器的体积不断增大,而且,其效率低、散热难;开关电源的功率器件工作在高频开关状态,自身功耗小,转化效率高,此外开关电源还具有体积小、重量轻、稳压范围宽等优点,其不足之处就是电路复杂,对变压器要求很高。由于开关电源优越的性能,势必将得到越来越广泛的应用。 本文围绕NCP1252芯片设计了一种多路输出开关电源,并应用在某型号导航雷达的收发机内,效率高,稳定性好。 1 NCP1252内部结构与功能特点 NCP1252是一款应用于正激和反激式的电流模式PWM控制器,适合于计算机ATX电源、交流适配器及其它任何要求低待机能耗的应用。它集成固定的定时器,可在不依赖辅助电源时检测输出过载;具有跳周期模式,能够空载工作。此外还可调节开关频率,增强设计的灵活性;带有闩锁过流保护功能,能够承受暂时的过载。其它特性包括可调节软启动时长、内部斜坡补偿、自恢复输入欠压检测等。

开关电源常见四大故障及检修方法

开关电源常见四大故障及检修方法 开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于深圳开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 1. 无输出,保险管正常这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 2. 保险烧或炸主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险

烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 3. 有输出电压,但输出电压过高这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4. 输出电压过低除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a. 开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b. 输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c. 开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。 12v开关电源维修分析 一.开关电源不启振,出现这种情况,我们首先要查看开关频率是否正确、保护电路是否封锁、电压反馈电路、电流反馈电路又没问题以及开关管是否击穿等。

反激电源设计分析和经验总结

由反激电源引起的一点儿分析 开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,隔离电源按照结构形式不同,可分为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正激。半桥、桥式电路都属于正激电路。 正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。大功率输出,一般采用桥式电路,低压也可采用推挽电路。 反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。本人认为一般情况下是这样的,但也不能一概而论,PI 公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。输出功率大小与输出电压高低有关。 反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。 变压器初次极间的偶合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采用三明治绕法,但这样会使变压器分布电容增大。选用铁芯尽量用窗口比较长的磁芯,可减小漏感,如用EE、EF、EER、PQ型磁芯效果要比EI型的好。 关于反激电源的占空比,原则上反激电源的最大占空比应该小于0.5,否则环路不容易补偿,有可能不稳定,但有一些例外,如美国PI公司推出的TOP系列芯片是可以工作在占空比大于0.5的条件下。 占空比由变压器原副边匝数比确定,本人对做反激的看法是,先确定反射电压(输出电压通过变压器耦合反映到原边的电压值),在一定电压范围内反射电压提高则工作占空比增大,开关管损耗降低。反射电压降低则工作占空比减小,开关管损耗增大。当然这也是有前提条件,当占空比增大,则意味着输出二极管导通时间缩短,为保持输出稳定,更多的时候将由输出电容放电电流来保证,输出电容将承受更大的高频纹波电流冲刷,而使其发热加剧,这在许多条件下是不允许的。 占空比增大,改变变压器匝数比,会使变压器漏感加大,使其整体性能变,当漏感能量大到一定程度,可充分抵消掉开关管大占空带来的低损耗,时就没有再增大占空比的意义了,

多路输出直流稳压电源模块设计方案(23)

