文档库 最新最全的文档下载
当前位置:文档库 › 2010矩阵论复习题

2010矩阵论复习题

2010矩阵论复习题
2010矩阵论复习题

2010矩阵论复习题

1. 设+

=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为

y x y x ?=⊕

对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =?

问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由.

2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为

),(112211y x y x y x y x +++=⊕

对于任意的数R k ∈,定义k 与x 的数乘为

)2)1(,(2121x k k kx kx x k -+

=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由.

3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3

R 的子空间,并求S 的一组基和S dim .

4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='=

证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim .

5. 设T 是2

R 上的线性变换,对于基向量i 和j 有 j i i T +=)( j i j T -=2)(

1)确定T 在基},{j i 下的矩阵;

2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵.

6. 设T 是3

R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=

1)确定T 在基},,{k j i 下的矩阵;

2)求T 的零空间和像空间的维数.

7.设线性空间3

R 的两个基为(I):321,,x x x , (II):321,,y y y , 由基(I)到基(II)的过度矩阵为????

? ??--=101010101C , 3R 上的线性变换T 满足

21321)32(y y x x x T +=++

12323(24)T x x x y y ++=+

31321)43(y y x x x T +=++

1)求T 在基(II)下的矩阵;

2)求)(1y T 在基(I)下的坐标.

8.在线性空间)(3R P 中

321)(x x x a x f +++= 3221)(x x ax x f +++= 32321)(x x x x f +++=

讨论)(),(),(321x f x f x f 的线性相关性.

9.在22R ?中求由基(I) 12101A ??= ??? 20122A ??= ??? 32112A -??= ??? 41312A ??= ??? 到基(II) 11210B ??=

?-?? 21111B -??= ??? 31211B -??= ??? 41101B --??= ???的过渡矩阵. 10.已知 1(1,2,1,0)α= 2(2,1,0,1)α=- 1(1,1,1,1)β=- 2(1,1,3,7)β=- 设1212(,)(,)V L L ααββ=?, 求线性空间V 的维数和基.

11.在)(2R P 中, 对任意的)()(),(2R P x g x f ∈定义内积为

?=1

0)()())(),((dx x g x f x g x f 若取)(2R P 的一组基},,1{2x x ,试用Schmidt Gram -正交化方法,求)(2R P 的一组正交基.

12. 求矩阵10002i A i +??= ???

的奇异值分解. 13.设A 为n 阶实矩阵,证明A 可表示为一对称矩阵和一反对称矩阵之和.

(提示:若A A T =,称A 为对称矩阵。若A A T

-=,称A 为反对称矩阵)

14.设x 和y 是Eucild 空间V 的非零元,它们的夹角是θ,试证明θcos ||||||||2||||||||||||222y x y x y x ?-+=-

15.设A 是n n C

?上的n 阶方阵,x 是n C 上的n 维列向量,证明:22||||||||||||F Ax A x ≤?. 16.设n

n C A ?∈,并且满足E A A H =,计算2||||A 和F A ||||. 17.已知122112012422A ?? ?= ? ???

,求A 的最大值分解。

18.设m n A C ?∈,1)证明:()()H rank A A rank A =;

2) 证明:H A A 是半正定矩阵或正定矩阵。

19.求下列矩阵的谱阵和谱分解

400031013A ?? ?= ? ??? 332112310A ?? ?=- ? ?--??

20.设s λλλ,,,21 是n 阶单纯矩阵A 的重数为s r r r ,,,21 的特征值,∑==s i i n r

1

i E 是A 的对应于i λ的谱阵,证明

1)0=j i E E ,(j i ≠ ),,2,1,s j i =

2) ∑==s i i E E

1

21.设函数矩阵????

??-=t t t t A cos sin sin cos , 求)(t A dt d , ))((det t A dt d 和))(det(t A dt d . 22.证明 1))()()())((111t A t A dt

d t A t A dt d ---??-= 2)A

e Ae e dt

d At At At == 23.已知????? ??=73487612i A , ????

? ??=845x , 求111||||,||||,||||,||||,||||,||||x x Ax Ax A A ∞∞∞

24.设a ||||?是n n C ?的一种矩阵范数,B 和D 是n 阶可逆矩阵,且

,1||||1≤-a B 1||||1≤-a D ,试证明对任意的n n C A ?∈

a b BAD A ||||||||=

也是n n C ?的一种矩阵范数.

