文档库 最新最全的文档下载
当前位置:文档库 › 数学物理方法-填空题答案

数学物理方法-填空题答案

数学物理方法-填空题答案
数学物理方法-填空题答案

1. 复数1i e -的模为,主辐角为弧度。

2. 函数 f (z)=e iz 的实部 Re f (z)=______________。

3. ln1=_________.

4. =ix e _________。

5. ln(1)i --=23(21)(2),0,1,2,2

n n n π-++=±± 。 6.复数 =-)4ln(),2,1,0()12(4ln ±±=++k i

k π。 7. 复数=i cos 2/)(1-+e e 。

8. 若解析函数),(),()(y x iv y x u z f +=的虚部xy y x y x v +-=22),(,

则实部=),(y x u c xy y x +--22/)(22 。

9. 若解析函数),(),()(y x iv y x u z f +=的虚部(,)v x y x y =+且(0)1f =,则解析函数为 z zi +。

10. 积分 dz z z z ?=12sin =______ .

11. 求积分=?=1cos z dz z

z _________ 12. 2000 |2009|3(2011)z z dz --=-=? 0 。

13. 设级数为∑∞=1n n

n

z ,求级数的收敛半径_______________。

14.设级数为)211n n n n z z +

∑∞=(,

求级数的收敛区域。 15. )

3)(2(1)(--=z z z f 在3||2<

]32[)()1(0)1(n n n n n z z z f +-∞

=+-+-=∑

16.在12z <<的环域上,函数1()(1)(2)

f z z z =+-的洛朗级数展开为 110

11[(1)]32k

k k k k z z ∞++=-+∑ 17.函数sin /()z z f z e =在0=z 的奇点类型为 可去奇点 ,其留数为 0 。

18.设f (z)=9cos z

z , 求Resf (0)= _________。 19.函数z ze z f /1)(=在0=z 的奇点类型为 本性奇点 ,其留数为 1/2 。

20.求解本性奇点留数的依据为 洛朗级数展开的负一次项系数 。

21.设n m ,为整数,则=??-dx nx mx )cos (sin π

π 0 。

22.在(,)ππ-这个周期上,()f x x =。其傅里叶级数展开为12sin k kx k

∞=∑ 23.设)(x f 是定义在],0[l 上的任意可积函数,若要求函数)(x f '在它的定义区间的边界上为零,则)(x f 的傅里叶展开为。

24.当02x <<时,()1f x =-;当20x -<<时,()1f x =;当||2x >时,()0f x =。则函数的()f x 傅里叶变换为2()(1cos 2)B ωωπω=-

25. 函数 ???><=)1|(|0

)1|(|)(t t t t f 的傅里叶变换为)/()/sin cos (2πωωωω+-。 26.=+??-dx x ] )6([sinx 20092008 π

δ -1/2 。

27.t 21+的拉普拉斯变换即=+)21(t L )0(Re )

/2/1(2>+p p p 。 28.2()1sin3t f t e t =-+的拉普拉斯变换为211329

p p p -+-+。

29. 求??

????at a t L sin 2=____________。 30.一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为5/9处把弦朝横

向拨开距离h ,然后放手任其振动。横向位移),(t x u 的初始条件为095,[0,]59(,)9()5,[,]49t hx l x l u x t h l x l x l l =?∈??=?-?∈??

。 31.数学物理方程定解问题的适定性是指_解的存在性,唯一性,稳定性。

32.长为L 的均匀细杆,一端绝热, 另一端保持恒度u 0 ,试写出此热传导问题的边界条件

_________,_________。

33.长为L 的均匀杆作纵振动时,一端固定,另一端受拉力F 0而伸长,试写出杆在撒去力F 0

后振动时的边界条件_________,_________

34.长为L 的均匀细杆, 一端有恒定热流q 0流入, 另一端保持恒温T 0,试写出此热传导

问题满足的边界条件____________,_________ 。

35.长为L 的均匀杆, 一端固定,另一端受拉力F 而伸长,放手后让其自由振动,试写出杆

振动满足的初始条件 =____________,_________。

36.说明物理现象初始状态的条件叫 初始条件 ,说明边界上的约束情况的条件叫 边

界条件 ,二者统称为 定解条件 。

37.边界条件f u n u S

=+??)(σ是第 三 类边界条件,其中S 为边界。 38.三维热传导齐次方程的一般形式是 )(2222222z u y u x u a t

u ??+??+??=?? 。 40.无限长弦的自由振动,设弦的初始位移为Sin(kx), 初始速度为零, 则弦上任意时刻的波动为______________ 。 (其中a 为弦上的波速,k 为波矢的大小)