多路输出直流稳压电源模块设计方案(23) (3)DC/DC 电路设计。 为了得到稳定可靠的±12 V 和+5 V 直流电压,在 DC/DC 电路中,分别选用高可靠的DC/DC模块实现低压直流输出。在低压侧,经过整流后得到23 V 直流电压,通过采用不同的集成稳压器实现+9 V 和+12 V 输出,在每个模块的输入输出端分别加100 μF/25 V 和47 μF/25 V 的电解电容进行滤波。在高压侧,产生三个±12 V 和+5 V 直流电压,并且要求能够通过外部接口输入高低电平控制这三个电压信号的输出。故选用VICOR的VI-J61-IZ、VI-J61-IY 和VI-J60-IX 电源模块实现±12 V 和+5 V 电压输出。这三个模块的电源输入端接300 V 直流电源,即可获得高精度的±12 V和+5 V 电压,要想对DC/DC 的进行输出控制,只需要控制三个电源模块中的Gate In 端即可,三个DC/DC 电路原理图如图2 所示。图2 中当控制端信号为高电平时,VT1、VT2 和VT3 工作,此时DC/DC 的2 端接地,DC/DC 均不工作,±12V 和+5V 电压不输出;当控制端信号为低电平时,VT1、VT2 和VT3 均不工作,此时DC/DC 均正常工作,±12 V和+5 V 电压输出。 图2 三个DC/DC 电路原理图。

(4)直流电压控制电路。 直流电压控制电路的原理图如图3 所示。该电路主要由过欠压保护电路和外部电压控制电路两部分组成。过欠压保护电路主要是指当输入电压过高(或过低)时产生超过(低于)300 V 一定比例的电压后,经过调理电路使电压比较器MAX973 电压发生跳变,从而改变控制信号的输出,致使DC/DC 的Gate In 端电压跳变,进而使DC/DC 停止工作。外部电压控制电路是指当外部控制信号输入端电平发生改 变时,控制信号的输出端的电压发生跳变,从而改变DC/DC 的Gate In端的电压,使DC/DC 停止(或开始)工作。 当外部控制信号输入为低电平时,与非门电路中触发器输出为高电平,此时计数器清零,经过计数触发电路和反相器反相后控制信号输出为高电平,从而进一步验证三个 DC-DC不工作,相应的DC/DC工作指示灯不亮。当外部控制信号输入为高电平时,与非门电路中触发器输出为低电平,此时计数器开始计数,经过计数触发电路和反相器反相后控制信号输出为低电平,从而进一步验证三个DC-DC正常工作,±12 V和+5 V电压输出,相应的DC/DC工作指示灯亮。 图3 直流电压控制电路原理图。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

多路输出开关电源的设计及应用原则

多路输出开关电源的设计及应用原则 引言 对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5 V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。 2多路输出电源 对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。

从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。对Vaux1、Vaux2而言,其精度主要依赖以下几个方面: 1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np3 2)辅助电路的负载情况。 3)主电路的负载情况。 注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。 在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。 2.1电源变换器多路输出交叉负载调整率测量与计算步骤 1)测试仪表及设备连接如图2所示。

解析开关电源电压输出低的原因和检修方法

解析开关电源电压输出 低的原因和检修方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

解析开关电源电压输出低的原因和 检修方法 1、开关电源电压输出低的原因 (1)220V交流电压输入和整流滤波电路对开关管提供的工作电压不够,超出脉宽调整电路控制范围。 (2)负载电路存在过流引起开关电源负载加重而导致输出电压下降。 (3)开/关机切换错误,行扫描电路刚开始工作瞬间,开关电源即处于待机状态,此类故障适用于无预备电源的机器,CPu电源取自同一个电源,非副电源提供。 (4)开/关机接口电路末端因故障处于开机与待机之间的状态,从而导致开关电源输出电压低于正常值高于待机值。 (5)保护电路末端因故障进入导通状态,使电源进入弱振状态,引起开关电源输出电压下降。 (6)整流输出电路中二极管和滤波电容、限流电阻损坏引起输出电压低。 (7)脉宽调制电路故障,不能对开关电源输出电压的变化作出正确的响应,对开关管基极电压调整方向不对,从而造成开关电源输出电压低。 (8)正反馈电路中的正反馈电阻值变化,续流二极管性能变质或恒流源故障,使正反馈量不足,导致振荡周期变长,振荡频率下降,从而引起开关电源输出电压低。 (9)它激式开关电源因未得到行逆程脉冲而工作于低频状态,造成输出电压低。 2、判断故障的方法与步骤 从上述分析的原因看出,引起电压低的原因涉及到了开关电源自身的各个部分和与开关电源相关的所有电路,在检修时应先缩小故障范围。 (1)先测开关管c极电压,确认开关管供电正常。 (2)根据开关电源各个输出端电压判断故障。 开关电源有的输出端电压正常,有的低于正常值。故障在输出电压低的这个整流输出电路,应对电路中的限流电阻、整流二极管、滤波电容进行检查代换,若限流电阻发烫,说明负载过流,查负载。 开关电源各路输出均低。这种情况说明负载和整流输出电路均正常,故障在开关电源的正反馈电路、脉宽调整、开/待机电路、保护电路。 输出电压有的下降比例大,有的输出电压下降比例小。测量结果说明故障在输出电压下降比例大的电路。此时可断开此路负载,如果断开的是行电路,应接假负载。在断开负载后,再测开关电源各输出端电压,若恢复正常,可判断所断电路的负载有过流现象。若仍不正常,说明故障在该整流滤波电路。 3、断开主负载、接上灯泡,判断是否负载故障

