文档库 最新最全的文档下载
当前位置:文档库 › 福建省龙岩高考数学二模考试试卷(理科)

福建省龙岩高考数学二模考试试卷(理科)

福建省龙岩高考数学二模考试试卷(理科)
福建省龙岩高考数学二模考试试卷(理科)

福建省龙岩高考数学二模考试试卷(理科)

姓名:________ 班级:________ 成绩:________

一、选择题 (共12题;共24分)

1. (2分)已知为虚数单位,则复数的模等于()

A .

B .

C .

D .

2. (2分)函数y=2cos2x的一个单调增区间是()

A . (-,)

B . (0,)

C . (,)

D . (,)

3. (2分) (2018高三上·邹城期中) 已知命题存在实数 ,满足;

命题:().

则下列命题为真命题的是()

A .

B .

C .

D .

4. (2分) (2016高二上·枣阳开学考) 点(1,1)在不等式组表示的平面区域内,则m2+n2取值范围是()

A . [1,4]

B . [2,4]

C . [1,3]

D . [2,3]

5. (2分) (2016高一上·绵阳期中) 如果设奇函数f(x)在(0,+∞)上为增函数,且f(2)=0,则不等式<0的解集为()

A . (﹣2,0)∪(2,+∞)

B . (﹣∞,﹣2)∪(0,2)

C . (﹣∞,﹣2)∪(2,+∞)

D . (﹣2,0)∪(0,2)

6. (2分) (2017高一下·福州期中) 某程序框图如图所示,若输出的S=57,则判断框内为()

A . k>4?

B . k>5?

C . k>6?

D . k>7?

7. (2分) (2018高二上·西安月考) 已知{an}是公差为1的等差数列;Sn为{an}的前n项和,若S8=4S4 ,则a10=()

A .

B .

C . 10

D . 12

8. (2分)学校计划在全国中学生田径比赛期间,安排6位志愿者到4个比赛场地提供服务,要求甲、乙两个比赛场地各安排一个人,剩下两个比赛场地各安排两个人,其中的小李和小王不在一起,不同的安排方案共有()

A . 168种

B . 156种

C . 172种

D . 180种

9. (2分)(2020·汕头模拟) “今有城,下广四丈,上广二丈,高五丈,袤一百二十六丈五尺.”这是我国古代数学名著《九章算术》卷第五中“商功”中的问题.意思为“现有城(如图,等腰梯形的直棱柱体),下底长4丈,上底长2丈,高5丈,纵长126丈5尺(1丈=10尺)”,则该问题中“城”的体积等于()

A . 立方尺

B . 立方尺

C . 立方尺

D . 立方尺

10. (2分)(2018·唐山模拟) 在中,,点满足,则的最大值为()

A .

B .

C .

D .

11. (2分) (2016高一下·九江期中) 在区间[﹣1,1]上随机取一个数x,则sin 的值介于﹣与

之间的概率为()

A .

B .

C .

D .

12. (2分)有以下命题:①命题“,”的否定是:“”;

②已知随机变量X服从正态分布,则;

③函数的零点在区间内;

其中正确的命题的个数为()

A . 0个

B . 1个

C . 2个

D . 3个

二、填空题 (共4题;共4分)

13. (1分) (2017高一上·义乌期末) 已知函数f(x)=sin(ωx)(ω为正整数)在区间(﹣,)上不单调,则ω的最小值为________.

14. (1分)(5x+7 )9的展开式中第三项的二项式系数是________(用数字作答).

15. (1分)(2020·乌鲁木齐模拟) 如图,正方体的棱长为1,有下列四个命题:

① 与平面所成角为;

②三棱锥与三棱锥的体积比为;

③过点作平面,使得棱,,在平面上的正投影的长度相等,则这样的平面有且仅有一个;

④过作正方体的截面,设截面面积为,则的最小值为 .

上述四个命题中,正确命題的序号为________.