25. 已知a ||||?是n n C ?上的矩阵范数,0y 是n C 中的某非零列向量,n

x C ?∈设0||||||||H a x xy =证明它是n C 上的向量范数,并且与矩阵范数a ||||?相容。

26.设A 是n n C

?上的n 阶方阵,x 是n C 上的n 维列向量,证明:2||||||||||||x A Ax F F ?≤ 27.设n

n C A ?∈, B 和D 是酉矩阵, 证明: F F F F BAD AD BA A ||||||||||||||||=== 28.已知???? ??-=00a a A , ???

? ??-=a a a a B cos sin sin cos 其中R a ∈且0≠a , 证明:B e A =. 29.已知???

? ??-=33i i A , 1)证明A 是Hermite 矩阵; 2)求方阵函数A cos . 30.已知??????

? ??=2000310020111001A , 1)求A 的Jordan 标准形J ; 2)求可逆矩阵P , 使J AP P =-1

31.已知??????

? ??=3000130001300001A , 求A sin 和)sin(At . 32.设A 为n 阶方阵,求证()det()A tr A e e =特别地当A 为反对称矩阵时有det()1A e =

33.设???

? ??--=3113A , 求方阵函数A e 和At e . 34.证明:线性方程组b Ax =(其中n m C A ?∈ m C b ∈)有解的充分必要条件是b b AA =+

35.已知??????? ?

?--=112001110001A , 求A 的广义逆矩阵+A . 36. 已知???

? ??=011i i i A , 求A 的广义逆矩阵+A . 37.设BC A =是A 的最大秩分解, 证明: +++=B C A

38.求微分方程组

32113x x x dt

dx +-= 32125x x x dt

dx -+-= 32133x x x dt

dx +-= 的通解.

2012矩阵论复习题

2012矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有 j i i T +=)( j i j T -=2)( 1)确定T 在基},{j i 下的矩阵; 2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

硕士研究生课程考试试题矩阵论答案

华北电力大学硕士研究生课程考试试题(A 卷) 2013~2014学年第一学期 课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页 特别注意:所有答案必须写在答题册上,答在试题纸上一律无效 一、判断题(每小题2分,共10分) 1. 方阵 A 的任意一个特征值的代数重数不大于它的几何重数。 见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n 2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L . 正确,线性无关的向量张成一组基 3.如果12,V V 是V 的线性子空间,则12V V ?也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。 4. n 阶λ-矩阵()A λ是可逆的充分必要条件是 ()A λ的秩是n . 见书60页,需要要求矩阵的行列式是一个非零的数 5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根. 二、填空题(每小题3分,共27分) (6)210021,003A ?? ?= ? ???则A e 的Jordan 标准型为223e 1 00e 0 ,00 e ?? ? ? ?? ?。 首先写出A e 然后对于若当标准型要求非对角元部分为1. (7)301002030λλλ-?? ?+ ? ?-??的Smith 标准型为10003000(3)(2)λλλ?? ?- ? ?-+?? 见书61-63页,将矩阵做变换即得

南航矩阵论2013研究生试卷及答案

南京航空航天大学2012级硕士研究生

二、(20分)设三阶矩阵,,. ????? ??--=201034011A ????? ??=300130013B ???? ? ??=3003003a a C (1) 求的行列式因子、不变因子、初等因子及Jordan 标准形; A (2) 利用矩阵的知识,判断矩阵和是否相似,并说明理由. λB C 解答: (1)的行列式因子为;…(3分)A 2121)1)(2()(,1)()(--===λλλλλD D D 不变因子为; …………………(3分)2121)1)(2()(,1)()(--===λλλλλd d d 初等因子为;……………………(2分) 2)1(,2--λλJordan 标准形为. ……………………(2分) 200011001J ?? ?= ? ??? (2) 不相似,理由是2阶行列式因子不同; …………………(5分) 0,a = 相似,理由是各阶行列式因子相同. …………………(5分) 0,a ≠共 6 页 第 4 页

三、(20分)已知线性方程组不相容. ?? ???=+=+++=++1,12,1434321421x x x x x x x x x (1) 求系数矩阵的满秩分解; A (2) 求广义逆矩阵; +A (3) 求该线性方程组的极小最小二乘解. 解答:(1) 矩阵,的满秩分解为 ???? ? ??=110021111011A A . …………………(5分)10110111001101A ??????=?????????? (2) . ……………………(10分)51-451-41-52715033A +?? ? ?= ? ??? (3) 方程组的极小最小二乘解为. …………(5分)2214156x ?? ? ?= ? ??? 共 6 页 第 5 页