多路输出单端反激式开关电源设计

设计要求 本文设计的开关电源将作为智能仪表的电源,最大功率为10 W。为了减少PCB的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB 上。 考虑10W的功率以及小体积的因素,电路选用单端反激电路。单端反激电路的特点是:电路简单、体积小巧且成本低。单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。本电源设计成表面贴装的模块电源,其具体参数要求如下: 输出最大功率:10W 输入交流电压:85~265V 输出直流电压/电流:+5V,500mA;+12V,150mA;+24V,100mA 纹波电压:≤120mV 单端反激式开关电源的控制原理 所谓单端是指TOPSwitch-II系列器件只有一个脉冲调制信号功率输出端一漏极D。反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET 关断时,才向次级输送电能,由于开关频率高达100kHz,使得高频变压器能够快速存储、释放能量,经高频整流滤波后即可获得直流连续输出。这也是反激式电路的基本工作原理。而反馈回路通过控制TOPSwitch器件控制端的电流来调节占空比,以达到稳压的目的。

TOPSwitch-Ⅱ系列芯片选型及介绍 TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载电感与主电源相连,在启动状态下通过内部开关式高压电源提供内部偏置电流,并设有电流检测。控制极(C)用于占空比控制的误差放大器和反馈电流的输入引脚,与内部并联稳压器连接,提供正常工作时的内部偏置电流,同时也是提供旁路、自动重起和补偿功能的电容连接点。源极(S)与高压功率回路的MOSFET的源极相连,兼做初级电路的公共点与参考点。内部输出极MOSFET的占空比随控制引脚电流的增加而线性下降,控制电压的典型值为5.7 V,极限电压为9 V,控制端最大允许电流为100 mA。 在设计时还对阈值电压采取了温度补偿措施,以消除因漏源导通电阻随温度变化而引起的漏极电流变化。当芯片结温大于135℃时,过热保护电路就输出高电平,关断输出极。此时控制电压Vc进入滞后调节模式,Vc端波形也变成幅度为4.7V~5.7V的锯齿波.若要重新启动电路,需断电后再接通电路开关,或者将Vc降至3.3V以下,再利用上电复位电路将内部触发器置零,使MOSFET恢复正常工作。 采用TOPSwitch-Ⅱ系列设计单片开关电源时所需外接元器件少,而且器件对电路板布局以及输入总线瞬变的敏感性大大减少,故设计十分方便,性能稳定,性价比更高。 对于芯片的选择主要考虑输入电压和功率。由设计要求可知,输入电压为宽范围输入,输出功率不大于10W,故选择TOP222G。 电路设计 本开关电源的原理图如图1所示。