41.无限长弦的自由振动,设弦的初始位移为φ(x), 初始速度为aφ(x),(a 为弦上的波速)则弦上任意时刻的波动为______________。

42.稳定的温度场的温度分布u 满足的数学物理方程为_____________ 。

43.常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和稳定场方程 。

44.长为l 的均匀杆,侧面绝热,沿杆长方向有温差,杆的一端温度为零,另一端有热量流入,其热流密度为t sin 。设杆开始时杆内部温度沿杆长方向呈2

x 分布,则杆的热传导问题可用定解问题???

????=><<==== sin 1 ,0 0 ,0 ,020t k u u x u t l x Du u l x x x t xx t 来描述。 45.方程0)()(=+''x X x X λ与边界条件0)()0(==l X X 构成本征值问题,其本征值为,该方程满足边界条件的通解为。

46.积分==?-dx x P x P x I )()(821

12 0 ,其中)(2x P 是方程0)(62)1(2=+'-''-x y y x y x 的

一有限解。

47.根据勒让德多项式的表达式由=+)(3

1)(3202x P x P 2x -。 48.勒让德多项式)(1x P 的表达式为

)1(212-x dx d 。 49.由贝塞尔函数的递推公式由=)(0x J dx

d )(1x J -。 50.二维拉普拉斯方程的基本解是2020)()(1

ln y y x x u -+-=。

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0z f z e d ζ ζζ=?,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)uxy = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y - C.(cos sin )x e y y y y - D.(cos sin )x e x y y y -

数学物理方法第八章作业答案

P 175 8.1在0x =的邻区域内,求解下列方程: (1) 2 (1)0x y''xy'y -+-= 解:依题意将方程化为标准形式2 2 10(1) (1) x y''y'y x x + - =-- 2 ()(1) x p x x = -,2 1()(1) q x x =- - 可见0x =是方程的常点. 设方程的级数解为0 ()n n n y x c x ∞ == ∑,则1 1 ()n n n y'x nc x ∞ -== ∑,2 2 ()(1)n n n y''x n n c x ∞ -== -∑ 代入原方程得2 2 2 1 2 2102 2 2 1 (1)(1)0(1)(1)0 n n n n n n n n n n n n n n n n n n n n n n n n n n c x x n n c x x nc x c x n n c x n n c x nc x c x ∞ ∞ ∞ ∞ ---====∞ ∞ ∞ ∞ -====---+- =? -- -+ - =∑∑∑∑∑∑∑∑ 由0 x 项的系数为0有:202012102 c c c c ?-=?= 由1 x 项的系数为0有:311313200 (0)c c c c c ?+-=?=≠ 由2x 项的系数为0有:42224201143212012 24 c c c c c c c ?-?+-=?= = 由3 x 项的系数为0有:533355432300c c c c c ?-?+-=?= 由4x 项的系数为0有:64446403165434010 80 c c c c c c c ?-?+-=?= = 由5 x 项的系数为0有:755577654500c c c c c ?-?+-=?= 由6 x 项的系数为0有:866686025587656056 896 c c c c c c c ?-?+-=?== …… ∴ 方程的级数解为 2 4 6 8 0100000 1115()2 24 80 896 n n n y x c x c c x c x c x c x c x ∞== =++ + + + +???∑

数学物理方法习题答案[1]