矩阵论武汉理工大学研究生考试试题科学硕士

武汉理工大学研究生考试试题(2010) 课程 矩阵论 (共6题,答题时不必抄题,标明题目序号) 一,填空题(15分) 1、已知矩阵A 的初级因子为223 ,(1),,(1)λλ-λλ-,则其最小多项式为 2、设线性变换T 在基123,,εεε的矩阵为A ,由基123,,εεε到基123,,ααα的过渡矩阵为P ,向量β在基123,,εεε下的坐标为x ,则像()T β在基123,,ααα下的坐标 3、已知矩阵123411102101,,,00113311A A A A -????????==== ? ? ? ?--???????? ,则由这四个矩阵所生成的子空间的维数为 4、已知0100001000011 000A ?? ? ?= ? ???,则1068A A A -+= 5、已知向量(1,2,0,)T i α=--,21i =-,则其范数 1α= ;2α= ;∞α= ; 二,(20)设1112112121220a a V A a a a a ??????==-=?? ?????? ?为22?R 的子集合, 1、证明:V 是22?R 的线性子空间; 2、求V 的维数与一组基; 3、对于任意的1112111221222122,a a b b A B a a b b ????== ? ????? V ∈,定义 2222212112121111234),(b a b a b a b a B A +++= 证明:),(B A 是V 的一个内积; 4、求V 在上面所定义的内积下的一组标准正交基。 三、(15分)设{} 23210[](),0,1,2i F t f t a t a t a a R i ==++∈=为所有次数小于3的实系数 多项式所成的线性空间,对于任意的22103()[]f t a t a t a F t =++∈,定义:

研究生矩阵论课后习题答案(全)习题二

习题二 1.化下列矩阵为Smith 标准型: (1)222211λλλλ λλλλλ?? -?? -????+-?? ; (2)2222 00 000 00(1)00000λλλλλλ ?? ?? -? ? ??-?? -?? ; (3)2222 232321234353234421λλλλλλλλλλλλλλ?? +--+-??+--+-????+---?? ; (4)23014360220620101003312200λλλλλλλλλλλλλλ????++??????--????---?? . 解:(1)对矩阵作初等变换 23221311(1)100 10 000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-???????????→-???→? ??? ????-++???? , 则该矩阵为Smith 标准型为 ???? ? ?????+)1(1λλλ; (2)矩阵的各阶行列式因子为 44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为 22 2341234123()()() ()1,()(1),()(1),()(1)()()() D D D d d d d D D D λλλλλλλλλλλλλλλλ== =-==-==-故该矩阵的Smith 标准型为

2210000(1)0000(1)00 00(1)λλλλλλ?? ??-????-?? -??; (3)对矩阵作初等变换 故该矩阵的Smith 标准型为 ?? ?? ??????+--)1()1(112 λλλ; (4)对矩阵作初等变换 在最后的形式中,可求得行列式因子 3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为 2541234534()() ()()()1,()(1),()(1)()() D D d d d d d D D λλλλλλλλλλλλλ==== =-==-故该矩阵的Smith 标准形为 2 1 0000 010 0000100000(1)00 00 0(1)λλλλ?????????? -?? ??-?? . 2.求下列λ-矩阵的不变因子: (1) 21 0021002λλλ--????--????-??; (2)100 1000 λαββλα λαββ λα+????-+? ???+??-+?? ;

矩阵论试题

2017—2018学年第一学期《矩阵论》试卷 (17级专业硕士) 专业 学号 姓名 得分 一.判断题(每小题3分,共15分) 1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零, 即ker A =0。( ) 2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个 线性空间。( ) 3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分 必要条件是A 的谱半径1)(

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D 在基12,,,,1-n x x x 以及基12)! 1(1,,!21, ,1--n x n x x 下的矩阵分别为 , 。 5.设A 是复数域上的正规矩阵,则A 满足: ,并 写出常用的三类正规矩阵 。 三.计算题(每小题12分,共48分) 1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α 变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。 。