课程设计多路输出直流稳压电源

湖南人文科技学院课程设计报告 课程名称:电子技术课程设计 设计题目:多路输出直流稳压电源 系别:通信与控制工程系 专业:电子信息工程 班级: 学生姓名: 学号: 起止日期:年月日—年月日指导教师: 教研室主任:

摘要 在电子电路中,电子系统都要求用稳定的直流电源,日用电器通常都需要电压稳定的直流稳压电源供电,而人们在日常生活中都使用220V交流电源,因此,需要将交流电变换成直流电。将交流电压变换为直流电压并使之稳定的设备就是直流稳压电源,它主要由电源变压器,整流电路,滤波电路及稳压电路四部分组成。 本文介绍了一种采用7805,7905,7812,7912系列稳压器实现功能,融入了整流桥式的整流作用以及电容的滤波作用,共同实现多路直流稳压电源的输出。主要阐述如何使用以上集成芯片完成对生活中经常要用到小功率稳压电源的设计,其中对包括参数的选取、实际情况对电路的影响的解释,以及对今后设计同类电路的总结。在设计过程中主要运用Multisim进行软件仿真,展现了Multisim在硬件设计过程中的强大功能。其便捷性对我们今后的硬件设计提供了重大帮助! 关键词:单相桥式、稳压电源、Multisim、可变电压,滤波

目录 1 设计目的及要求 (1) 1.1设计目的 (1) 1.2设计任务 (1) 2 设计原理及其方案比较 (2) 2.1 方案一 (2) 2.2 方案二 (2) 2.3 方案比较与实施方案 (3) 3 单元电路的设计 (4) 3.1 电源变压器 (4) 3.2 整流电路 (5) 3.3 滤波电路的设计 (6) 3.4 稳压电路的设计 (7) 4 电路仿真与电路板制作 (8) 4.1 模拟仿真 (8) 4.2 电路板制作 (9) 4.2.1 电路板制作 (9) 4.2.2 电路实物图 (10) 4.2.3 硬件调试 (11) 5 总结思考与致谢 (12) 参考文献 (13) 附录一电路原理图 (14) 附录二 PCB图 (15) 附录三元器件清单 (16)

开关电源多路输出技术

开关电源多路输出技术控制方法综述 技术分类:电源技术 | 2009-07-20 华南理工大学文露谢运祥 0 引言 多路输出技术中一个重要性能指标就是负载交叉调整率的问题,我们通常采用变压器副边多个绕组的方法来实现多路输出。但是这种方法一般只采样一路主输出进行反馈调节控制,因此交叉调整性能较差。改善多路输出开关电源交叉调整率的方法可分为无源和有源两类。本文首先介绍了几种传统的多路输出技术,并对其进行了简单的分析和总结。重点介绍了两种新的多路输出技术:恒流源实现多路输出和PWM—PD多路输出技术。结合典型拓扑探讨了PWM—PD技术的应用前景。 l 传统的多路输出方法 1)无源调节 无源调节通过在次级增加一些简单的无源器件可以使负载交叉调整率得到一定的改善。无源调节包括耦合电感调节控制和加权电压反馈调节控制两种,如图1所示。前者通过将输出电感L1、L2绕在同一磁芯上,相当于增大了滤波电感,使辅输出稳压,从而使负载交错性能得到一定改善。加权电压反馈调节同时检测反馈几路输出电压加权和到控制电路中,通过合理设计各路输出反馈电压的加权因子,调整各路输出电压。这两种方法都存在调节误差。但它们实现起来比较简单,不增加电路的复杂性,适用于对输出电压精度要求较低的场合。

2)有源调节 有源调节也可称为次级后置装置调节,即通过在变压器副边加入一级有源调节装置对次级整流电路进行调整来实现对辅输出电压的调整。以正激电路为例,图2给出了五种不同类型的次级后置装置调节方式,他们具有各自的优缺点。表l给出了不同类型调节方式在电路结构、效率、性价比、调整率以及应用场合等方面的特性比较。