16. (1分)(2017·长春模拟) 直线kx﹣3y+3=0与圆(x﹣1)2+(y﹣3)2=10相交所得弦长的最小值为________.

三、解答题 (共7题;共60分)

17. (10分) (2016高一下·宁波期中) 已知数列{an}中,a1=1,a2= ,且an+1= (n=2,3,4…).

(1)求数列{an}的通项公式;

(2)求证:对一切n∈N* ,有<.

18. (10分) (2016高二下·信阳期末) 甲、乙、丙三人准备报考某大学,假设甲考上的概率为,甲,丙两都考不上的概率为,乙,丙两都考上的概率为,且三人能否考上相互独立.(1)求乙、丙两人各自考上的概率;

(2)设X表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X的分布列与数学期望.

19. (10分)(2020·如皋模拟) 如图所示,在正方体中,分别为?的中点.

(1)求证:平面;

(2)求证:平面 .

20. (5分) (2017高二上·黄山期末) 已知曲线C上的任意一点到点F(1,0)的距离与到直线x=﹣1的距离相等,直线l过点A(1,1),且与C交于P,Q两点;

(Ⅰ)求曲线C的方程;

(Ⅱ)若A为PQ的中点,求三角形OPQ的面积.

21. (5分)(2017·辽宁模拟) 已知函数f(x)=xlnx,e为自然对数的底数.

(Ⅰ)求曲线y=f(x)在x=e﹣3处的切线方程;

(Ⅱ)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)恒成立,求实数λ的取值范围.

(Ⅲ)关于x的方程f(x)=a有两个实根x1 , x2 ,求证:|x1﹣x2|< a+1+ .

22. (10分) (2016高三上·金山期中) 在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.

(1)求圆C的极坐标方程;

(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l 的交点为Q,求线段PQ的长.

23. (10分)(2018·保定模拟) 已知函数 .

(1)解关于的不等式;

(2)若函数,当且仅当时,取得最小值,求时,函数的值域.

参考答案一、选择题 (共12题;共24分)

1-1、

2-1、

3-1、

4-1、

5-1、

6-1、

7-1、

8-1、

9-1、

10-1、

11-1、

12-1、

二、填空题 (共4题;共4分)

13-1、

14-1、

15-1、

16-1、

三、解答题 (共7题;共60分) 17-1、

17-2、

18-1、18-2、

19-1、

20-1、

22-1、22-2、23-1、23-2、

2018年高三数学模拟试题理科

黑池中学2018级高三数学期末模拟试题理科(四) 一、选择题:本大题共12小题,每小题5分,共60分. 1.已知集合{}2,101,, -=A ,{} 2≥=x x B ,则A B =I A .{}2,1,1- B.{ }2,1 C.{}2,1- D. {}2 2.复数1z i =-,则z 对应的点所在的象限为 A .第一象限 B.第二象限 C.第三象限 D.第四象限 3 .下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是 A .2x y = B .y x = C .y x = D .2 1y x =-+ 4.函数 y=cos 2(x + π4 )-sin 2(x + π4 )的最小正周期为 A. 2π B. π C. π2 D. π 4 5. 以下说法错误的是 ( ) A .命题“若x 2 -3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2 -3x+2≠0” B .“x=2”是“x 2 -3x+2=0”的充分不必要条件 C .若命题p:存在x 0∈R,使得2 0x -x 0+1<0,则﹁p:对任意x∈R,都有x 2 -x+1≥0 D .若p 且q 为假命题,则p,q 均为假命题 6.在等差数列{}n a 中, 1516a a +=,则5S = A .80 B .40 C .31 D .-31 7.如图为某几何体的三视图,则该几何体的体积为 A .π16+ B .π416+ C .π8+ D .π48+ 8.二项式6 21()x x +的展开式中,常数项为 A .64 B .30 C . 15 D .1 9.函数3 ()ln f x x x =-的零点所在的区间是 A .(1,2) B .(2,)e C . (,3)e D .(3,)+∞ 10.执行右边的程序框图,若0.9p =,则输出的n 为 A. 6 B. 5 C. 4 D. 3 开始 10n S ==, S p