研究生矩阵论课后习题答案全习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() ( ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1 =m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1, =, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ,,,,21m S S S , 其中m m m A c A c c S +++= 10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() ( ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21 ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1 =, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a 2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a 21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A 2121) ()(2)(1)()1(τ,

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

2014年矩阵论试题A

长 春 理 工 大 学 研 究 生 期 末 考 试 试 题 科目名称: 矩 阵 论 命题人:姜志侠 适用专业: 理 工 科 审核人: 开课学期:2013 ——2014 学年第 一 学期 □开卷 √闭卷 一、(10分)F 为数域,对于线性空间22?F 中任意矩阵??? ? ??=d c b a A ,规则σ,τ分别为??? ? ??=???? ??=c a A c b a A )(,0)(τσ,问σ,τ是否为22?F 上的变换,如果是,证明该变换为线性变换,并求该变换在基???? ??=000111E ,???? ??=001012E ,???? ??=010021E ,??? ? ??=100022E 下的矩阵. 二、(10分) 已知正规矩阵??? ? ??-=1111A ,求酉矩阵U ,使得AU U H 为对角形矩阵。三、(10分) 用Schmidt 正交化方法求矩阵???? ? ??=101011110A 的QR 分解. 四、(10分) 设矩阵?????? ? ? ?-=2000120010201012A ,求A 的行列式因子,不变因子,初等因子组, Jordan 标准形。 五、(10分) 求可对角化矩阵460350361A ?? ?=-- ? ?--?? 的谱分解式. 六、(10分) 在线性空间n m C ?中,对任意矩阵n m ij a A ?=)(,定义函数ij j i a mn A ,max ?=,证明此函数是矩阵范数。

七、(10分) 已知函数矩阵 ???? ??????=32010cos sin )(x x e x x x x A x , 其中0≠x ,试求)(lim 0x A x →,dx x dA )(,2 2)(dx x A d ,dx x dA )(. 八、(10分)已知矩阵?? ????--=1244916A ,写出矩阵函数)(A f 的Lagrange-Sylvester 内插多项式表示,并计算A πcos . .

研究生矩阵论试题与答案

中国矿业大学 级硕士研究生课程考试试卷 考试科目矩阵论 考试时间年月 研究生姓名 所在院系 学号 任课教师

一(15分)计算 (1) 已知A 可逆,求 10 d At e t ? (用矩阵A 或其逆矩阵表示) ; (2)设1234(,,,)T a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T d()d X αX ; (3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k k A A ??? ? ??∞→)(lim ρ。

二(15分)设微分方程组 d d (0)x Ax t x x ?=???? ?=?,508316203A ?? ?= ? ?--??,0111x ?? ? = ? ??? (1)求A 的最小多项式)(λA m ; (3)求At e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax = 312312 111x x x x x x =?? ++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设 11 13A ?=?? 求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。 五(10分) 设(0,,2)T n A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2 ()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ?∈, (1)证明rank()n I A A n r + -=-; (2)0Ax =的通解是(),n n x I A A y y R +=-?∈。 七(10分)证明矩阵 21212123 111222222243333 33644421(1)(1)n n n n n n n n n n ---? ? ? ? ? ? ?= ? ? ? ? ? ?+++? ? A (1)能与对角矩阵相似;(2)特征值全为实数。

