文档库 最新最全的文档下载
当前位置:文档库 › 关于耐高温材料PPA的性能

关于耐高温材料PPA的性能

关于耐高温材料PPA的性能
关于耐高温材料PPA的性能

PPA-聚邻苯二甲酰胺英文名-PolyphthalamidePPA在高温高湿状态下,抗拉强度比尼龙6高20%,

比尼龙66更高.弯曲模量比尼龙高20%,硬度更大,能抗长时间的拉伸蠕变.

耐汽油、耐油脂和冷却剂的能力也比PA强.这种耐高温尼龙材料,可以耐200℃的持续高温,

并能保持良好的尺寸稳定性.

聚邻苯二甲酰胺(简称PPA)树脂是以对苯二甲酸或邻苯二甲酸为原料的半芳香

族聚酰胺。

既有半结晶态的,也有非结晶态的,其玻璃化温度在255°F左右.

非结晶态的PPA主要用于要求阻隔性能的场合,半结晶态的PPA树脂主要用于注塑加工,也用于其它熔融加工工艺.

PPA半结晶态熔点约590°F,以不透明矩形切片形式供应

1.PPA树脂比脂肪类聚酰胺如尼龙6、尼龙66等更结实坚硬;对水分的敏感度更低;热性能更好;而且蠕变、疲劳和耐化学品性能也好得多.如:含45%玻璃短纤维的PPA树脂,抗张强度约276MPa,弯曲模量超过13786MPa,热变形温度(HDT)549°F.即使矿物填料级的PPA,抗张强度也能达到117MPa.PPA树脂的延展性不如尼龙6、尼龙66,然而,已经开发出未增强的冲击改性级PPA树脂,其缺口悬臂梁式冲击强度高达20英尺·磅/英寸.所有的聚酚胺都吸收一定的水分,引起增塑作用和尺寸改变.例如尼龙6、尼龙6,在23°F下,相对湿度为100%时,能吸收8.9%的水分,这使其玻璃化温度由6.5°C降到一20℃,尺寸增加2.3%.在相同条件下,PPA树脂能吸收约6%的水分,但其玻璃化温度Tg不会低于40℃,伴随的尺寸增长不超过1.0%.正如前面所提过的,用玻璃增强的PPA树脂有很高的HDT值,能耐受很高温度的短期作用,例如:在一个供炉中或者在蒸汽相和在红外逆流团结过程中,PPA树脂的热氧化稳定性使它能耐长期高温作用,玻璃增

强级PPA,在20000小时内,其连续使用温度可达330°F.在正常环境下,PPA树脂通常对脂肪烃、芳香烃、氯代烃、酯、酮、醇和大多数水溶液表现出优秀的抗溶性.这类树脂不能经受极强的酸和强氧化剂的作用.可溶于酚和甲酚.2.PPA并非天生阻燃,根据UL94标准,阻燃级牌号的树脂的定级为VO,直至0.031英寸厚度.尽管其它熔融工艺也能使用,绝大多数PPA树脂是用传统注塑法加工的.把 PPA 原料预干燥到低于 0.1%的湿度水平,然后装入热密封的金属村里袋子或盒子内,这些容器能保证PPA原料在加工前不用再干燥.加工工艺可接受的湿度水平是0.15%或更低.加工湿的树脂能使分子量降低,造成相应的机械性能上的损失.使用干燥剂贮斗式干燥器,在175°F条件下很容易把树脂干燥到露点湿度达一25°F甚至更低.干燥时间视吸收的水量而定,一般在4—16个小时范围内.3.PPA 注塑时熔融温度在615—650°F范围内,物料在机筒内的停留时间不超过10分钟,这样注塑出来的产品机械性能最佳,要求模具温度至少275°F,以便得到完全结晶和尺寸稳定性最佳的产品.具有部分厚壁的部件,由于冷却速度慢,可以在较低的模温下注塑.模温对于成品部件的表面外感最佳化是至关重要的.用于真空镀金属成电镀金属的矿物填料级PPA树脂的模具表面温度要求350°F.4.由于PPA 树脂的杰出的物理、热和电性能,尤其是适中的成本,使它有广阔的应用范围.这些性能和优良的耐化学性一起,使PPA成为汽车工业许多用途的候选者.趋向更好的空气动力学车身设计连同更高性能的马达,将提高发动机箱的温度,使传统的热塑塑料显得不尽适用.这些新的要求使PPA成为:汽车前灯反光器、轴承座、

皮带轮、传感器壳体、燃料管线元件和电气元件的制作候选材料之一.5.电气元件的发展方向是小型化和高温团结,如红外固结和汽相团结,这需要PPA的优越性能.阻燃级PPA具有优良的电性能、很高的HDT值、高的高温弯曲模量、能以最小的溢料加工成长的薄壁部件,因此适合于制作开关设备.连接件、电刷座和马达托架.6.矿物填料级PPA用于反光表面和镀金属方面的用途,包括汽车前灯、装饰用管件和硬件.未经增强的冲击改性级PPA有极好的均衡机械性、高温性能.超常的韧性且这些性能受湿度的影响极小,其用途包括油田部件、军用品、体育用品、风扇叶轮和齿轮及个人安全用品.

