文档库 最新最全的文档下载
当前位置:文档库 › 实验十磁化率的测定

实验十磁化率的测定

实验十磁化率的测定
实验十磁化率的测定

配合物磁化率测定的实验报告

一、实验目的

1、掌握古埃法磁天平测定物质磁化率的基本原理和实验方法。

2、用古埃磁天平测定FeSO 4·7H 2O 、K 4Fe (CN )6·3H 2O 这两种配合物的磁化率,推算其不成对电子数,从而判断其分子的配键类型。

二、实验原理

1、物质的磁性

在外磁场的作用下,物质会被磁化产生附加磁感应强度,则物质内部的磁感应强度为

(1)

式中B0为外磁场的磁感应强度;

为物质磁化产生的附加磁感应强度;H 为外磁场强

度;μ0为真空磁导率,μ0=4π×10-7N·A2。物质的磁化可用磁化强度M 来描述,M 也是一个矢量,它与磁场强度成正比

(2)

式中 称为物质的体积磁化率,是物质的一种宏观磁性质。

与M 的关系为

(3)

将(3)式代 入(1)式得

(4)

式中 称为物质的(相对)磁导率。

化学上常用单位质量磁化率 或摩尔磁化率

来表示物质的磁性质,它们的定义

(5)

(6)

式中为物质密度,为物质的摩尔质量。的单位是m3·kg-1。的单位是

m3·mol-1。

2、三种磁化现象

物质的原子、分子或离子在外磁场作用下的磁化现象有三种情况。

○1有些物质本身并不呈现磁性,但由于它内部的电子轨道运动,在外磁场作用下感应出一个诱导磁矩来,表现为一个附加磁场,磁矩的方向与外磁场相反,其磁化强度与外磁场强

度成正比,并随着外磁场的消失而消失,这类物质称为逆磁性物质,其<l,<0。

○2某些物质的原子、分子或离子本身具有永久磁矩,由于热运动,永久磁矩的指向各个方向的机会相同,所以该磁矩的统计值等于零。但它在外磁场作用下,一方面永久磁矩会顺着外磁场方向排列,其磁化方向与外磁场相同,其磁化强度与外磁场强度成正比;另一方面,物质内部的电子轨道运动的磁化方向与外磁场相反,因此,这类物质在外磁场表现的附加磁场是上述两者作用的总结果。我们称具有永久磁矩的物质为顺磁性物质。显然此类

物质的摩尔磁化率是摩尔顺磁化率和摩尔逆磁化率两部分之和。

(7)

○3某些物质被磁化的强度与外磁场强度之间不存在正比关系,而是随着外磁场强度的增加而剧烈的增加,当外磁场消失后,这种物质的磁性并不消失,呈现出滞后的现象。这种物质称为铁磁性物质。

3、磁化率

假定分子间无相互作用,应用统计力学的方法,可以导出摩尔顺磁化率和分子永

久摩尔磁矩的关系为

(8)

式中N A为阿佛加德罗常数,k为玻尔兹曼常数,T为绝对温度。

物质的摩尔顺磁磁化率与温度成反比的这一关系,称为居里定律。

分子的摩尔逆磁磁化率是由诱导磁矩产生的,它与温度的依赖关系很小。因此具

有永久磁矩的物质的摩尔磁化率与摩尔磁矩间的关系为

(9)

物质的永久摩尔磁矩和它所含有未成对电子数n的关系为:

(10)

式中,为玻尔磁子,其物理意义是单个自由电子自旋所产生的磁矩。

(9)式将物质的宏观物理性质和其微观性质联系起来,因此只要实验测得

代入(9)式就可求出永久摩尔磁矩,再用(10)式即可求得含有的未成对电子数n。

磁矩测量对于研究某些原子或离子的电子结构,判断配合物分子的配键类型是很有意义的。通常认为配合物可分为电价配合物和共价配合物两种。电价配合物是指中心离子与配位体之间是依靠静电引力结合起来的,这种化学键叫电价配键。这时中心离子的电子结构不受配位体的影响,基本上保持自由离子的电子结构。共价配合物则是以中心离子的空的价电子轨道接受配位体的孤对电子以形成共价配键,这时中心离子往往发生电子重排,以腾出更多空的内层价d轨道来容纳配位体的电子对。

例如,Fe2+在自由离子状态下的3d轨道电子结构是:

当它与6个H

2

O配位体形成配离子时,中心离子Fe2+仍然保持着上述自由离子状态下的

电子结构,故此配合物是电价配合物。而黄血盐K

4[Fe(CN)

6

],由实验测得μ=0,则n=0,

中心离子Fe2+的电子结构发生重排:

故K

4[Fe(CN)

6

]是共价配合物

4、磁化率的测定

古埃法测定磁化率的原理如图6-1所示。将装有样品的圆柱形玻璃管如图所示方式悬挂在两磁极中间,使样品的底部处于两极中心,即磁场强度H最强的区域,样品的顶部则处于最上部磁场强度H0几乎为零处。这样,样品管就处于不均匀的磁场中。设样品管的截面积为S,样品管长度方向为dz的体积Sdz在非均匀磁场中所受到的作用力df

(11)

式中为一个磁子的磁矩,为磁场强度梯度。对于顺磁性物质,作用力指向磁场

强度大的方向,对于逆磁性物质则指向磁场强度小的方向。

样品管中所有样品受的力:

(12)

当样品受到磁场作用力时,天平的另一臂上加减砝码使之平衡。设Δm为施加磁场前后的质量差,则

(13)

由于代入(13)并整理后得:,

(14)

式中为样品高度,m为样品质量,g为重力加速度,M为样品的摩尔质量。(14)

式中空气的体积磁化率,因样品管体积很小,故常予以忽略。该式右边的各项都可实验测得,由此求出样品的摩尔磁化率。

H可由己知单位质量磁化率的莫尔盐来间接标定(与温度的关系为

m3·kg-1),也可直接测量。

图6-1 古埃磁天平示意图

1.磁铁;2.样品管;3.天平

在求样品的摩尔磁化率时,为简化运算,可做如下处理:

(15)

(16)

将(16)式除以(15)式,可得

(17)由(9)式

(18)

(19)