矩阵论2015年试题

2015年矩阵论 一、判断题(2 X 6=12分) (1) 线性空间R 3中的正交投影是正交变换。 (2) 如果g (λ)=(λ?2)(λ?5)2是矩阵A 的化零多项式,即g(A)=0,则2和5是矩阵A 的特征值。 (3) 设A 为n 阶方阵,矩阵函数f(A)有意义,如果A 相似于对角矩阵,则f(A)也相似于 对角矩阵。 (4) 如果矩阵运算A ?B =0,则矩阵A=0或者B=0。 (5) 如果矩阵A 既有左逆又有右逆,则矩阵A 一定是方阵,且为可逆矩阵。 (6) 对于矩阵A 和矩阵A +的秩,有rank(A) = rank(A +) 二、填空题(每个空3分,共27分) (1) 设矩阵A =[11+2i 3 23?i ?21?22?3i ],其中 i =√?1,则‖A ‖∞=___________________ (2) 线性空间W =*A ∈R 4x4| A T =A +的维,dimW=____________________________ (3) 设A =[130?2 ],矩阵B 的特征值为2,3,4,则矩阵A ?B 的特征值为 (4) 设线性空间R 3中的线性变换T 被定义为绕向量e 2=,010-T ,逆时针旋转一个θ 角的旋转变换,则变换T 的一个二维不变子空间是 (5) 设矩阵A 的UV 分解为A =[50 033064?1][1270250 02],则矩阵A 的LDV 分解为 (6) 设函数矩阵A(t)=[10t 3t ],则d(A ?1(t))dt = _____________________________ 三、 (12分)设P 为R 3中的正交投影,P 将空间R 3中的向量投影到平面π上, π=*(x y z )T |x +y ?z =0+,求P 在线性空间R 3的自然基*e 1 e 2 e 3+下的变换矩阵A 。 四、 (15分)设矩阵A =[3 1?112?1210 ], (1) 求可逆矩阵P 和矩阵A 的Jordan 矩阵J A ,使得P -1AP = J A (2) 设参数t ≠0,求矩阵函数e At 和矩阵e At 的Jordan 矩阵J e At 五、 (15分)设矩阵A =[1 1111 ?1],(1)求矩阵A 的奇异值分解 (2)求A + 六、 (15分)设矩阵A =[?120t ],B =[1?2?10],D =[132?3 ],矩阵方程为AX+XB=D , (1) 讨论t 为何值,矩阵方程有唯一解 (2) 在矩阵方程有唯一解时,求解其中的未知矩阵X 七、证明题(6分+7分=13分) (1) 如果矩阵A 是正规矩阵,且矩阵函数f(A)有意义,证明f(A)也是正规矩阵。(6分) (2)(7分)假设A ∈C n×n 是可逆的,证明: ‖A ‖2‖A ?1‖2=σmax σmin 其中σmax ,σmin 分别为A 的最大和最小的奇异值

矩阵论华中科技大学课后习题答案

习题一 1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11 {()| 0}n ij n n ii i V A a a ?====∑,对矩阵加法和数乘运算; (2)2{|,}n n T V A A R A A ?=∈=-,对矩阵加法和数乘运算; (3)33V R =;对3R 中向量加法和如下定义的数乘向量:3 ,,0R k R k αα?∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。 解: (1)、(2)为R 上线性空间 (3)不是,由线性空间定义,对0α?≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。 2.求线性空间{|}n n T V A R A A ?=∈=的维数和一组基。 解:一组基 100 010 10 101010000000100............ ......0010010?? ???? ?????? ???? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ?? ? ? ?? ?? ? ? ? ?????? dim W =n ( n +1)/2 3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。 证明:因为dim U 1=dim U 2,故设 {}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基 2U γ?∈,有 ()12 r X γγβββ= 而 ()()12 12r r C αααβββ=,C 为过渡矩阵,且可逆 于是 ()()()112 12121r r r X C X Y U γγγγβββαααααα-===∈ 由此,得 21 U U ?

矩阵论考试试题(含答案)

矩阵论试题 、(10 分)设函数矩阵 sin t cost At cost sin t 求: A t dt 和( 0 t 0 A t dt )'。 解: A t dt = 0 tt sin t dt 00 t costdt cost dt t sin tdt = 1 cost sint sint 1 cost t2 ( A t dt )' 2 = A t 2 2t sint2 2t cost 2 cost cost2 sint2 、(15分)在R3中线性变换将基 1 0 1 1 1 , 2 2 ,30 1 1 1 1 0 0 变为基 1 1 , 2 1 ,33 0 1 2 (1 )求在基 1, 2, 3 下的矩阵表示A; (2 ) 求向量1,2,3 T及在基1, 2, 3下的坐标; (3 ) 求向量1,2,3 T及在基1, 2, 3下的坐标。解:(1)不难求得: 1 1 1 2

因此 在 1, 2, 3 下矩阵表示为 1 1 1 A 1 1 2 011 k 1 (2) 设 1 , 2 , 3 k 2 ,即 k 3 0 1 k 1 解之得: k 1 10, k 2 4, k 3 9 解:容易算得 在 1, 2 , 3下坐标可得 y 1 1 1 1 10 23 y 2 1 1 2 4 32 y 3 0 1 1 9 13 (3) 在基 1, 2 , 3下坐标为 10 10 1 10 1 A 1 4 11 14 15 9 11 09 6 在基 1, 2 , 3 下坐标为 23 10 1 23 10 A 1 32 11 1 32 4 13 11 0 13 9 0 02 三、(20 分)设 A 0 1 0 ,求 e At 。 1 03 2 , 3下坐标为 10, 4, 9 T 。 所以 在 1,