(完整版)2018技能高考模拟题(数学部分)

2018技能高考模拟题(数学部分) ―、选择题(本大题共6小题,每小题5分,共30分) 1. 下列四个命题:(1)空集没有子集.(2)空集是任何集合的真子集(3)}0{=? (4)任何集合必有两个或两个以上的子集.其中正确的有( )个 A.0 B. 1 C.2 D.3 2.下列函数:(l )2x y =,(2)3x y =,(3)x x y -+=11lg ,(4)2 1131--=x y 其中奇函数有( )个 A.3 B.2 C.1 D.0 3.下列命题:(l )02sin 2cos >-,(2)若54sin =a ,则53cos =a . (3)在三角形ABC 中,若A A cos 3sin 2=,则角A 为30度角.其中正确的有()个 A.3 B. 2 C.1 D.0 4.下列说法:(1)两个相等的向量起点相同,则终点相同.(2)共线的单位向量相等.(3)不相等的向量一定不平行.(4)与零向量相等的向量一定是零向量. (5)共线向量一定在一条直线上.其 中正确的有( )个 A.2 B.3 C.4 D.5 5. 有点(3,4),(3-,4-),(1,1+3)(1-,31-),其中在直线013=+-y x 上的有()个 A.1 B.2 C.3 D.4 6.下列说法中:⑴数列{112-n }中负项有6项.(2)73为数列{12-n }中的项. (3)数列2.4.6.8可表示为{2. 4. 6.8}.其中正确的有()个 A.0 B.1 C.2 D.3 二、填空题(本大题共4小题,每小题6分,共24分)

1.若数列{n a }中,11++= n n n a a a 对任意正整数都成立,且216=a ,则5a = 。 n a = 。 2. 若a =(3,4),b =(2,1),且(a +xb ))(b a -⊥ = 。 3. 满足2 1sin ≥ a 的角a 的集合为 。 4. 4.函数|3|log 2 1-=x y 的单调减区间为 。 三、解答题(本大题共3小题,每小题12分,共36分) 1.(1)角a 的终边上一点P 的坐标为(t t 3,4-)(t 不为0),求a a cos sin 2+. (2)设2e ,2e 是两不共线的向量,若涵212ke +=,113e e +=,212e e -= 若三点A 、B 、D 共线,求k 的值. 2.(1)求函数)6 2sin(3π-=x y 的单增区间. (2)说出函数)3tan(π-=x y 的周期和单调区间. 3.(1)过点P (1-,1-)的直线与两坐标轴分别相交于A 、B 两点,若P 点为线段AB 的中点,求该直线的方程和倾斜角. (2)已知数列{n a }为等差数列,n S 为其前n 项和,且77=S ,1515=S . ①求n S .②若为数列的{n S n }前n 项和,求n T .

全国统一高考数学试卷(理科)(全国一卷)

绝密★启用前 全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题, 每小题5分, 共60分。在每小题给出的四个选项中, 只 有一项是符合题目要求的。 1.已知集合}242{60{}M x x N x x x =-<<=--<,, 则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -, z 在复平面内对应的点为(x , y ), 则 A .22 +11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .2 2(+1)1y x += 3.已知0.20.32 log 0.220.2a b c ===,,, 则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期, 人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512-( 51 2 -≈0.618, 称为黄金分割比例), 著名的“断臂维纳斯”便是如此.此外, 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 -.若某人满足上述两个黄金分割比例, 且腿长为105 cm, 头顶至脖子下端的长度为26 cm, 则其身高可能是