由(17),(18),(19)式就可简便的求出样品的、和。

三、仪器与试剂

1、仪器

古埃磁天平,装样品工具(包括研钵、角匙、小漏斗、玻璃棒),软质玻璃样品管。

2、试剂

莫尔氏盐(NH

4)

2

SO

4

·FeSO

4

·6H

2

O(分析纯),FeSO

4

·7H

2

O(分析纯),K

4

Fe(CN)

6

·3H

2

O

(分析纯)

四、实验步骤

1、按照古埃磁天平的操作规程开启磁天平,并记录实验温度T

2、调整霍尔探头的位置,使之处于磁场中心最强处

在某一励磁电流下,拧松霍尔探头两边的有机玻璃螺丝,稍微转动探头,使特斯拉计的读数最大,此即为最佳位置。

3、磁场两极中心处磁场强度H的测定

(1)用特斯拉计测量当励磁电流于1A,3A,5A,3A,1A时相应的磁场强度,将数据记录。

(2)用已知的莫尔氏盐标定励磁电流下的磁场强度

○1将空样品管洗净吹干,挂在钩上称量,读数W

空管

。轻旋电流开关使电流表指针到0A,再依次将电流表指针调为1A,3A,5A,3A,1A,每次均称量空样品管W(I)。毕后,将励磁电流降至零,每次称量空样品管,断开电源,再称一次空样品管。计算电流在升、降过程中同样的电流值下空样品管称量的平均值,以及电流为1A,3A,5A时空样品管的质量与0A时空样品管的质量差。

○2向样品管内装入预先研细的莫尔氏盐,量出样品高度h,重复上述操作。记录各励磁电流下样品管+样品的总质量,并由0A下的总质量差值计算出样品的质量。

○3将样品管洗净吹干,将莫尔氏盐换成FeSO

4·7H

2

O与K

4

Fe(CN)

6

·3H

2

O,重复步骤○2.

五、数据记录及处理

(1)由特斯拉计测得励磁电流I=1A,3A,5A,3A,1A时的磁场强度室温:16.7℃

T=290K

莫尔氏盐的摩尔磁化率:=3.265E-5cm-3.g-1=1.269E-8m3.mol-1(2)由莫尔氏盐的摩尔磁化率和实验数据标定励磁电流下的磁场强度值

由14,15式带入数据可得:H1=17560.5 A/m

H2=20249.4 A/m

H3=33570.8 A/m

(3)按式(14)计算H1、H3和H5时FeSO 4·7H 2O 与K 4Fe (CN )6·3H 2O 的

由公式可得:

FeSO 4·7H 2O K 4Fe (CN )6·3H 2O

当H1= 17560.5 A/m 时,=1.516E-7m 3/ mol =1.509E-9 m 3/mol 当H2=20249.4 A/m 时,

=1.496E-7 m 3/mol =0.813E-9 m 3/mol 当H3=33570.8 A/m 时,

=1.513E-7 m 3

/mol

=1.206E-9 m 3

/ mol

(4)由式(11)计算FeSO 4·7H 2O 与K 4Fe (CN )6·3H 2O 分子的永久磁矩

公式,已知则易得

FeSO 4·7H 2O 的

为4.543E-23A.m 2

K 4Fe (CN )6·3H 2O 的为1.315E-24A.m 2

(5)由式(12)计算FeSO 4·7H 2O 与K 4Fe (CN )6·3H 2O 的未成对电子数n 由

可计算的n

FeSO 4·7H 2O 的n ≈4

K 4Fe (CN )6·3H 2O 的n ≈0

(6)根据未成对电子数,讨论铁二离子的最外层电子结构及由此构成的配建类型 FeSO 4·7H 2O 的结构式为 [Fe (II)(H 2O)6] SO 4·H 2O ,即中心原子Fe 2+由周围的6个水分子配位,形成的是正八面体空间结构。

K 4Fe(CN)6·3H 2O 的结构式为K 4 [Fe (II)(CN)6]·3H 2O ,即中心原子Fe 2+

由周围的6个氰根离子配位,形成的也是正八面体空间结构。

Fe

O H O H

2

H 2O

2O H 2O

H 2

O

2+

Fe

N

N C

C N

N C N

C N

4

Fig 1. 两个正八面体结构的配合物

六、注意事项

1、测定空样品管的重量的操作过程中,不要用手、脚、胳膊或身子碰挤或挪动操作台和天平。

2、减弱或去掉磁场时,也是缓缓往小调,停顿,再缓缓往小调,在2A 处足足停顿5分钟,再缓缓调至零。

3、天平称量时,必须关上磁极架外面的玻璃门,以免空气流动对称量的影响。

4、励磁电流的变化应平稳、缓慢,调节电流时不宜用力过大。加上或去掉磁场时,勿改变永磁体在磁极架上的高低位置及磁极间矩,使样品管处于两磁极的中心位置,磁场强度前后一致。

5、装在样品管内的样品要均匀紧密、上下一致、端面平整、高度测量准确。

七、思考题

1、试比较用高斯计和莫尔氏盐标定的相应励磁电流下的磁场强度值,并分析两者测定

结果差异的原因。

高斯计测得的磁场强度比摩尔氏盐标定的磁场小,因为摩尔氏盐测的是磁场中心的磁场强度,高斯计测的是磁铁中心下面的磁场。

2、不同励磁电流下测得的样品摩尔磁化率是否相同?如果测量结果不用应如何解释?