2016北京邮电大学《矩阵分析与应用》期末试题

北京邮电大学 《矩阵分析与应用》期末考试试题(A 卷) 2015/2016学年第一学期(2016年1月17日) 注意:每题十分,按中间过程给分,只有最终结果无过程的不给分。 一、 已知22 R ?的两组基: 111000E ??=? ??? ,120100E ??=????,210010E ??=????,220001E ??=????; 11100 0F ??=? ???,121100F ??=????,211110F ??=????,221111F ??=????。 求由基1112212,,,E E E E 到11122122,,,F F F F 的过渡矩阵,并求矩阵 3542A -?? =?? ?? 在基11122122,,,F F F F 下的坐标。 二、 假定123x x x ,,是3 R 的一组基,试求由112323y x x x =-+, 2123232y x x x =++,312413y x x =+;生成的子空间()123,,L y y y 的基。 三、 求下列矩阵的Jordan 标准型 (1)1 0002 10013202 31 1A ???? ? ?=??????(2)310 0-4-1007121-7-6-10B ?? ????=?????? 四、 设()()123123,,,,,x y ξξξηηη==是3 R 的任意两个向量, 矩阵 210=120001A ?? ???????? ,定义(),T x y xAy = (1) 证明在该定义下n R 构成欧氏空间; (2) 求3 R 中由基向量()()()1231,0,0,1,1,0,1,1,1x x x ===的度量矩阵; 五、 设y 是欧氏空间V 中的单位向量,x V ∈,定义变换 2(,)Tx x y x y =- 证明:T 是正交变换。

南航07-14矩阵论试卷

南京航空航天大学07-14硕士研究生矩阵论试题 2007 ~ 2008学年《矩阵论》 课程考试A 卷 一、(20分)设矩阵 ?? ??? ??-----=111322211 A , (1)求A 的特征多项式和A 的全部特征值; (2)求A 的行列式因子、不变因子和初等因子; (3)求A 的最小多项式,并计算I A A 236 -+; (4)写出A 的Jordan 标准形。 二、(20分)设2 2?R 是实数域R 上全体22?实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。 (1)求2 2?R 的维数,并写出其一组基; (2)设W 是全体22?实对称矩阵的集合, 证明:W 是2 2?R 的子空间,并写出W 的维数和一组基; (3)在W 中定义内积W B A BA tr B A ∈=,),(),(其中,求出W 的一组标准正交基; (4)给出22?R 上的线性变换T : 22,)(?∈?+=R A A A A T T 写出线性变换T 在(1)中所取基下的矩阵,并求T 的核)(T Ker 和值域)(T R 。 三、(20分) (1)设 ? ??? ??-=121312A ,求1A ,2A ,∞A ,F A ; (2)设n n ij C a A ?∈=)(,令 ij j i a n A ,*max ?=, 证明: *是 n n C ?上的矩阵范数并说明具有相容性; (3)证明:*2*1 A A A n ≤≤。 四、(20分)已知矩阵 ?????? ? ??-=10010001111 1A ,向量 ??? ??? ? ??=2112b , (1)求矩阵A 的QR 分解;

吉大矩阵论2011试题

矩阵论2011试题 一、 计算 1. 设025021i i i ????=????-?? A ,20i ????=??????x ,其中i =,求1,,∞∞1及A A Ax Ax 2. 设1211 2222 1,,3x x x x x e d x d x x +??+??==????????求A A x x 二、 设线性空间22?R 的变换为:2212(),,34x τ???==∈? ???x BxB B R , (1) 证明:τ是线性变换 (2) 求τ在基123410010000,,,00001001????????====? ??????????????? E E E E 的矩阵 三、 设1212301011,101032 1211????????????==????????????A b (1) 求A 的满秩分解 (2) 求+A (3) 若方程组=Ax b 是相容的,求出最小范数解;若方程组=Ax b 是不相容的,求出 极小范数最小二乘解。 四、 已知矩阵311121210-????=-?????? A ,求A 的若当标准型,并求sin A 五、 求矩阵530640631--????=????--?? A 的异根谱分解式 六、 设V 是一个3维欧氏空间,123,,ααα是V 的一组基,内积在这组积下的度量矩阵