A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个 爻组成, 爻分为阳爻“——”和阴爻“— —”, 如图就是一重卦.在所有重卦中随机取一重卦, 则该重卦恰有3个阳爻的概率是 A . 516 B . 1132 C . 2132 D . 1116 7.已知非零向量a , b 满足||2||=a b , 且()-a b ⊥b , 则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 8.如图是求 112122 + +的程序框图, 图中空白框中应填入

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

2020-2021高考理科数学模拟试题

高三上期第二次周练 数学(理科) 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.设集合{}=0123A ,,,, {}=21B x x a a A =-∈,,则=( )A B ? A. {}12, B. {}13, C. {}01 , D. {}13-, 2.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( ) A. i - B. i C. 1- D. 1 3.在等比数列{}n a 中, 13521a a a ++=, 24642a a a ++=, 则数列{}n a 的前9项的和9S =( ) A. 255 B. 256 C. 511 D. 512 4.如图所示的阴影部分是由x 轴,直线1x =以及曲线1x y e =-围成, 现向矩形区域OABC 内随机投掷一点,则该点落在阴影区域的概率是( ) A. 1e B. 21 e e -- C. 11e - D. 11e - 5.在 52)(y x x ++ 的展开式中,含 2 5y x 的项的系数是( ) A. 10 B. 20 C. 30 D. 60 6.已知一个简单几何体的三视图如右图所示,则该几何体的 体积为 ( ) A. 36π+ B. 66π+ C. 312π+ D. 12 7.已知函数 ())2log(x a x f -= 在 )1,(-∞上单调递减,则a 的取值范围是( ) A. 11<<

技能高考数学模拟试题(一)

一、选择题(5分×6=30分) 19. 下列命题中错误的个数是( ) ①若A B =?I ,则,A B 中至少一个是空集 ②若A B S =I ,S 为全集,则A B S == ③()()A B A A B ≠≠ ??I U ④22 (2)0(2)0x y x y +-=-=是的必要不充分条件 A.0 B.1 C.2 D.3 20. 不等式(5)(4)14x x -+-≥的解集是( ) A. 32x -≤≤ B. {}|32x x x ≤-≥或 C. {}|32x x -≤≤ D. {}|32x x -<< 21. 下列说法正确个数的是( ) ①1,(,)y x =+∈-∞+∞表示一个函数 ②22()1()sin cos f x t t t ==+和g 表示同一函数 ③设函数()y f x =在区间(,)a b 上有意义.如果有12,(,)x x a b ∈,当12x x <时,12()()f x f x <成立,那么函数()f x 叫作区间(,)a b 上的增函数 ④如果函数2()2(1)31+)f x x a x =-++∞在区间[,是增函数,则a 的取值范围是[3,)+∞ A. 0 B. 1 C. 2 D. 3 22. 下列函数在定义域内为减函数且为奇函数的是( ) A. ()3x f x -= B. 3 ()f x x =- C. ()sin f x x = D. ()cos f x x = 23. 已知向量,a b r r ,且22,56,92,AB a b BC a b CD a b =+=-+=-u u u r r r u u u r r r u u u r r r 则一定三点共线的是() A. A,B,D B. A,B,C C. B,C,D D. A,C,D 24. 小明抛一块质地均匀的硬币两次,出现正反各一次的概率是( ) A 14 B 12 C 34 D 1 二、填空(5分×4=20分) 25. 计算( 34 1 log 50.5330.125+29--+= 26. 函数()f x =的定义域是 27. 在等差数列{}n a 中,已知1110a =,则21S = 28. 已知正四棱柱底面边长为4cm ,侧面积为80cm 2,则它的体积是 xx 北技能高考数学模拟试题(一)