2 新颖的多路输出技术 1)恒流源实现多路输出技术 传统的多路输出技术存在交叉调整率较差或者电路过于复杂等问题,恒流源多路输出技术通过对几个控制开关的简单控制可很好的实现对不同负载的供电。 (1)工作原理 图3给出了恒流源实现多路输出的基本工作原理。如图所示,多个平行负载分别通过一个输出控制开关接在恒流源的后级,采用分时复用(TM)的方法,每个输出开关在一个开关周期内只有一段间隔时间与电流源连接,通过控制开关的开通和关断时间可以控制每路输出电容上的电压值,实现多路输出电压。该恒流源可以用平均电流控制型Buck,Buck—Boost,SEPIC,反激等单电感PWM DC—DC 变换器来实现,如果输入输出需要电气隔离则可用正激变换器拓扑。根据不同的电路拓扑,电路可工作在断续(DCM)模式,也可工作在连续 (CCM)模式,还能实现输出的双极性。

开关电源测试详细解说

开关电源测试详细解说当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下:一、功能(Functions)测试: ?输出电压调整(Hold-on Voltage Adjust) ?电源调整率(Line Regulation) ?负载调整率(Load Regulation) ?综合调整率(Conmine Regulation) ?输出涟波及杂讯(Output Ripple & Noise, RARD) ?输入功率及效率(Input Power, Efficiency) ?动态负载或暂态负载(Dynamic or Transient Response) ?电源良好/失效(Power Good/Fail)时间 ?起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 A. 输出电压调整: 当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后续的规格能够符合。通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac),并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。 B. 电源调整率: 电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。此项测试系用来验证电源供应器在最恶劣之电源电压环境下,如夏天之中午(因气温高,用电需求量最大)其电源电压最低;又如冬天之晚上(因气温低,用电需求量最小)其电源电压最高。在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。 为精确测量电源调整率,需要下列之设备: ?能提供可变电压能力的电源,至少能提供待测电源供应器的最低到最高之输入电压范围,(KIKUSUIPCR 系列电源能提供0--300VAC 5-1000Hz 的稳定交流电源,0---400V DC的直流电源)。 ?一个均方根值交流电压表来测量输入电源电压,众多的数字功率计能精确计量V A WPF。 ?一个精密直流电压表,具备至少高于待测物调整率十倍以上,一般应用5位以上高精度数字表。 ?连接至待测物输出的可变电子负载。 *测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(NominalLoad)下,由输入电压变化所造成其输出电压偏差率

多路输出直流稳压电源课程设计

模电课程设计 题目: 多路输出直流稳压电源的设计仿真与实现学院:信息工程学院专业:通信工程学号:0121103490216 姓名:柯一凡 任课教师:王晟 2013年1月17日

任务书 要求完成的主要任务: (1)设计任务 根据技术要求和已知条件,完成对多路输出直流稳压电源的设计、装配与调试。 (2)设计要求 ①要求设计制作一个多路输出直流稳压电源,可将220V/50Hz交流电转换为多路直流稳 压电源 输出:±12V/1A,±5V/1A,+5V/3A一组可调正电压。 ②选择电路方案,完成对确定方案电路的设计。计算电路元件参数与元件选择、并画出 总体电路原理图,阐述基本原理。(用画电路原理图并实现仿真) ③安装调试并按规范要求格式完成课程设计报告书。 时间安排: 1、2013 年1月17日至2013年1月21日,完成仿真设计、制作与调试;撰写课程设 计报告。 2、2013 年1月22日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1.摘要 (4) abstract (4) 2.课程设计内容及要求 (5) 2.1设计的初始条件及主要任务 (5) 2.1.1设计的初始条件 (5) 2.1.2设计任务要求 (5) 2.2设计思路 (5) 3.设计原理 (6) 3.1电源变压器 (6) 3.2整流电路 (6) 3.3滤波电路 (7) 3.4稳压电路 (11) 4.电路元件选择 (13) 4.1集成稳压器的选择: (13) 4.1.1输出电压固定的集成稳压器的选择 (13) 4.1.2输出电压可调的集成稳压器的选择 (13) 4.2电源变压器的选择 (14) 4.3集成整流桥及滤波电容的选择 (14) 5.整体电路图 (15) 6.选用仪器清单及其型号 (15) 7.电路模拟与仿真 (18) 7.1仿真过程及记录 .............................................................................................................. 错误!未定义书签。 7.2.1参数测试分析 (20) 7.2.2波形分析 (20)