为110121013????=-????-?? A (1) 设112123123,,,==+=++βαβααβααα证明:123,,βββ也是V 的一组基,并求 向量123=+αα-αα在基123,,βββ下的坐标 (2) 将123,,βββ正交化,由此求出V 的一组正交基 七、设A 为n 阶非零矩阵,证明:A 相似于对角矩阵的充分必要条件是对于任意常数k ,2()()k k -=-秩秩E A E A ,其中E 为单位矩阵。

(完整版)《2015矩阵论》试卷

2015年专业硕士生《矩阵论》试卷 学号 专业 姓名 一、填空题(除了第5小题外每小题4分,共27分) 1、设V 是由n 阶实对称矩阵按通常的矩阵加法与数乘构成的线性空间,则dimV= ,并且V 有基 。 2、设线性空间n V 上的线性变换σ在基n e e e ,,,21Λ下的矩阵为A ,在另一组 基n e e e ''',,,21 Λ下的矩阵为B ,由基n e e e ,,,21Λ到基n e e e ''',,,21Λ的过渡矩阵是C ,则B= (用A,C 表示)。 3、=??? ? ??∑ ∞ =k k 6.05.04.03.00 。 4、已知)(λA 的行列式因子1)(1-=λλD ,222)2()1()(--=λλλD , 5433)1()2()1()(+--=λλλλD ,则)(λA 的初等因子为 。 5、已知???? ??=3113A ,??? ? ??=21x ,则=2m A ,∞m A = , =1A , 2cond()A = ,=1Ax , =∞Ax 。 6、已知??? ? ??=2143A ,则)(A ρ= 。 二、判断题(10分) 1、同一个线性变换在不同基下的矩阵是相合关系。 ( ) 2、A 是收敛矩阵的充要条件是其谱范数小于1。 ( ) 3、 n 阶矩阵A 与B 相似的充要条件是它们的不变因子相同。 ( )

4、 A 的算子范数是其所有范数中最小的。 ( ) 5、正交变换的必要条件是保持两个向量的夹角不变。 ( ) 三、(8分)设A 是[]2x P 中的线性变换,已知2121x e +-=,x e -=32,23x x e +=, 2135)(x e A +-=且,2295)(x x e A +--=,236)(x x e A +=(1)证明[]1232,,e e e x 是P 的 一组基 ;(2)求向量下的坐标在基3212,,321e e e x x +-。 四、(9分)在[]2x P 中,设2321)(x k x k k x f ++=,线性变换A 为23(())A f x k k =++ 21312()()k k x k k x +++。(1)试写出A 在基2,,1x x 下的矩阵;(2)求[]2x P 中的 一组基,使A 在该组基下的矩阵为对角矩阵。

矩阵论考试试题(含答案)

矩阵论试题 一、(10分)设函数矩阵 ()??? ? ??-=t t t t t A sin cos cos sin 求:()?t dt t A 0和(()?2 0t dt t A )'。 解:()?t dt t A 0=()???? ? ??-????t t t t tdt tdt dt t dt t 0 sin cos cos sin =??? ? ??---t t t t cos 1sin sin cos 1 (()?2 t dt t A )'=()??? ? ? ?-=?22 22 2sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基 ????? ??-=1111α,????? ??-=1202α,??? ?? ??-=1013α 变为基 ????? ??-=0111β,????? ??-=1102β,??? ? ? ??-=2303β (1)求σ在基321,,ααα下的矩阵表示A ; (2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。 解:(1)不难求得: ()2111ααβασ-== ()32122αααβασ++-== ()321332αααβασ++-==

因此σ在321,,ααα下矩阵表示为 ??? ? ? ??---=110211111A (2)设()??? ?? ??=321321,,k k k αααξ,即 ??? ? ? ??????? ??---=????? ??321111021101 321k k k 解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。 ()ξσ在321,,ααα下坐标可得 ???? ? ??--=????? ??--????? ??---=????? ??1332239410110211111321y y y (3)ξ在基321,,βββ下坐标为 ??? ? ? ??-=????? ??--????? ??--=????? ??---61519410011111101 94101A ()ξσ在基321,,βββ下坐标为 ????? ??--=????? ??--????? ??--=????? ??---94101332230111111011332231A 三、(20分)设??? ? ? ??-=301010200A ,求At e 。 解:容易算得 ()()()()212--=-=λλλλ?A I