2017年高考理科数学试题及答案

2017年普通高等学校招生全国统一考试(xx卷)数学(理科) 第Ⅰ卷(共50分) 一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年xx,理1,5分】设函数的定义域为,函数的定义域为,则()(A)(B)(C)(D) 【答案】D 【解析】由得,由得,,故选D. (2)【2017年xx,理2,5分】已知,是虚数单位,若,,则()(A)1或(B)或(C)(D) 【答案】A 【解析】由得,所以,故选A. (3)【2017年xx,理3,5分】已知命题:,;命题:若,则,下列命题为真命题的是() (A)(B)(C)(D) 【答案】B 【解析】由时有意义,知是真命题,由可知是假命题, 即,均是真命题,故选B. (4)【2017年xx,理4,5分】已知、满足约束条件,则的最大值是()(A)0(B)2(C)5(D)6 【答案】C 【解析】由画出可行域及直线如图所示,平移发现,

当其经过直线与的交点时,最大为 ,故选C. (5)【2017年xx,理5,5分】为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为24,据此估计其身高为() (A)160(B)163(C)166(D)170 【答案】C 【解析】,故选C. (6)【2017年xx,理6,5分】执行两次如图所示的程序框图,若第一次输入的值为7,第 二次输入的值为9,则第一次、第二次输出的值分别为()(A)0,0(B)1,1(C)0,1(D)1,0 【答案】D 【解析】第一次;第二次,故选D. (7)【2017年xx,理7,5分】若,且,则下列不等式成立的是()(A)(B)(C)(D) 【答案】B 【解析】,故选B. (8)【2017年xx,理8,5分】从分别标有1,2,…,9的9xx卡片中不放回地随机抽取2次,每次抽取1xx,则抽到在2xx卡片上的数奇偶性不同的概率是() (A)(B)(C)(D)

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

湖北中职技能高考数学模拟试题及解答十一

湖北中职技能高考数学模拟试题及解答十一 Newly compiled on November 23, 2020

湖北中职技能高考数学模拟试题及解答十一 四、选择题(本大题共6小题,每小题5分,共30分) 在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。未选、错选或多选均不得分。 19. 若集合{}22A x x x =-≤与{}24B y y x ==-,则B C A =( ) A. [) ()4,12,--+∞ B. ()()4,12,--+∞ C. (]()4,12,--+∞ D. [)[)4,12,--+∞ 本题答案:A 20. 下列选项中正确的序号是( ) (1)直线320x ++=与直线0y =的夹角是120°; (2)函数()2016f x x =是幂函数; (3)数列21,-202,2003,-20004,…的一个通项公式为()()11210n n n a n +=-??+。 A. (1)(2) B. (1)(3) C. (2)(3) D. (1)(2)(3) 本题答案:C 21. 下列函数中在定义域内为单调递减的奇函数是( ) A. ()2f x x x =- B. ()f x x =- C. ()2x f x -= D. ()0.5log f x x = 本题答案:B 22. 等比数列{}n a 中,351,4a a ==,则公比q 为( ) A. -2、2 B. -1、1 C. 12-、12 D. 2、12 本题答案:A 23. 下列选项中正确的序号为( ) (1)直径为6cm 的圆中,长度为3cm 的圆弧所对的圆心角为1弧度; (2)函数()tan f x x =在(),-∞+∞上是增函数; (3)点()1,3p -关于原点O 的对称点的坐标为(-1,3)。 A. (1)(2) B. (1)(3) C. (2)(3) D. (1)(2)(3) 本题答案:B 24. 过点(0,-1)且被圆22240x y x y ++-=截得的弦长最大的直线方程是( ) A. 310x y +-= B. 310x y +-= C. 310x y ++= D. 310x y ++=

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

2018年高考数学(理科)模拟试卷(二)

2018年高考数学(理科)模拟试卷(二) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟) 第Ⅰ卷(选择题满分60分) 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2016年北京)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=() A.{0,1} B.{0,1,2} C.{-1,0,1} D.{-1,0,1,2} 2.已知z为纯虚数,且z(2+i)=1+a i3(i为虚数单位),则复数a+z在复平面内对应的点所在的象限为() A.第一象限B.第二象限 C.第三象限D.第四象限 3.(2016年新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图M2-1.图中A点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是() A.各月的平均最低气温都在0 ℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均气温高于20 ℃的月份有5个 图M2-1 图M2-2