数学物理方法习题答案: 第二章: 1、(1)a 与b 的连线的垂直平分线;以0z 为圆心,2为半径的圆。 (2)左半平面0,x <但是除去圆22(1)2x y ++=及其内部;圆2211()416x y -+= 2、2 ,cos(2)sin(2)i e i π ππ+; 32,2[cos(sin(3)i e i π ππ+; ,(cos1sin1)i e e e i ?+ 3、22k e ππ--; (623)i k e ππ+; 42355cos sin 10cos sin sin ?????-+; 11()sin ()cos 22b b b b e e a i e e a --++- 1 ()cos 2 y y ay b e e x e ---- 4、(1) 2214u υ+= 变为W 平面上半径为1 2的圆。 (2)u υ=- 平分二、四象限的直线。 5、(1) z ie iC -+; 2(1) 2i z -; ln i z - (2) 选取极坐标 ,, ()2 2 u C f z ?? υ==+=6、ln C z D + 第三章: 1、 (1) i π (2)、 i ie π-- (3)、 0 (4)、i π (5)、6i π 2、 设 ()!n z z e f n ξ ξ= z 为参变数,则 () 1 220 1 1 () 1(0)2!2! 1()()!!! ! n z n n n l l n n n n z z n z e d f d f i n i n z d z z e e n n d n n ξξξξξξξξπξξπξ ξ +=== ====? ? 第四章: 1、(1) 23 23 ()()ln 22z i z i z i i i i i ---+-+- (2)23313 (1) 2!3!e z z z ++++ (3) 211111()()[(1)(1)](1)11222k k k k k k z z i i i z z z i z i z i ∞=---=-=--++--<+-+∑ 2、(1) 1 n n z ∞ =--∑ (2) 11()43f z z z =--- ①3z <时 11011()34k k k k z ∞ ++=-∑ , 34z <<时

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

数学物理方法试题

嘉应学院 物理 系 《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 2、奇点分为几类?如何判别? (6分) 3、何谓定解问题的适定性?(6分) 4、什么是解析函数?其特征有哪些?(6分) 5、写出)(x δ挑选性的表达式(6分) 6、写出复数2 3 1i +的三角形式和指数形式(8分) 7、求函数 2 ) 2)(1(--z z z 在奇点的留数(8分) 8、求回路积分 dz z z z ?=12cos (8分) 9、计算实变函数定积分dx x x ?∞ ∞-++1 1 4 2(8分) 10、求幂级数k k i z k )(11 -∑∞ = 的收敛半径(8分) 二、计算题(共30分) 1、试用分离变数法求解定解问题(14分) ?? ?????=-===><<=-====0, 2/100 ,000002t t t l x x x x xx tt u x u u u t l x u a u

2、把下列问题转化为具有齐次边界条件的定解问题(不必求解)(6分) ??? ? ? ???? ===-==?====0,sin 0),(000b y y a x x u a x B u u y b Ay u u π 3、求方程 满足初始条件y(0)=0,y ’(0)=1 的解。(10分) 嘉应学院 物理 系 《数学物理方法》A 课程考试题 一、简答题(共70分) 1、什么是解析函数?其特征有哪些?(6分) 2、奇点分为几类?如何判别? (6分) 3、何谓定解问题的适定性?(6分) 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分) 5、写出)(x δ挑选性的表达式(6分) 6、求幂级数k k i z k )(11 -∑∞ = 的收敛半径(8分) 7、求函数2 )2)(1(1 --z z 在奇点的留数(8分) 8、求回路积分 dz z z z ?=12cos (8分) t e y y y -=-'+''32

数学物理方法第二次作业答案解析

第七章 数学物理定解问题 1.研究均匀杆的纵振动。已知0=x 端是自由的,则该端的边界条件为 __。 2.研究细杆的热传导,若细杆的0=x 端保持绝热,则该端的边界条件为 。 3.弹性杆原长为l ,一端固定,另一端被拉离平衡位置b 而静止,放手任其振动,将其平衡位置选在x 轴上,则其边界条件为 00,0x x l u u ==== 。 4.一根长为l 的均匀弦,两端0x =和x l =固定,弦中力为0T 。在x h =点,以横向力0F 拉弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f (0)=0,f (l )=0; _____。 5、下列方程是波动方程的是 D 。 A 2tt xx u a u f =+; B 2 t xx u a u f =+; C 2t xx u a u =; D 2tt x u a u =。 6、泛定方程20tt xx u a u -=要构成定解问题,则应有的初始条件个数为 B 。 A 1个; B 2个; C 3个; D 4个。 7.“一根长为l 两端固定的弦,用手把它的中 点朝横向拨开距离h ,(如图〈1〉所示)然后放 手任其振动。”该物理问题的初始条件为( D )。 A .?????∈-∈==] ,2[),(2]2,0[,2l l x x l l h l x x l h u o t B .???? ?====00 t t t u h u C .h u t ==0 D .???????=???? ?∈-∈===0 ],2[),(2]2,0[,200t t t u l l x x l l h l x x l h u 8.“线密度为ρ,长为l 的均匀弦,两端固定,开始时静止,后由于在点)0(00l x x <<受谐变 u x h 2 /l 0 u 图〈1〉