不同。

因为

2

p p 3H

K T μμ=

这一关系式是经典电磁理论的统计力学结果,它把磁矩取向视为可以

连续变化的;但是基于量子力学理论,磁矩取向是量子化的而不能连续改变,上述

p

μ对H

T

的线性关系只是在P H

K T μ<<1条件下的一阶近似。磁场强度H 足够大时,必须考虑H

T 的高阶

修正项如

2

43p p p 3

3

345H

H

K T

K T

μμμ=

-

+……

。所以

A M N H

μχ=

只是在

p

μ的一阶近似下表现为不

随H 改变的常数;当高阶修正项不能忽略时,摩尔磁化率χM 表现为随磁场强度H (因而也随励磁电流I )改变的量。

八、结果与讨论

1、配位场的电子结构的讨论

配合物分子的配位场电子轨道依次是(a1g)(t1u)(eg)(t2g)(e*g)(t*1u)(a*1g) 。 [Fe(II)(H2O)6]2+,其中心原子Fe2+提供6个3d 电子,周围6个水分子配体共提供12个配位电子,6+12=18电子。又因为水分子是弱配体,故[Fe(II)(H2O)6]2+的配位场电子结构为(a1g)2(t1u)6(eg)4(t2g)4(e*g)2 。

可见在 (t2g) 和 (e*g) 轨道上各有2个未成对电子,共有n=4 ;另外按照杂化轨道理论称之为sp3d2型配键。 所以FeSO4·7H2O 是弱场高自旋的电价配合物。

[Fe(II)(CN)6]4-,其中心原子Fe2+提供6个3d 电子,周围6个氰根配体共提供12个配位电子,6+12=18电子。又因为氰根离子是强配体,故[Fe(II)(CN)6]4-的配位场结构与上述的不同,为(a1g)2(t1u)6(eg)4(t2g)6(e*g)0 。

可见在所有轨道上都没有未成对电子,n=0 ;另外按照杂化轨道理论称之为d2sp3型配键。 所以K4Fe(CN)6·3H2O 是强场低自旋的共价配合物。

2、误差分析

①实验理论公式的推导中用到一些近似,例如忽略顺磁性物质逆磁磁化率的影响,忽略样品柱远离磁场一端的磁化率等。

②励磁电流不能每次都准确地定在同一位置,前文所述的3A 、4A 等值都只能保证大概在这个位置附近,因此实际上磁场强度H 并非每次都是一致的。

③测量样品高度h 的误差严重影响实验的精度,这从摩尔磁化率的计算公式2

2()M a

F E M W W gh W H

χ?-?=

可以看出来。而由于最上面的那些样品粉末不能压紧压平,

测量高度h 的误差还是比较大的。

④装样不紧密也会带来较大误差,推导2

2()M a

F E M W W gh W H

χ?-?=

公式时用到了密

度ρ,最后表现在高度h 中。“装样不紧密”也就是说实际堆密度比理论密度小,这样高度h 就会比理论值偏大,即使很准确地测量出高度h ,它还是比理论值有一个正的绝对误差。

e*g

t 2g

Fig 2. (t 2g )4(e*g )2电子

Fig 3. (t 2g )6

(e*g )0

电子

排布

e*g

t 2g

测液体折射率实验报告

实验题目:表面等离激元共振法测液体折射率实验 预习报告与原始数据见纸质报告。 实验步骤: 1.调整分光计,实验部件安装和线路连接已经完成; 2.传感器中心调整 粗调:将微调座放到载物台上,固定好调节架后,在调节架中心放上准星,调节载物台锁紧螺钉使激光光斑至粗调对准处,不断调节平行光管光轴水平调节螺钉与微调座的两颗微调螺钉,使当游标盘转动一圈时,激光光斑一直照在该处; 细调:调节平行光管光轴高低调节螺钉,使激光光斑射在细调对准处,不断调节平行光管与微调座使当转动游标盘一圈时,激光光斑一直射在该处; 中心调节:继续调节平行光管光轴高低调节螺钉,使激光光斑射在准星顶尖处,再次调节使转动游标盘一圈时,激光光斑一直射在顶尖处。 3.测量前准备调节 中心调节完毕后,移去准星,放入敏感元件,将游标盘和刻度盘调节到合适位置;调整敏感元件使光垂直入射至半圆柱棱镜中的镀金属膜上,拧紧游标盘止动螺钉;转动刻度盘使刻度盘0o对准游标盘0o;拧紧转座与刻度盘止动螺钉,松开游标盘止动螺钉,从此刻开始刻度盘始终保持不动,将游标盘转回至刻度盘所示65o位置处锁定,测量前准备调节完毕。

4.测量读数 保持刻度盘和游标盘不动,转动望远镜支臂,观察功率计读数,记录其中的最大读数;保持刻度盘不动,移动游标盘从66o到88o,入射角没增加1o,记录功率计最大读数。 5.数据表格与数据处理 (1)数据表格自拟; (2)画出相对光强与入射角的关系曲线图; (3)比较不同溶液的共振角有何差异。 实验样本: 本实验采用样本为:纯净水;无水乙醇;水:乙醇=1:1的乙醇溶液。 实验数据: 1.纯净水 角度(°)666768697071 角度(°)72737475767778相对光强243273376480554581641653角度(°)7980818283848586相对光强700705713733741741758765角度(°)8788

磁化率的测定实验报告

磁化率的测定 1.实验目的 1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。 1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。 2.实验原理 2.1摩尔磁化率和分子磁矩 物质在外磁场H作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。物质0被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关: χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。化学上常用摩尔磁化率χ表示磁化程度,它与χ的关系为m 。·mol -13 M、ρ分别为物质的摩尔质量与密度。χ的单位为m式中m物质在外磁场作用下的磁化现象有三种:。当它受到=0第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,μm,相应产生一种与外磁场方向相反的感应磁矩。如同线”外磁场作用时,内部会产生感应的“分子电流圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。这种物质称为反磁性物质,如表示,且χ<0。χCuHg,,Bi等。它的χ称为反磁磁化率,用m反反第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分。这些杂乱取向的分子磁矩μ≠0子磁矩m Cr,其方向总是趋向于与外磁场同方向,在受到外磁场作用时,这种物质称为顺磁性物质,如Mn, 表示。Pt等,表现出的顺磁磁化率用χ顺χχ但它在外磁场作用下也会产生反向的感应磁矩,因此它的是顺磁磁化率χ。与反磁磁化率m顺之和。因|χ|?|χ|,所以对于顺磁性物质,可以认为χ=χ,其值大于零,即χ>0。mm顺顺反反第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。这种物质称为铁磁性物质。 对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩μ关系可由居里-郎之万公式表示:m 为真空,J·Kμ×10)mol10),、k为玻尔兹曼常数(1.3806×式中L为阿伏加德罗常数(6.022 --1231-23 0--27可作为由实验测定磁化率来研究物质内部结构,T为热力学温度。式磁导率(4π× 10((2-136)N·A 的依据。分子磁矩由分子内未配对电子数n决定,其关系如下:

熔点的测定、折光率的测定

广东工业大学 学院专业班组、学号 姓名协作者教师评定 熔点的测定、折光率的测定 (一)熔点的测定 一、实验目的 1.了解熔点测定的意义。 2.掌握测定熔点的方法。 二、实验原理 固体物质在大气压下加热熔化时的温度,称为熔点(melting point,简记为m.p.)。严格来说,熔点就是固体物质在大气压下达到固液两态平衡时的温度。 纯净的固体有机物一般都有固定的熔点,固液两相之间的变化非常敏锐,从初熔到全熔的温度范围称熔矩或熔程,一般不超过0.5~1℃。当混有杂质后,熔点就会有显著的变化,熔点降低,熔矩变宽。因此通过测定熔点,可以鉴别未知的固态有机化合物和判断有机化合物的纯度。 如果两种固体有机物具有相同或相近熔点,可以采用混合熔点来鉴别它们是否为同一化合物。若是两种不同化合物,通常会使熔点下降(也有例外),如果是相同化合物则熔点不变。 三、实验仪器与药品 申光牌WRS-1A数字熔点仪,上海精密科学仪器有限公司物理光学仪器厂 桂皮酸:又称肉桂酸;β-苯丙烯酸;3-苯基-2-丙烯酸。不溶于冷水,溶于热水、乙醇、乙醚、丙酮和冰醋酸。 五、实验装置图

六、实验步骤 1、样品的装填将熔点管开口向下插入粉末中,装取少量药品。然后将熔点管竖立起来,在桌面上礅几下,使样品落入管底,重复几次。最后取一支长约30~40cm的玻璃管,垂直于一干净的表面皿上,将熔点管(开口端向上)从玻璃上端自由落下3~5次,使管内装入高约3mm紧密结实的样品。 2、开启电源开关,稳定20分钟。 3、通过拨盘设定起始温度(拨盘只能向下拨动),再按下起始温度按钮,输入此温度,预制灯亮,稍等,到达所需温度时,预制灯熄灭。 4、选择升温速率(一般3℃/min),把波段开关旋至所需温度。 5、插入装有样品的毛细管(直立、慢慢插入。切不可勉强插入,否则要换毛细管!),此时初熔灯熄灭。 6、调零。使电表完全指零。 7、按下升温钮,升温指标灯亮。 8、数分钟后,初熔灯先闪亮,然后出现终熔读数显示,欲知初熔读数按初熔钮即得。 注:测桂皮酸的起始温度设定为125℃,混合物的起始温度设定为90℃。 八、本实验应掌握的实验技能 九、思考题 1 可通过鉴别新化合物为已知的化合物。 2 熔点测定是对有机物的测定。 十、实验结果分析与讨论

大学物理化学实验报告-络合物的磁化率的测定

物理化学实验报告 院系化学化工学院 班级化学 061 学号 13 姓名沈建明

实验名称 络合物的磁化率的测定 日期 同组者姓名 史黄亮 室温 ℃ 气压 kPa 成绩 一、目的和要求 1、掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法; 2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型 二、基本原理 物质的磁性一般可分为三种: 顺磁性, 反磁性和铁磁性。 a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。反磁物质的χD < 0(电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导致物质具有反磁性)。 b. 顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物质的 Xp > 0。(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生的磁效应)。 c. 铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性并不消失,呈现出滞后现象等一些特殊的磁效应。 d. 摩尔磁化率: 古埃法测定物质的摩尔磁化率( )的原理 通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 。 把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域 H ,而另一端位于磁场强度很弱的区域 H 0,则样品在沿样品管方向所受的力F 可表示为: M χH F mH Z χ?=?P P D M χχχχ≈+=

其中:m 为样品质量,H 为磁场强度, 为沿样品管方向的磁场梯度。 本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度H 。测定亚铁氰化钾 和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。 三、仪器、试剂 MB-1A 磁天平(包括电磁铁,电光天平,励磁电源) 1套 软质玻璃样品管 1只 角匙 1只 漏斗 1只 莫尔氏盐(NH 4)2SO 4·FeSO 4·6H 2O (分析纯) FeSO 4·7H 2O (分析纯) K 4Fe(CN)6·3H 2O (分析纯) 四、实验步骤 1. 磁场强度(H )的测定 : 用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H ).励磁电流变化0A →3A →→4A →→3A →0A ,分别测定励磁电流在各值下的天平的读数(4A 的值可以不读,持续2分钟左右,消磁),用同一仪器在同等条件下进行后续的测定。 具体操作如下: (1)把样品管悬于磁场的中心位置,测定空管在加励磁电流前,后磁场中的重 量。求出空管在加磁场前,后的重量变化管 ,重复测定三次读数,取平均值。 (2)把已经研细的莫尔氏盐通过小漏斗装入样品管,样品高度约为8m (此时样 品另一端位于磁场强度H=0处)。读出样品的高度,要注意样品研磨细小,装样均匀不能有断层。测定莫尔氏盐在加励磁电流前,后磁场中的重量。求出在加磁场前后的重量变化样品+管,重复测定三次读数,取平均值。 2.样品的莫尔磁化率测定: 把测定过莫尔氏盐的试管擦洗干净,把待测样品 ,分别装在样品管中,按着上述步骤(1) ,(2)分别测定在加磁场前,后的重量。求出重量的变化(管和样品+管),重复测定三次读数,取 H Z ??[]462()3K Fe CN H O ?4 2 7FeSO H O ?