单端正激式开关电源_主电路的设计说明

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment. The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation 目录 前言 (1)

一种多路输出开关电源控制器

一种多路输出开关电源控制器 [日期:2006-11-17] 来源:电源技术应用作者:瑞士商升特股份有限公司上海代表处周琛[字体:大中小] O 引言 SC2463是一个高性能多输出降压转换控制器。它可以被配置用在不同的电源管理应用中,比如有多路输出电压需求的ADSL电源,需要正负电压的混合信号电源,电脑调制解调器电源,基站电源,通用的多路输出电压的电源系统。 l 描述 SC2463提供了4.5V至30V的宽输入电压范围,两个可设置达700 kHz开关频率的开关转换器,能提供高达15A输出电流及低至0.5V输出电压。它还提供了两个正输出电压线性调节器。芯片TSS0P一28小封装极大地减小了线路板面积。 SC2463两个异相降压开关转换器可以减小输入电流纹波,允许使用更少的输入电容。高达700kHz的开关频率可以减少输出电压纹波并且降低噪音,同时还可以减小输出电感和电容的尺寸。其它的特性还包括软启动,电源正常指示和频率同步。如图l所示,电源VIN,PVCC和AVCC都给SC2463供电。其中AVCC为芯片内部振荡器、开关、低差压稳压器和电源正常电路提供偏置电压。PVCC用来驱动低端场效应管。当VIN高于14V时,需串联一个1100kΩ的电阻或一个外部PNP晶体管作为线性调节器,给AVC C和PVCC提供偏置电压。SC2463利用一个内部电流源和一个连在ILIM和AGND之间的外部电阻来调节通过场效应管的电流限流值。

如图2所示,SC2463启动时由一个5μA电流源给软启动管脚SS充电。当管脚SS电压达到O.5 V时,第一个开关转换器开始启动,误差放大器的参考电压随软启动信号开始上升。当管脚ss电压达到3 V时.将立刻被下拉到大约0 7V,此时第二个开关转换器开始按照第一开关转换器的形式进行软启动。当管脚SS电压第二次到达3V时,便会被第二次下拉至大约O.7V,此时两个正向LD0被启动。正向LDO的参考电压随管脚SS电压开始上升。管脚SS将会上拉至电源电压AVCC。此时间由管脚SS上的软启动电容值(C5)来控制。如果管脚SS被外部信号下拉至0.5 V以下,SC2463则不能工作。电源正常信号输出(POK)用来监测开关转换器中误差放大器的反馈电压(FB),如果这电压高于0.55V或低于O.45V,管脚POK便会被拉低,并且保持低态直到启动 结束。低端栅极驱动器由PVCC供电并提供1A的峰值电流。高端栅极驱动也能提供1A峰值电流。

多路输出开关电源的设计和应用

多路输出开关电源的设计及应用原则 1 引言 对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。 2 多路输出电源 对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。 从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。对Vaux1,Vaux2而言,其精度主要依赖以下几个方面: 1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np3 2)辅助电路的负载情况。

多路输出直流稳压电源

辽宁工业大学 模拟电子技术基础课程设计(论文)题目:多路输出直流稳压电源 院(系): 专业班级 学号: 42 学生姓名: 指导教师:(签字) 起止时间: 2014.6.30-2014.7.11