矩阵理论期末试题2016-2017第一学期A卷

1 电子科学与工程学院 硕士研究生 《 矩阵论 》期末考试试卷 闭 卷 任课教师姓名:____ ___ 考试日期: 2016.12.29 上午10:00-12:00 考试时长: 120 分钟 考生年级 考生专业 考生学号 考生姓名 一 .(10分) 设n s ?∈C A ,证明: )()()( +++-==AA I K A A R A R 二.(10 分) 设 ,求500 A -549A 。 三.(10分) 四.(15分) 设求 的特征值、最小多项式和Jordan 标准形。 ?? ??? ??---=502613803A ??? ?? ??----=411301221A 假设3[]V R x =中的内积定义为 1 1(),()()()f x g x f x g x dx -<>=? 求2x η=在(1,)W L x =中的正投影。

2 五.(15分) () 2222??∈C C Hom f ,,定义为:22C X ?∈?, X 1122(X)??? ? ??∈f 1. 求 f 在基22211211,,,E E E E 下的矩阵; 2. 求f 的特征值及其相应的特征子空间的基; 3. 问是否存在22C ?的基,使得f 的矩阵为对角阵,给出理由。 六.(10分) 七.(15分) 设 , 求A e e At A cos ,,。 八.(15分) 设矩阵 , 求A +。 ??? ?? ??=421101104321A 。3求行列式,)2(并且,,103满足,已知2I A p I A r I A A C A n n -=++=∈?? ???? ??---=10142681330A

矩阵论课后习题 1.1

习 题 1.1 1. 解: 除了由一个零向量构成的集合{}θ可以构成线性空间外,没有两个和有限(m )个向量构成的线性空间,因为数乘不封闭(k α有无限多个,k ∈p 数域). 2. 解:⑴是;⑵不是,因为没有负向量;⑶不是,因为存在两向量的和向量处在第二或第四象限,即加法不封闭;⑷是;⑸不是,因为存在二个不平行某向量的和却平行于某向量,即加法不封闭. 3. 解:⑴ 不是,因为 当k ∈Q 或R 时,数乘k α不封闭;⑵ 有 理域上是;实数域上不是,因为当k ∈R 时,数乘k α不封闭.⑶ 是;⑷ 是;⑸ 是;⑹ 不是,因为加法与数乘均不封闭. 4. 解:是,因为全部解即为通解集合,它由基础解系列向量乘以相应常数组成,显然对解的加法与数乘运算满足二个封闭性和八条公理. 5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或因无零向量). 6. 解:(1)设A 的实系数多项式()A f 的全体为 (){} 正整数m R a A a A a I a A f i m m , 1 ∈++=

显然,它满足两个封闭性和八条公理,故是线性空间. (2)与(3)也都是线性空间. 7. 解:是线性空间.不难验证t sin ,t 2sin ,…,nt sin 是线性无关的,且任一个形如题中的三角多项式都可由它们惟一地线性表示,所以它们是V 中的一个组基.由高等数学中傅里叶(Fourier )系数知 ? = π π 20 sin 1 itdt t c i . 8. 解:⑴ 不是,因为公理2)'不成立:设r=1, s=2, α=(3, 4), 则 (r+s) (3, 4)= (9, 4), 而 r (3, 4) ⊕ s (3, 4)=(3,4) ⊕(6, 4)= (9, 8), 所以 (r+s) α≠r α⊕s α. ⑵ 不是,因为公理1)不成立:设α= (1,2) , β= (3,4) , 则α⊕β=(1,2) ⊕ (3,4) = (1,2), β⊕α= (3,4) ⊕ (1,2) = (3,4) , 所以 α⊕β≠β⊕α. ⑶ 不是,因为公理2)'不成立:设 r=1, s=2, α=(3,4) , 则 (r+s) α=3 (3, 4)= (27, 36) 而 r α⊕s α=1 (3,4)⊕2 (3,4)=(3, 4)⊕(12, 16)= (15, 20), 于是 (r+s) α≠ r α⊕s α. ⑷ 是. 9. 证 若∈βα,V ,则 ()()()()()()()β βααββααββααβαβαβα+++=+++=+++=+++=+=+) 11(111111222

相关文档