4.已知平面向量a =(1,2),b =(-2,k ),若a 与b 共线,则||3a +b =( ) A .3 B .4 C.5 D .5 5.函数y =1 2x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞) 6.阅读如图M2-2所示的程序框图,运行相应的程序,则输出的结果为( ) A .2 B .1 C .0 D .-1 7.(2014年新课标Ⅱ)如图M2-3,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) 图M2-3 A.1727 B.59 C.1027 D.13 8.已知F 1,F 2分别为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,离心率为5 3,过原点的直线l 交双曲线左、右两支分别于A ,B ,若|BF 1|-|AF 1|=6,则该双曲线的标准方程为( ) A.x 29-y 216=1 B.x 218-y 2 32=1 C.x 29-y 225=1 D.x 236-y 2 64=1 9.若函数f (x )=???? ? x -a 2x ≤0,x +1x +a x >0的最小值为f (0),则实数a 的取值范围是( ) A .[-1,2] B .[-1,0] C .[1,2] D .[0,2]

2018年全国各地高考数学(理科试卷及答案)

2018年高考数学理科试卷(江苏卷) 数学Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上.. . 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=?B A . 2.若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为 . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 . 5.函数()1log 2-=x x f 的定义域为 .

6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 7.已知函数()??? ??<<-+=22 2sin ππ ?x x y 的图象关于直线3π=x 对称,则?的值 是 . 8.在平面直角坐标系xOy 中,若双曲线()0,0122 22>>=-b a b y a x 的右焦点()0,c F 到一条 渐近线的距离为 c 2 3 ,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()??? ? ???≤<-+≤<=02,2120,2cos x x x x x f π, 则()()15f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 11.若函数()()R a ax x x f ∈+-=122 3 在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上 的最大值与最小值的和为 .

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案) 本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项: 1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号. 3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回. 第Ⅰ卷 (选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合2 {1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则A B =I (A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数1 1i z = +,则||z = (A) 2 (B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2 ()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)2 4. 已知单位向量12,e e 的夹角为 2π 3 ,则122e e -= (A)3 (B)7 5. 已知双曲线22 221(0,0)x y a b a b -=>>的渐近线方程为3y x =±,则双曲线的离心率是 (B) 3 (C)10 (D)10 9 6. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的

(完整版)湖北技能高考数学模拟试题及解答二十

湖北技能高考数学模拟试题及解答二十 一、选择题:(共6小题,每小题5分,共计30分) 1、下列结论中正确的个数为() ①自然数集的元素,都是正整数集的元素; ②a能被3整除是a能被9整除的必要条件; ③不等式组{ 3?x<1 x+3<5 的解集是空集; ④不等式|2x-1|≤3的解集为(-∞,2〕 A、4 B、3 C、2 D、1 答案、C 2、函数f(x)=√x+3 x—2 的定义域为() A、?-3,+∞) B、( -∞,2)∪(2,+ ∞) C、?-3,2)∪(2,+ ∞ ) D、?-3,2) 答案、C 3、下列函数在定义域内为偶函数的是()1 , 2 A、f(x)=(x+1)(x?1) B、f(x)=x 12 C、f(x)=2x2-x+1 D、f(x)=x?1 答案、A 4、下列结论中正确的个数为( ) ①函数f(x)=(1 2) ?x 为指数函数 ②函数f(x)=x3在?0,+∞)内为增函数 ③函数f(x)=log 1 2 x在(0,+∞)内为减函数 ④若log 1 2 x<0则x的取值范围为(-∞,1 ) A、4 B、3 C、2 D、1 答案、B 5、角382o15'的终边落在第()象限。 A、四 B、三 C 、二 D、一 答案、D