数学物理方法试题

数学物理方法试卷 一、选择题(每题4分,共20分) 1.柯西问题指的是( ) A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( ) A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性. 3.牛曼内问题 ?????=??=?Γ f n u u ,02 有解的必要条件是( ) A .0=f . B .0=Γu . C .0=?ΓdS f . D .0=?Γ dS u . 4.用分离变量法求解偏微分方程中,特征值问题???==<<=+0 )()0(0 ,0)()(''l X X l x x X x X λ 的解是( ) A .) cos , (2x l n l n ππ??? ??. B .) sin , (2 x l n l n ππ?? ? ??. C .) 2)12(cos ,2)12( (2x l n l n ππ-??? ??-. D .) 2)12(sin ,2)12( (2x l n l n ππ-?? ? ??-. 5.指出下列微分方程哪个是双曲型的( ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u . C .02222=++++y x yy xy xx u y xyu u y xyu u x . D .023=+-yy xy xx u u u . 二、填空题(每题4分,共20分)

1.求定解问题???? ?????≤≤==>-==><<=??-??====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x u t u t t t x x 的解是( ) 2.对于如下的二阶线性偏微分方程 0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx 其特征方程为( ). 3.二阶常微分方程0)()4341()(1)(2'''=-++ x y x x y x x y 的任一特解=y ( ). 4.二维拉普拉斯方程的基本解为( r 1ln ),三维拉普拉斯方程的基本解为( ). 5.已知x x x J x x x J cos 2)( ,sin 2)(2 121ππ== -,利用Bessel 函数递推公式求 =)(2 3x J ( ). 三、(20分)用分离变量法求解如下定解问题 222220 000, 0, 00, 0, t 0, 0, 0x .x x l t t t u u a x l t t x u u x x u x u l ====???-=<<>???????==>?????==≤≤?? 解:

数学物理方法典型习题

典型习题 一、填空题: 1 的值为 , , 。 2 、1-+的指数表示为_________ ,三角表示为 。 3、幂级数2 k k=1(k!)k z k ∞ ∑的收敛半径为 。 4、ln(5)-的值为 。 5、均匀介质球,半径为0R ,在其中心置一个点电荷Q 。已知球的介电常数为 ε,球外为真空,则电势所满足的泛定方程为 、 。 6、在单位圆的上半圆周,积分1 1||__________z dz -=?。 7、长为a 的两端固定弦的自由振动的定解问问题 。 8、具有轴对称性的拉普拉斯方程的通解为 。 9、对函数f(x)实施傅里叶变换的定义为 ,f (k )的傅里叶逆变换为 。 10、对函数f(x)实施拉普拉斯变换的定义为 。 二、简答题 1、已知()f z u iv =+是解析函数,其中22 v(x,y)=x y +xy -,求 (,)u x y 。 2、已知函数1w z = ,写出z 平面的直线Im 1z =在w 平面中的,u v 满足的方程。 3、将函数21()56f z z z =-+在环域2||3z <<及0|2|1z <-<内展开成洛朗级数. 4、长为L 的弹性杆,一端x=0固定,另一端沿杆的轴线方向被拉长p 后静止(在弹性限度内),突然放手后任其振动。试写出杆的泛定方程及定解条件。 三、计算积分: 1. ||22(1)(21)z zdz I z z ==-+? 2.||2sin (3)z zdz I z z ==+? 3.22202(1)x I dx x ∞ =+? 4.||1(31)(2) z zdz I z z ==++? 5. ||23cos z zdz I z ==? 6. 240x dx 1x I ∞=+? 7、0sin x dx x ∞ ? 8、20cos 1x dx x ∞+? 四、使用行波法求解下列方程的初值问题

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

数学物理方法习题及解答

2. 试解方程:()0,044>=+a a z 444244 00000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i ππππωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+-+ (2) y = (3) 求复数2 ?? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,23 i i i e r π πππππ θπ??==+=+==-+ ?????=-===+=±± 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ???而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