课程设计(论文)任务及评语 院(系):电子与信息工程学院教研室:电子信息工程 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 在当今社会,几乎所有的电子设备都需要有稳衡的电压供给,才能使其处于良好的工作状态。家用电器中的电视机、音响、电脑尤其是这样。电网电压时高时低,电子设备本身耗供电造成不稳定因素。其中直流稳压电源有很多优异的特性,直流稳压电源的供电电源大都是交流电源,当交流供电的电压或负载变化时,稳压器的直流输出电压都会保持稳定。直流稳压电源随着电子设备向高精度、高稳定性和高可靠性方向发展,对电子设备的供电电源提出了高的要求,为获得可靠的直流稳压电源,一个经济可行的办法是把我国用的220V或380V的市电通过一定办法转换为我们所需的直流电,所以直流稳压电源对于我们的模电课程学习来说十分重要,一个稳定可靠的直流稳压电源是今后我们学习、设计其他电路的保证。 直流稳压电源是由隔离变压器、整流滤波电路、进口集成控制电路、功率管或模块调整电路所组成,具有体积小,重量轻,性能稳定可等优点,电压从零起连续可调,可串联或关联使用,直流输出纹波小,稳定度高,稳压稳流自动转换、限流式过短路保护和自动恢复功能,是大专院校、工业企业、科研单位及电子维修人员理想的直流稳压电源,因此制作出能稳定输出±15V,±12V、±5V,电流小于等于500ma的直流电源,意义非常重大。 本文介绍了一种采用集成稳压器制作多路输出直流稳压电源的方法,主要阐述了如何运用集成稳压器,电源变压器,整流管与滤波电容完成规定任务的设计方法,重点叙述了整体设计的工作原理,相关元件的选定思路,电路具体调试过程,最后达到课程设计的具体要求。 关键词:变压;整流;滤波;集成稳压

开关电源拓扑结构详解

开关电源拓扑结构详解 主回路——开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开 入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck 拓扑型开关电源就是属于串联式的开关电源。 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负

载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感

L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。 在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。 对于图1-2,如果不看控制开关T和输入电压Ui,它是一个典型的反г 型滤波电路,它的作用是把脉动直流电压通过平滑滤波输出其平均值。 串联式开关电源输出电压uo的平均值Ua为: 1.2. 并联式结构 并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。

多路输出开关电源

课程设计说明书 程设计名称:电子技术课程设计 题目:多路输出开关电源 学生姓名: 专业: 学号: 指导教师: 日期:2010年 7 月 2 日 成绩

多路开关输出电源 摘要:在我们的身边,经常接触到很多关于电子线路的设备。在电子电路及设备中,一般都需要稳定的直流电源供电。所以直流稳压电源是电子系统中经常应用到的。本设计将通过多路输出直流稳压电源是设计说明稳压电路的工作原理和稳压的电源的指标及其测试方式。在电子线路设计中通常都需要电压稳定的直流电源供电,其往往采用交流电源经过转换得到的,其性能的好坏直接影响整个电子设备,一般电源主要由电源变压器, 整流电路,滤波电路和稳压电路四部分组成。一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。 关键词:直流稳压电源, 电源变压器,整流电路,滤波电路,稳压电路。 Abstract:Around us, often exposed to a lot of equipment on the electronic circuit. Electronic circuits and devices, generally requires a stable DC power supply. Therefore, DC power supply is often applied to the electronic system's. This design will be through a multi-output DC power supply regulator circuit is designed to explain the principle and regulator of the power indicator and test methods. In the design of electronic circuits requiring voltage stability is usually DC power supply, which often use AC power through transform be of, the direct impact of their affect all electronic equipment, general power main You power transformer, rectifier, analog filter and regulator circuit composed of four parts. Keywords:DC regulated power supply,power transform,rectifying circuit,filter circuit,voltage stabilizing circuit.

相关文档
相关文档 最新文档