各种常见岩石

各种常见岩石特征描述 岩石名称特征描述图片板岩slate 具特征板状构造的浅变质岩石,基本没有重结晶,沿板理方向可以剥成薄片。颜色随其所含有的杂质不同 而变化,含铁的为红色或黄色;含碳质的为黑色或灰色;含钙的遇盐酸会起泡,因此一般以其颜色命 名分类,如灰绿色板岩、黑色板岩、钙质板岩等。由黏土岩、粉砂岩和中酸性凝灰岩经轻微变质作用 所形成。可以作为建筑材料和装饰材料。 千枚岩Phyllite 千枚岩是具有千枚状构造的低级变质岩石。原岩通常为泥质岩石(或含硅质、钙质、炭质的泥质岩)、粉砂岩及中、酸性凝灰岩等,经区域低温动力变质作用或区域动力热流变质作用的底绿片岩相阶段形成。主要由细小的绢云母、绿泥石、石英等矿物组成。岩石具细粒鳞片变晶结构,片理面上具有明显的丝绢光泽,并常具皱纹构造。变质程度介于板岩和片岩之间。典型的矿物组合为绢云母、绿泥石和石英,可含少量长石及碳质、铁质等物质。 片岩schist 具有明显片状构造的区域变质岩石,原岩已全部重结晶,由片状、柱状和粒状矿物组成。岩石具鳞片变晶结构、纤状变晶结构和斑状变晶结构。石英含量一般大于长石,长石含量常少于25%~30%,按主要片状或柱状矿物的不同可分为云母片岩、滑石片岩、石墨片岩等。片岩的类型主要取决于原岩类型,也与经历的温度压力条件密切相关。主要有云母片岩类、钙硅酸盐片岩类、绿片岩类(原岩一般为中性至基性的火山岩、火山碎屑岩和钙质白云质泥灰岩等,经低级区域变质作用形成,是绿片岩相中常见的典型岩石。矿物成分主要有绿泥石、绿帘石、阳起石、钠长石、石英、方解石、白云母,副矿物有磁铁矿、榍石、磷灰石等。 )、镁质片岩类、闪石片岩类、蓝闪片岩类等。

耐热钢性能和耐腐蚀指标

耐热钢性能和耐腐蚀指标 在高温下具有较高的强度和良好的化学稳定性的合金钢。它包括抗氧化钢(或称高温不起皮钢)和热强钢两类。抗氧化钢一般要求较好的化学稳定性,但承受的载荷较低。热强钢则要求较高的高温强度和相应的抗氧化性。耐热钢常用于制造锅炉、汽轮机、动力、机械、工业炉和航空、石油化工等工业部门中在高温下工作的零部件。这些部件除要求高温强度和抗高温氧化腐蚀外,根据用途不同还要求有足够的韧性、良好的可加工性和焊接性,以及一定的组织稳定性。此外,还发展出一些新的低铬镍抗氧化钢种。 耐热钢基本信息 简介: 耐热钢(heat-resisting steels) 在高温条件下,具有抗氧化性和足够的高温强度以及良好的耐热性能的钢称作耐热钢。 类别: 耐热钢按其性能可分为抗氧化钢和热强钢两类。抗氧化钢又简称不起皮钢。热强钢是指在高温下具有良好的抗氧化性能并具有较高的高温强度的钢。 耐热钢按其正火组织可分为奥氏体耐热钢、马氏体耐热钢、铁素体耐热钢及珠光体耐热钢等。