磁化率的测定

华南师范大学实验报告学生姓名学号 专业化学(师范)年级班级 课程名称结构化学实验实验项目磁化率的测定 实验类型□验证□设计√综合实验时间2013年10月29日 实验指导老师彭彬实验评分 【实验目的】 1.掌握古埃(Gouy)磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d电子的排布情况和配位体场的强弱。 【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B为: B=H+4πI= H+4πκH(1) 式中,I称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H称为物质的体积磁化率。I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=ΚM/ρ称为摩尔磁化率(M是物质的摩尔质量)。这些数据可以从实验中测得。在顺磁、反磁性研究中常用到χ和χm,铁磁性研究中常用到I、σ。 不少文献中按宏观磁性质,把物质分成反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质几类。其中,χm<o,这类物质称为反磁性物质。χm>o,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则

在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ 0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F=g )m -m (空样? (4) 式中,样m ?为样品管加样品在有磁场和无磁场时的质量差;空m ?为空样品管在有磁场和无磁场时的质量差;g 为重力加速度。 则有,2 2AH F = κ 而 ρκχM = m ,h m A 样品 =ρ,h 为样品高度,A 为样品管截面积,m 样品为样品质量。 ()2 2m m gh m -m 2m 2H M M AH F M 样品空 样样品??= ==ρκχ (5) 只要测量样品重量的变化。磁场强度H 以及样品高度h ,即可根据式(5)计算样品的摩尔磁化率。 其中,莫氏盐的磁化率符合公式: 4-10*1 T 1938 .1m ∧+=χ (6) (3)简单络合物的磁性与未成对电子

掠入射法测量棱镜的折射率实验报告

一、实验名称:掠入射法测量棱镜的折射率 二、实验目的: 掠入射法测定棱镜的折射率。 三、实验器材: 分关计、钠光灯(波长0=589.3nm λ)、棱镜、毛玻璃。 四、实验原理: 如图所示为掠入射法。用单色扩展光源照射到棱镜AB 面上,使扩展光源以约90角掠入射到棱镜上。当扩展光源从各个方向射向AB 面时,以90入射的光线的内折射角最 大,为2max i ,其余入射角小于90的,折射角必小于2max i ,出射角必大于1min i ',而大于90的入射光不能进入棱镜。这样,在AC 侧面观察时,将出现半明半暗的视场。明暗视场的交线就是入射角190i =的光线的出射方向。可以证明: n =掠入射法 五、实验步骤: 1、由于扩展光源辐射进棱镜的入射角度具有一定的范围,因此在AC 出射面观察出射光时,可看到入射角满足1min 190i i <<的入射光线产生的各种方向的出射光形成一个亮区,存在两条明暗交界线。合理摆放钠光灯光源与棱镜入射面的位置,在望远镜中找出这个亮区。 2、旋转载物台,使入射到棱镜入射面的光线越来越少,当光源只有入射角约90的入射光线射入棱镜,望远镜中观察到的视场将由亮区慢慢收窄成为一条清晰的细亮线,此时的亮线就是入射角190i =的光线的出射方向。记录此时亮线的角度1min i 。 3、测量棱镜的顶角α,计算棱镜折射率。 六、实验数据记录:

棱镜顶角的测量数据 最小出射角测量数据 七、 数 据 处 理: 1、由棱镜顶角的测量数据可得: 平均值59.51559.537601659.502= =59.5384 α'''' +++' 2、测量不确定度 所以59.53804'ααα'=±?=± 3、由最小出射角测量数据可得: 平均值1min 39.518'3902'3906'39.508' 3928'4 i +++'== 所以1min 1min 1min 3928'04'i i i '''=±?=± 4、由 n =可得: 所以 1.590.07n n n =±?=±

实验一磁化率的测定

磁化率的测定实验报告 1. 实验目的 1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。 1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 2. 实验原理 2.1 磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度 H ′ 与外磁场强度 H 之和称为该物质的磁感应强度 B ,即 B = H + H′ (1) H ′与H 方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H ′比H 大得多(H ′ / H )高达10 4,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。 物质的磁化可用磁化强度I 来描述,H ′ =4πI 。对于非铁磁性物质,I 与外磁场强度H 成正比 I = KH (2) 式中,K 为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用 单位质量磁化率m χ或摩尔磁化率M χ表示物质的磁性质,它的定义是 ρχ/m K = (3) ρχ/MK M = (4) 式中,ρ和M 分别是物质的密度和摩尔质量。由于K 是无量纲的量,所以m χ和M χ的单位分别是cm 3?g -1和cm 3?mol -1 。 磁感应强度 SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G 。 2.2 分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其M χ就等于反磁化率反χ,且 M χ< 0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

磁化率实验报告1

磁化率的测定 08材化2 叶辉青200830750230 1 实验目的 1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。 1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 1.3 了解磁天平的原理与测定方法。 1.4 熟悉特斯拉计的使用。 2 实验原理 2.1 磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度H′与外磁场强度H 之和称为该物质的磁感应强度B,即 B=H+H′(1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。物质的磁化可用磁化强度I来描述,H′=4πI。对于非铁磁性物质,I与外磁场强度H成正比 I=KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物质的磁性质,它的定义是 χm=K/ρ(3) χM=MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm 和χM的单位分别是cm3/g和cm3/mol,磁感应强度SI单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.2 分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即 χM=χ顺+χ反(5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。顺磁化率与分子 永久磁矩的关系服从居里定律

实验报告测量玻璃折射率

实验报告:测量玻璃折射率 高二( )班 姓名: 座号: 【实验目的】 1、明确测定玻璃砖的折射原理 2、知道测定玻璃砖的折射率的操作步骤 3、会进行实验数据的处理和误差分析 【实验原理】 如图所示,要确定通过玻璃砖的折射光线,通过插针法找出跟入射光线AO 对应的出射光线O 1B ,就能求出折射光线OO 1和折射角θ2, 再根据折射定律就可算出玻璃的折射率n=2 1 sin sin θθ。 【实验器材】 平木板、 白纸、 玻璃砖1块、 大头针4枚、 图钉4个、 量角器(或三角板或直尺)、 铅笔 【实验步骤】 1、把白纸用图钉钉在木板上。 2、在白纸上画一条直线ad 作为玻璃砖的上界面,画一条线段AO 作为入射光线,并过O 点 画出界面ad 的法线NN 1。 3、把长方形的玻璃砖放在白纸上,使他的一个长边ad 跟严格对齐,并画出玻璃砖的另一个 长边bc.。 4、在AO 线段上竖直插上两枚大头针P 1P 2. 5、在玻璃砖的ad 一侧再插上大头针P 3,调整眼睛观察的视线,要使P 3 恰好能挡住P 1P 2在 玻璃中的虚像。 6、用同样的方法在玻璃砖的bc 一侧再插上大头针P 4,使P 4能同时挡住P 3本身和P 1P 2的虚 像。 7、记下P 3、P 4的位置,移去玻璃砖和大头针。过P 3、P 4引直线O 1B 与bc 交于O 1点,连接 OO 1,OO 1就是入射光线AO 在玻璃砖内的折射光线的方向。入射角θ1=∠AON ,折射角θ2=∠O 1ON 1 8、用量角器量出入射角θ1和折射角θ2。查出入射角和折射角的正弦值,记录在表格里。