6、等差数列{a n}中,若a 1= 14且a n+1-a n=则a 7=( ) A 、74 B 、94 C 、114 D 、134 答案、D 二、填空题(共4小题,每小题6分,共计24分) 7、已知︱a ? ︱=2, ︱b ? ︱=1,?a ? ,b ? ?=60 o ,则a ? ·b ? = 。 答案、1 。 8、已知点A (2,3),点B (x ,-3)且|A B |=62,则x =________ ,线段AB 的中点坐标为________。 答案、8或-4 (5,0)或(-1,0) 9、设点P 的坐标为(-5,3),点Q 的坐标为(-3,1)则直线PQ 的斜率为_______,倾斜角为_______。 答案、-1 3π4 10、在x 轴的截距是3,在轴的截距是-2的直线方程是________。 答案、2x-3y-6=0 三、解答题: 11、(1)求值:sin (-11π6 )·cos 7π3+tan(-15π4) (6分) 答案、原式= sin π6 ·cos π3+ tan π4 ----------( 4 分) = 21x 2 1+1 ----------( 5 分) =45 ----------( 6 分) (2)化简:sin (180°+α)+tan (?α)+tan (α+180°) tan α+cos (180°+α)+cos α (6分) 答案、原式= a a a a a cos cos tan tan tan sin +-+--α ----------( 4 分 =a a tan sin - ----------( 5 分) = ?cos α ----------( 6 分) 12、(1) 写一个圆心为(1,?2),半径为3的圆的一般方程。(5分)

高考理科数学试卷(带详解)

·江西卷(理科数学) 1.[2019·江西卷] z 是z 的共轭复数, 若z +z =2, (z -z )i =2(i 为虚数单位), 则z =( ) A.1+i B.-1-i C.-1+i D.1-i 【测量目标】复数的基本运算 【考查方式】给出共轭复数和复数的运算, 求出z 【参考答案】D 【难易程度】容易 【试题解析】 设z =a +b i(a , b ∈R ), 则z =a -b i , 所以2a =2, -2b =2, 得a =1, b =-1, 故z =1-i. 2.[2019·江西卷] 函数f (x )=ln(2 x -x )的定义域为( ) A.(0, 1] B.[0, 1] C.(-∞, 0)∪(1, +∞) D.(-∞, 0]∪[1, +∞) 【测量目标】定义域 【考查方式】根据对数函数的性质, 求其定义域 【参考答案】C 【难易程度】容易 【试题解析】由2 x -x >0, 得x >1或x <0. 3.[2019·江西卷] 已知函数f (x )=|| 5x , g (x )=2 ax -x (a ∈R ).若f [g (1)]=1, 则a =( ) A.1 B.2 C.3 D.-1 【测量目标】复合函数 【考查方式】给出两个函数, 求其复合函数 【参考答案】A 【难易程度】容易 【试题解析】由g (1)=a -1, 由()1f g ????=1, 得|1| 5 a -=1, 所以|a -1|=0, 故a =1. 4.[2019·江西卷] 在△ABC 中, 内角A , B , C 所对的边分别是a , b , c .若2 2 ()c a b =-+6, C =π 3 , 则△ABC 的面积是( ) A.3 D.【测量目标】余弦定理, 面积 【考查方式】先利用余弦定理求角, 求面积 【参考答案】C 【难易程度】容易 【试题解析】由余弦定理得, 222cos =2a b c C ab +-=262ab ab -=12, 所以ab =6, 所以ABC S V =1 sin 2 ab C . 5.[2019·江西卷] 一几何体的直观图如图所示, 下列给出的四个俯视图中正确的是( )

2020-2021学年新课标Ⅲ高考数学理科模拟试题及答案解析

绝密★启用前 试题类型: 普通高等学校招生全国统一考试 理科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题 目要求的. (1)设集合{}{} (x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T=( ) (A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则 41 i zz =-( ) (A)1 (B) -1 (C) i (D)-i (3)已知向量1(2BA =uu v ,1),2BC =uu u v 则∠ABC=( ) (A)300 (B) 450 (C) 600 (D)1200 (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均最低气温约为50 C 。下面叙述不正确的是( )