用途 耐热钢常用于制造锅炉、汽轮机、动力机械、工业炉和航空、石油化工等工业部门中在高温下工作的零部件。这些部件除要求高温强度和抗高温氧化腐蚀外,根据用途不同还要求有足够的韧性、良好的可加工性和焊接性,以及一定的组织稳定性。 中国自1952年开始生产耐热钢。以后研制出一些新型的低合金热强钢,从而使珠光体热强钢的工作温度提高到600~620℃;此外,还发展出一些新的低铬镍抗氧化钢种。耐热钢和不锈耐酸 在使用范围上互有交叉,一些不锈钢兼具耐热钢特性,既可用作为不锈耐酸钢,也可作为耐热钢使用。合金元素的作用铬、铝、硅这些铁素体形成的元素,在高温下能促使金属表面生成致密的 氧化膜,防止继续氧化,是提高钢的抗氧化性和抗高温气体腐的主要元素。但铝和硅含量过高会使室温塑性和热塑性严重恶化。铬能显著提高低合金钢的再结晶温度,含量为2%时,强化效果最好。 镍、锰可以形成和稳定奥氏体。镍能提高奥氏体钢的高温强度和改善抗渗碳性。锰虽然可以代镍形成奥氏体,但损害了耐热钢的抗氧化性。钒、钛、铌是强碳化物形成元素,能形成细小弥散的碳化物,提高钢的高温强度。钛、铌与碳结合还可防止奥氏体钢在高温下或焊后产生晶间腐蚀。碳、氮可扩大和稳定奥氏体,从而提高耐热钢的高温强度。钢中含铬、锰较多时,可显著提高氮的溶解度,并可利用氮合金化以代替价格较贵的镍。硼、稀均为耐热钢中的微量元素。硼溶入固溶体中使晶体点阵发生畸变,晶界上的硼又能阻止元素扩散和晶

环氧树脂优缺点

热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及环氧层压塑料;低压成型材料(成型压力<2.5MPa),如环氧玻璃钢和高性能环氧复合材料。玻璃钢和高性能复合材料由于制件尺寸较大(可达几个㎡)、型面通常不是平面,所以不宜用高压成型。否则模具造价太高,压机吨位太大,因而成本太贵。 (3)按环氧复合材料阶性能、成型方法、产品及应用领域的特点,并照顾到习惯上的名称综合考虑可分为:环氧树脂工程塑料、环氧树脂层压塑料、环氧树脂玻璃钢(通用型环氧树脂复合材料)及环氧树脂结构复合材料。 3、环氧树脂复合材料的特性 (1)密度小,比强度和比模量高。高模量碳纤维环氧复合材料的比强度为钢的5倍、铝合金的4倍,钻合金的3.2倍。其比模量是钢、铝合金、钦合金的5.5—6倍。因此,在强度和刚度相同的情况下碳纤维环氧复合材料构件的重量可以大大减轻。这在节省能源、提高构件的使用性能方面,是现有任何金属材料所不能相比的。 (2)疲劳强度高,破损安全特性好。环氧复合材料在静载荷或疲劳载荷作用下,首先在最薄弱处出现损伤,如横向裂纹、界面脱胶、分层、纤维断裂等。然而众多的纤维和界面会阻

热塑性塑料的性能

热塑性塑料的性能 对于用于汽车内饰的热塑性塑料,除了常规的物理性能、流动性能、力学性能(抗拉强度、弯曲强瘦、冲强度)、热性能、燃烧性能,我们还关注热塑性塑料其他一些特性。 (1)收缩率 热塑性塑料的特性是在加热后熔融,冷却后收缩,当然加压以后体积将缩小。在注塑成型过程中,先将塑料熔体注射入模具型内,充填结束后熔体冷却固化,从模具中取出塑件时出现收缩,称为成型收缩。塑料件再从模具中取出后稳定一段时间,塑料件的尺寸仍会出现微小的变化。这种变化称为后收缩。另一种变化是某些吸湿性塑料因吸湿而出现胀。例如PA610吸水量在1.5-2.0%时,零件尺寸增加0.1-0.2%。玻璃纤维增强PA66的含水量为40%时,尺寸约增加0.3%。 收缩率S由下式表示: S=100%×(D?M)/D 公式中: S为塑件的收缩率 D为模具尺寸(长、宽、高) M为塑件尺寸(长、宽,高) 收缩率的计算方法都是一样的,但是测试收缩率的模具尺寸不一样,这就导致同样的材料,采用不同尺寸的模具,得到收缩率值不一样。 (2)流动性

在一定温度、压力下,塑料能够充满模具各部分型腔的性能,称作流动性。流动性差,注射成型时需较大的注射压力或者较高的料筒温度;流动性太好,容易产生飞边。通常可以用熔融指数来直观地表示塑料的流动性。熔融指数大,流动性好。熔融指数小,流动性差。 (3)熔化温度(熔点T) 熔化温度是指结晶型聚合物从高分子链结构的三维有序态 转变为无序的黏流态时的温度。高分子材料是不同分子量的高分子的混合物,有一定的分子量分布。因此,高分子材料的熔融是一个过程。例如PP材料的熔融从153℃左右开始,到165℃左右达到 熔融的峰值。165℃为PP的熔点,到170℃左右熔融完全结束。(4)降解 在化学或物理作用下聚合物分子的聚合度降低的过程称为 降解。聚合物在热、力、氧气、水及光辐射等作用下往往发生降解。降解实质是大分子链发生结构变化的过程。 (5)结晶 聚合物分子形成的一种有序的聚集态结构叫结晶。聚合物的聚集态结构对注塑条件及制品性能的影响非常明显,聚合物按聚集结构可分为结晶型和非结晶型。结晶型聚合物的分子链呈规则排列,而非结晶聚合物的分子链呈不规则的无定型的排列。分子结构简单,对称性高,没有刚性基团,柔性链的聚合物都能形成