9、改变入射角θ1,重复上述步骤。记录5组数据,求出几次实验中测得的 2 1 sin sin θθ的平均值,就是玻璃的折射率。 【注意事项】 1、用手拿玻璃砖时,手只能接触玻璃砖的毛面或棱,不能触摸光洁的光学面,严禁把玻璃砖 当尺子画玻璃砖的另一边bc 。 2、实验过程中,玻璃砖在纸上的位置不可移动. 3、玻璃砖要选用宽度较大的,宜在5厘米以上,若宽度过小,则测量折射角度值的相对误差 增大;用手拿玻璃砖时,只能接触玻璃毛面或棱,严禁用玻璃砖当尺子画界面; 4、入射角i 应在15°~75°范围内取值,若入射角α过大。则由大头针P 1、P 2射入玻璃中的光 线量减少,即反射光增强,折射光减弱,且色散较严重,由玻璃砖对面看大头针的虚像将暗淡,模糊并且变粗,不利于瞄准插大头针P 3、P 4。若入射角α过小,折射角将更小,测量误差更大,因此画入射光线AO 时要使入射角α适中。 5、上面所说大头针挡住大头针的像是指“沉浸”在玻璃砖里的那一截,不是看超过玻璃砖上方 的大头针针头部分,即顺P 3、P 4的方向看眼前的直线P 3、P 4和玻璃砖后的直线P 1、P 2的虚像是否成一直线,若看不出歪斜或侧移光路即可确定。 6、大头针P 2、P 3的位置应靠近玻璃砖,而P 1和P 2、P 3和P 4应尽可能远些,针要垂直纸面, 这样可以使确定的光路准确,减小入射角和折射角的测量误差。 【实验数据】 实验数据处理的其他方法:

磁化率的测定实验报告

华 南 师 范 大 学 实 验 报 告 课程名称 结构化学实验 实验项目 磁化率的测定 一、【目的要求】 1.掌握古埃(Gouy )磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d 电子的排布情况和配位体场的强弱。 二、【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A ·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B 为: B =H +4πI = H +4πκH (1) 式中,I 称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H 称为物质的体积磁化率。I 和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=Κm/ρ称为摩尔磁化率。这些数据是宏观磁化率。在顺磁、反磁性研究中常用到χ和χm ,帖磁性研究中常用到I 、σ。 物质在外磁场作用下的磁化有三种情况 1.χm <o ,这类物质称为逆磁性物质。 2.χm >o ,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F= g )m -m (空样?

实验四 旋光度和折光率的测定

实验四旋光度和折光率的测定 一、实验目的 1、了解旋光仪的构造、使用方法,掌握旋光度的测定原理与方法。 2、了解阿贝折光仪的构造,使用方法,掌握有机物折光率的测定原理和方法。 二、实验原理 1、旋光度:某些有机物因具有手性分子,能使偏光振动平面旋转,这种性质称为物质的旋光性。具有旋光性的物质称为旋光性物质或光学活性物质。旋光性物质使偏光振动平面旋转的角度称为旋光角,旋光角附上旋转方向叫旋光度,常以α表示;使偏光振动平面向左旋转的为左旋,用(一)或ι表示;使偏光振动平面向右旋转的为右旋,用(+)或d表示。 2、旋光仪构造 旋光度可用旋光仪来测定,其构造一般包括: a.单色光源:产生单色光,一般用钠光灯 b.起偏镜:产生偏振光 c.半波片:将偏振光束分成三分视场 d.样品管:盛放样品溶液 e.检偏镜 f.目镜 g.刻度盘 3、旋光度的大小除决定于物质的本性外,还与测定时的条件有关。旋光度随溶液的浓度或液体的密度d、测定时的温度t,所用光的波长λ,盛液管的长度ι及溶剂的性质等因素而改变。为比较物质的旋光性,需以一定条件下的旋光度作为基准。通常规定:1cm3含1g旋 t表光性物质的溶液放在1dm长的盛液管中测得的旋光度叫做该物质的比旋光度,并用[α] λ示,对某一物质来说,比旋光度是一个定值,它与旋光度的关系如下: α 纯液体的比旋光度[α]λt= d l. α 溶液的比旋光度[α]λt= c l. 比旋光度是物质特性常数之一。因此可以通过测定旋光度,来鉴定旋光性物质的纯度和含量;也可与其它方法结合起来确定未知物是何种物质。

4、折光率:光在空气中的速率和在另一物质中的速率之比称为折光率。 一种介质的折光率(n)就是光线从真空进入这种介质时入射角(α)和折射角(β)的正旋光度 折光率是有机化合物重要的特性常数。固体、液体和气体都有折光率,它不仅作为物质纯度的标准,也可用来鉴定未知物。 物质的折光率随入射光的波长与测定时的温度不同而变化。通常温度升高1℃,折光率降低3.5—5.5×10-14,光源一般采用钠光源。 5、阿贝折射仪的构造 结合仪器具体讲解,主要有放大镜、刻度尺、望远镜、消色镜、直角棱镜、反射镜等。 三、仪器与试剂 1、仪器 WZX-1光学度盘旋光仪、阿贝折光仪 2、试剂蒸馏水、10%葡萄糖、未知浓度的葡萄糖溶液、重蒸馏水、丙酮、待测液 四、实验步骤 1、旋光度的测定 (1)预热开始测量前,须将电源开关推到“开”的位置,预热5—10min,直至钠光灯已充分受热。 (2)旋光仪零点的校正在测定样品前,必须先校正旋光仪零点。先将旋光管洗净,装上蒸馏水,使液面凸出管口,将玻璃盖沿管口边缘轻轻平推盖好,不能带入气泡。然后旋上螺丝帽盖,使之不漏水。但注意不可旋得过紧,以免玻璃盖产生扭力而影响读数正确性。将已装好蒸馏水的样品管擦干,放入旋光仪内,罩上盖子。将标尺盘调到零点左右,调节手轮使视场亮度达到一致,此时读数应为零,由于使用者对其感觉不一,此读数可能为某一数值(即为初读数)记下读数。重复操作至少5次,取其平均值即为零点。若零点相差太大,应重新校正。 (3)旋光度的测定取已准确配制的10%葡萄糖液,按上述方法装入已洗净的旋光管中(先用蒸馏水洗干净,再用所测溶液洗涤几次)。把旋光管放入旋光仪里,转动手轮,使三部分亮度不同的视场重新调至亮度一致为止,记下读数。这时所得的读数与零点(初读数)之间的差值,即为该溶液的旋光度。再记下旋光管的长度及溶液的浓度,然后按公式计算其比旋光度。 取未知浓度的葡萄糖溶液,按同样的方法测定旋光度,然后利用上边求出的比旋光度计