(A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均最高气温高于200 C 的月份有5个 (5)若3 tan 4 α= ,则2cos 2sin 2αα+= ( ) (A) 6425 (B) 4825 (C) 1 (D)1625 (6)已知4 3 2a =,25 4b =,13 25c =,则( ) (A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=( ) (A )3

湖北中职技能高考数学模拟试题及解答大全

最新最全湖北中职技能高考数学模拟试题及解答 一、选择题:(本大题共6小题,每小题5分,共30分) 在每小题给出的四个选项中,只有一项是符合题目要求的.请把其选出,未选、错选或多选均不得分 1.已知集合A ={91|<≤∈x N x },B ={x 33|<<-x },则 A ? B =( ) A .{x 31|<x } C .{1,2} D .{1,2,3} 参考答案: C 考查集合的运算 2.已知命题甲为1>x ;命题乙为1>x ,那么( ) A.甲是乙的充分非必要条件 B.甲是乙的必要非充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件,也不是乙的必要条件 参考答案: A 考查充要条件 3.不等式312<-x 的解集为( ) A .{ x 2|x } C .{x 1|-x } D .{x 21|<<-x } 参考答案:D 考查含绝对值的不等式 4.某函数图象经过点)1,1(和点)1,1(--,则它的解析式不可能为( ) .

A.x y = B.x y 1= C.x y = D.3x y = 参考答案:D 考查函数的解析式 5.下列函数中既是奇函数又为减函数的是( ) A. x y = B. x y sin = C. x y -= D. x y sin -= 参考答案:C 考查函数的单调性和奇偶性 6.下列命题正确的个数是( ) 1.设集合},4{},6{<=≥=x x N x x M 则=?N M 空集。 2.已知,0sin cos

高考理科数学试卷及答案

绝密★启封并使用完毕前 2019年普通高等学校招生全国统一考试 数学(理)(北京卷) 本试卷共5页, 150分。考试时长120分钟。考生务必将答案答在答题卡上, 在试卷上作答无效。考试结束后, 将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题, 每小题5分, 共40分。在每小题列出的四个选项中, 选出符合题目要求的一项。(1)若复数(1–i)(a+i)在复平面内对应的点在第二象限, 则实数a的取值范围是 (A)(–∞, 1) (B)(–∞, –1) (C)(1, +∞) (D)(–1, +∞) (2)若集合A={x|–2x1}, B={x|x–1或x3}, 则AB= (A){x|–2x–1} (B){x|–2x3} (C){x|–1x1} (D){x|1x3} (3)执行如图所示的程序框图, 输出的s值为 (A)2 (B)3 2

(C )53 (D )85 (4)若x, y 满足 , 则x + 2y 的最大值为 (A )1 (B )3 (C )5 (D )9 (5)已知函数1(x)33x x f ?? =- ??? , 则(x)f (A )是奇函数, 且在R 上是增函数 (B )是偶函数, 且在R 上是增函数 (C )是奇函数, 且在R 上是减函数 (D )是偶函数, 且在R 上是减函数 (6)设m,n 为非零向量, 则“存在负数λ, 使得m n λ=”是“m n 0?<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (7)某四棱锥的三视图如图所示, 则该四棱锥的最长棱的长度为

高考数学七大必考专题(最新)

高考数学七大必考专题 专题1:函数与不等式,以函数为主线,不等式和函数综合题型是考点 函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。 一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。 不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。 专题2:数列 以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。 专题3:三角函数,平面向量,解三角形 三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。 专题4:立体几何 立体几何中,三视图是每年必考点,主要出现在选择,填空题中。大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。 另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。 专题5:解析几何

相关文档
相关文档 最新文档