数学物理方法第08章习题

第八章 习题答案 8.1-1 证明递推公式: (1)()()()x l x x x l l l P P P 1=' -'- (2)()()()()x l x x x l l l P 1P P 1+=' -'+ (3)()()()()x l x x l l l P 12P P 11+=' -'-+ 证明:基本递推公式 ()()()()()x l x l x x l l l l 11P 1P P 12+-++=+ ① ()()()()x x x x x l l l l ' -'+'=-+P 2P P P 11 ② (1)将①式对x 求导后可得: ()()()()()()()x l x l x l x x l l l l l '++'=++'++-11P 1P P 12P 12 ③ 由③-()?+1l ②可得 (目的:消去()x l ' +1P ) ()()()()()()x l x l x x l l l l P 1P 12P 12+-++'+ ()()()()()x l x x l x l l l l '++'+-'=--P 12P 1P 11 整理可得:()()()x l x x x l l l P P P 1=' -'- (2)将()()()x l x x x l l l P P P 1=' -'-乘以l 得: ()()()x l x l x lx l l l P P P 21=' -'- ④ 由③-④得 (目的:消去()x l ' -1P ) ()()()()()()x l x l x x l l l l '+=++'++12P 1P 1P 1 整理可得:()()()()x l x x x l l l P 1P P 1+=' -'+ (3)由2×③-()12+l ×②可得: (目的:消去()x l ' P ) ()()()()()()x l x l x l l l l '++'+++-+11P 12P 12P 24 ()()()()()x l x l x l l l l P 12P 22P 211++' ++'+- 整理可得:()()()()x l x x l l l P 12P P 11+=' -'-+

【最最最最最新】数学物理方法试卷(附答案)

福师大物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别?(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数2 31i +的三角形式和指数形式(8分) 三角形式:()3sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z

【】数学物理方法试卷(全答案)

嘉应学院物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 # 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 > 4、什么是解析函数其特征有哪些(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 |

4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型(6分) 数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数 231i +的三角形式和指数形式(8分) ¥ 三角形式:()3 sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2

数学物理方法习题及解答

2. 试解方程:()0,04 4 >=+a a z 44424400000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i πππ π ωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+ -+ (2) y = (3) 求复数2 12?? + ? ??? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052 916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223 i i i e r π πππππ θπ??==+=+==- ?????=-===+=±±L 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ?? ?而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数学物理方法试题汇总

12届真题 1. 求下列各小题(2*5=10分): (1)用几何图形表示0arg(1)4z π<-< ; (2)给出序列(1/)sin 6 n n z i n π=+的聚点; (3)在复数域中求解方程cos 4z =的解; (4)给出二阶偏微分方程的基本类型; (5)给出解析函数所满足的柯西-黎曼方程。 2.按给定路径计算下列积分(5*2=10分): (1)320Re i zdz +?,积分路径为线段[0,3]和[3,3+2i]组成的折线; (2 )11,==?积分路径由z=1出发的。 3.利用留数定理计算下列积分(5*2=10分): (1)2 41x dx x +∞ -∞+?; (2)3||1z z e dz z =?。 4.求常微分方程20w z w ''-=在0z =邻域内的两个级数解(15分)。 5.求下列线性非奇次偏微分方程的通解:2222u u xy y x y ??-=-??(15分)。 6.利用分离变量法求解:(20分) 2222000 (),|0, |0,0, 0.x x l t t u u x l x t x u u u u t ====???-=-?????==????==??? 7.用拉普拉斯变换方法求解半无解问题(20分)

220, 0,0,(0,)1, lim (,) 0, (,0)|0, 0. x u u x t t x u t u x t t u x x κ→∞???-=>>?????=>??=>??? 有界,

2005级 一、填空(请写在答题纸上,每题6分,共计48分) 1. 三维泊松方程是______________________________ 2. 边界为Γ的区域Ω上函数u 的第二类边界条件为___________________。 3. 极坐标下的二维拉普拉斯方程为__________________________。 4. 定解问题20 02||0tt xx t t t u u x u x u ===-∞<<+∞???==??, ,的解__________________________。 5. 三维拉普拉斯方程的牛曼内问题为______________________________; 其解存在的必要条件为____________。 6. 写出4阶贝塞尔方程的标准形式_____________________________。 7. 设2()J x 为2阶贝塞尔函数,则22()d x J kx dx ????=__________________。 8. 设弦一端在0x =处固定,另一端在x l =处做自由运动。则弦振动问题的边界条件为: 二、(10分)求解定解问题: 200(0)()00()0.t xx x x u a u x l t u t u l t t u x x x l ?=<<>?==≥??=≤≤? , ,,,,, , ,0,

相关文档
相关文档 最新文档