磁化率的测定

磁化率的测定 一、目的要求 1、测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。 2、掌握古埃(Gouy)磁天平测定磁化率的原理和方法。 二、实验原理 1.磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度H′与外磁场强度H之和称为该物质的磁感应强度B,即 B = H + H′ (1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。 物质的磁化可用磁化强度I来描述,H′=4πI。对于非铁磁性物质,I与外磁场强度H成正比I = KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物质的磁性质,它的定义是 χm = K/ρ(3) χM = MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm 和χM的单位分别是cm3·g-1和cm3·mol-1。 磁感应强度SI单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即χM =χ顺 + χ反 (5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。 顺磁化率与分子永久磁矩的关系服从居里定律 (6) 式中,N A为Avogadro常数;K为Boltzmann常数(1.38×10-16erg·K-1);T为热力学温度;μm为分子永久磁矩(erg·G-1)。由此可得

磁化率-实验报告

一、实验目的与要求 1、测定物质的摩尔磁化率,估计待测金属配合物中心离子的未成对电子数,判断分子配键的类型。 2、掌握磁天平测定磁化率的原理和方法。 二、实验原理 1、摩尔磁化率和分子磁化率 在外磁场作用下,由于电子等带电粒子的运动,物质会被磁化而感应出一个附加磁场。这个附加磁场H’的强度由物质的磁化率χ决定:H’=4χχ为物质的体积磁化率,反映物质被磁化的难易程度,化学上常用摩尔磁化率χ m 表示磁化程度:,单位为。 对于顺磁性物质,摩尔顺磁磁化率与分子磁矩关系有: 顺 (为真 空磁导率,由于反磁化率较小,所以χ 反 忽略作近似处理) 顺磁性物质与为成对电子数n的关系:(为玻尔磁子,=9.273×10-21erg·G-1 =9.273×10-28J·G-1 =9.273×10-24 J·T-1) 2、摩尔磁化率的测定 样品在非均匀磁场中受到的作用力F可近似为: 在非均匀磁场中,顺磁性物质受力向下所以增重;而反磁性物质受力向上所以减重。测定时在天平右臂加减砝码使之平衡。设△m为施加磁场前后的称量,则: 所以: Δy样品管加样品后在施加磁场前后的称量差(g);Δ 为空样品管在施加磁场前后的称量差(g);g为重力加速度(9.8m·s-2);h为样品高度(cm);y样品的摩尔质量(g·mol-1);y样品的质量(g);y磁极中心磁场强度(G)。 磁场强度H可由特斯拉计或CT5高斯计测量。应该注意,高斯计测量的实际 上是磁感应强度B,单位为T(特斯拉),1T=104高斯。磁场强度H可由 B =μ H 关系式计算得到,H的单位为A·m-1。也可用已知磁化率的硫酸亚铁铵标定。 在精确的测量中,通常用莫尔氏盐来标定磁场强度,它的摩尔磁化率与温度的关系为 三、实验用品 1、仪器 分析天平、高斯计、玻璃样品管、研钵、角匙、玻璃棒 2、试剂 莫氏盐(NH 4) 2 SO 4 ·FeSO 4 ·6H 2 O、亚铁氰化钾 K 4 [Fe(CN) 6 ]·3H 2 O、硫酸亚铁FeSO 4 ·7H 2 O。 四、实验步骤

[实用参考]大学物理实验报告册-测三棱镜的折射率

用分光计测棱镜折射率 实验日期-----实验组号----实验地点----报告成绩 [实验目的] 1.———— 2.———— [实验仪器] 1.分光计的结构,主要由------------、------------、-------------和------------组成。 2.平行光管由------和----------组成。 3.望远镜主要由-----,-------和-------组成。 4.读数装置由-------与---------组成.刻度盘分为360°,最小刻度为-------。在刻度盘内同一直径的两端各装一个游标为了消除刻度盘与分光计中心轴线之间的--------- [实验原理摘要] 最小偏向角,用δmin 表示,棱镜玻璃的折射率n 与棱镜顶角A 、最小偏向角δmin 有如下关系. n [实验内容及步骤] 1. 分光计的调整:为了测准入射光与出射光传播方 向之间的角度,分光计的调整必须做到----------------------------------------------------------------;-----------------------------------------------;-----------------------------------------------。 调整顺序 (1)目测粗调 (2)调节望远镜: a.调整--------看清目镜中十字叉丝; b.开小灯泡电源开关; c 按图2放置平面镜,当需要改变平面镜的倾斜度时,只要调节螺丝B 1或螺丝B 3. d.旋转------,使平面镜偏离望远镜一小角度,从望远镜外侧在平面镜内寻找绿光斑 图1 三棱镜的折射 图2 B 1 B 2 B 3

磁化率的测定

实验十六 磁化率的测定 1. 摘要 磁化率的测定是一个经典的磁学测量方法。1889年Gouy [1]建立了在均匀磁场中测量磁化率的古埃法,1964年Mulay [2]设计了在非均匀磁声中测定磁化率的Faraday 法。 摩尔磁化率定义为 据κ的特点将物质分为三类:κ>0称顺磁性物质;κ<0称反磁性物质;另外有少数物质的κ值与外磁场H 有关,随外磁场强度的增加而急剧地增强,且伴有剩磁现象,称此为铁磁性物质(如铁、钴、镍等)。凡原子分子中具有自旋未配对电子的物质都是存在固有磁矩的顺磁性物质。这些原子分子的磁矩象小磁铁一样,在外磁场中总是趋向顺着磁场方向定向排列,但原子分子的热运动又使这些磁矩趋向混乱,在一定温度下这两个因素达成平衡,使原子分子磁矩部分顺着磁场方向定向排列而得以增强物质内部的磁场,显示顺磁性。 凡是原子分子中电子自旋已配对的物质,一般是反磁性的物质。大部分物质属反磁性。其原因是物质内部电子轨道运动受外磁场作用,感应出“分子电流”而产生与外磁场方向相反的诱导磁矩。一般说来,原子分子中含电子数目较多电子活动范围较大时,其反磁化率就较大。 实际上顺磁物质的磁化率除了分子磁矩定向排列所产生的χ顺外,同时还包含有感应所产生的反磁化率χ反,即: χM =χ顺+χ反 由于χ顺比χ反大1~3个数量级,因此顺磁性物质的反磁性被掩盖而表现出顺磁性。在不很精确的计算中,可近似地视χ顺为χM 。 顺磁化率与分子磁矩的关系一般服从居里定律 (2.16.2)式将物质的宏观性质χM 与物质的微观性质μ联系起来,因此可通过实验测定χM 来计算物质分子的永久磁矩μ。实验表明,对自由基或其它具有未成对电子的分子和某些第一族过渡元素离子的磁矩μ与未成对电子数n 的关系为 B n n μμ)2(+= (2.16.3) 联系(2.16.2)和(2.16.3)两式,可直接得到n 的表达式 1 1)2(84.22-++= T n n n 顺χ (2.16.4) (2.16.1) (2.16.2)

磁化率的测定实验报告记录(华南师范大学物化实验)

磁化率的测定实验报告记录(华南师范大学物化实验)

————————————————————————————————作者:————————————————————————————————日期:

磁化率的测定 一、实验目的 (1)掌握古埃磁天平测定物质磁化率的实验原理和技术。 (2)通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数,并判断d电子的排布情况和配位体场的强弱。 二、实验原理 2.1物质的磁性 物质在磁场中被磁化,在外磁场强度H的作用下,产生附加磁场。该物质内部的磁感应强度B为: B=H+4πI=H+4πκH (1)式中,I称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H称为物质的体积磁化率。I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=κM/ρ称为摩尔磁化率(M是物质的摩尔质量)。这些数据都可以从实验测得,是宏观磁性质。在顺磁、反磁性研究中常用到χ和χm,铁磁性研究中常用到I、σ。 不少文献中按宏观磁性质,把物质分成反磁性物质。顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质积累。其中,顺磁性物质χm>0而反磁性物质的χm<0。 2.1古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。为了测量不同温度的数据,要使用变温、恒温和测温装置。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场强度为零处。 样品在磁场中受到一个作用力。 dF=κHAdH (2) 式中,A表示圆柱玻璃管的截面积。 样品在空气中称量,必须考虑空气修正,即 dF=(κ-κ0HAdH)(3) κ0表示空气的体积磁化率,整个样品的受力是积分问题: (4)因H0H,且忽略κ0,则 (5) 式中,F可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F=(Δm样-Δm空)g 式中,Δm 样为样品管加样品在有磁场和无磁场时的质量差;Δm 空 为空样品

测定三棱镜折射率实验报告_0

测定三棱镜折射率实验报告 各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟! 【实验目的】利用分光计测定玻璃三棱镜的折射率;【实验仪器】分光计,玻璃三棱镜,钠光灯。【实验原理】最小偏向角法是测定三棱镜折射率的基本方法之一,如图10所示,三角形%26#8197;ABC%26#8197;表示玻璃三棱镜的横截面,AB和AC是透光的光学表面,又称折射面,其夹角a称为三棱镜的顶角;BC%26#8197;为毛玻璃面,称为三棱镜的底面。假设某一波长的光线%26#8197;LD%26#8197;入射到棱镜的%26#8197;AB%26#8197;面上,经过两次折射后沿%26#8197;ER%26#8197;方向射出,则入射线%26#8197;LD%26#8197;与出射线%26#8197;ER%26#8197;的夹

角%26#8197;%26#8197;称为偏向角。图10三棱镜的折射由图10中的几何关系,可得偏向角(3)因为顶角a满足,则(4)对于给定的三棱镜来说,角a是固定的,随和而变化。其中与、、依次相关,因此实际上是的函数,偏向角也就仅随而变化。在实验中可观察到,当变化时,偏向角有一极小值,称为最小偏向角。理论上可以证明,当时,具有最小值。显然这时入射光和出射光的方向相对于三棱镜是对称的,如图11所示。您正浏览的文章由第一'范文网整理,版权归原作者、原出处所有。图11最小偏向角若用表示最小偏向角,将代入(4)式得(5)或(6)因为%26#8197;,所以%26#8197;,又因为%26#8197;,则(7)根据折射定律得,(8)将式(6)、(7)代入式(8)得:(9)由式(9)可知,只要测出入射光线的最小偏向角及三棱镜的顶角,即可求出该三棱镜对该波长入射光的折射率n.【实验内容与步骤】1.调节分光计按实验24一1中的要求与步骤调整好分

磁化率的测定

磁化率的测定 一、实验目的 1.掌握古埃(Gouy)法测定磁化率的原理和方法。 2.测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 二、预习要求 1.了解磁天平的原理与测定方法。 2.熟悉特斯拉计的使用。 三、实验原理 1.磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度 H′与外磁场强度 H 之和称为该物质的磁感应强度 B,即 B = H + H′(1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达 104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。 物质的磁化可用磁化强度 I 来描述,H′=4πI。对于非铁磁性物质,I 与外磁场强度 H成正比 I = KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物

质的磁性质,它的定义是 χm = K/ρ(3) χM = MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm和χM的单位分别是cm3?g-1和cm3?mol-1。 磁感应强度 SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即 χM =χ顺 + χ反(5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。顺磁化率与分子永久磁矩的关系服从居里定律 (6) 式中,NA为Avogadro常数;K为Boltzmann常数(1.38×10-16erg?K-1);T为热力学温度;μm为分子永久磁矩(erg?G-1)。由此可得

相关文档
相关文档 最新文档