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

耐热金属材料发

耐热金属材料发

————————————————————————————————作者:————————————————————————————————日期: 2

3 耐热金属材料的发展 耐热金属材料是在高温下使用的金属材料。一般来说,加工硬化的金属被加热到某一温度以上,变形的晶格产生变化,发生再结晶,这个温度就是再结晶温度。金属的再结晶温度约为金属熔点温度的1/2(绝对温度)。耐热金属材料主成分金属的熔点和再结晶温度见表1。 金属材料承担保证结构件强度的作用,一般采用为提高强度添加合金元素的合金金属材料。合金金属材料的温度达到纯金属再结晶温度时不立即发生软化,例如,Ni 基超合金在大大超过纯金属Ni 再结晶温度(如在1000℃左右)的 条件下,可以连续使用数万小时。 1 耐热金属材料的特性要求 对耐热金属材料要求的特性是多种多样的,见表2。对不同用途的耐热金属材料所要求的特性是不同的,其中必须具备的特性是高温抗氧化性、耐蚀性、足够的强度以及加工性和低成本。广泛使用的高温金属材料是以Fe 、Ni 、Co 为主成分的合金。 1.1 抗氧化性和耐蚀性的耐热涂层 除了高温大气环境,还有多种高温环境下的氧化和腐蚀问题。这些氧化和腐蚀不仅是材料的表面现象,而且会深入到材料内部,特别是会发生沿晶界的晶界侵蚀现象。Fe 、Ni 、Co 在纯金属状态下,不具有足够的抗高温氧化性和高温耐蚀性。为满足不同的使用要求进行了大量的研究。 火力发电用钢的使用期限要求是10 万小时或10 年,按照这个 表1 耐热金属材料主成分金属的熔点和再结晶温度 金属 Mg Al Cu Ni Co Fe Ti Nb Mo W 熔点,℃ 650 660 1085 1455 1495 1583 1670 2469 2623 3422 再结晶温度,℃ 189 194 406 591 611 633 699 1098 1175 1575 表2 对耐热金属材料要求的特性 物理性能 熔点、密度、热传导率、热膨胀系数、扩散速度等 化学性能 在含有高温空气、水蒸气CO 、CO2、H2S 等的各种燃烧废气、熔融盐及其他环境下具有抗氧化性、耐蚀性和氧化层密着性等。 力学性能 高温下的强度、延性、韧性,蠕变强度、疲劳强度、、抗热疲劳性、抗热震性、在高温下长 期使用的稳定性等。 加工制造性 能够进行熔炼、铸造、锻造、轧制、焊接、烧结,制造成所要求的形状尺寸的部件。 经济性 原料费、加工费低廉,制造的工艺低成本化。

十四种常用热塑性塑料(非常详细。家电结构必备)

十四种常用的热塑性塑料之一 默认分类 2009-06-25 16:38 阅读114 评论0 字号:大中小1. PP 1.1性能和用途 PP< Polypropylene聚丙烯)是与我们日常生活密切相关的通用树脂,是丙烯最重要的下 游产品,世界丙烯的50%,我国丙烯的65%都是用来制聚丙烯。聚丙烯是世界上增长最快 的通用热塑性树脂,总量仅仅次于聚乙烯和聚氯乙烯 PP是结晶性塑料,一般为呈不规则圆形表面有蜡质光泽白色颗料。密度0.9-0.91g/cm3,是塑料中最轻的一种。有较明显的熔点,根据结晶度和分子量的不同,熔点在170℃左 右,而其分解温度在290℃以上,因而有着很宽的成型温度范围,成型收缩率1.0-2.5%。P P的使用温度可达100℃,具有良好的电性能和高频绝缘性,且不受湿度影响。但低温下 易脆,不耐磨,易老化。适于制作一般机械零件,耐腐蚀零件和绝缘零件。此外,用PP 料制做的铰链产品具有突出的耐疲劳性能。 1 . 2 成型注意事项 PP的吸湿性很小,成型前可以不要干燥,如果存偖不当,可在70℃左右干燥3小时。成型流动性好,但收缩范围及收缩值大,易发生缩孔,凹痕,变形。冷却速度快,浇注系统及 冷却系统应缓慢散热。PP在成型时要特别注意控制原料的熔化时间,PP长期与热金属接 触易分解。易发生融体破裂,料温低方向方向性明显,低温高压时尤其明显。模具温度方面,在低于50℃度时,塑件不光滑,易产生熔接不良,流痕,在90℃以上易发生翘曲变形。塑料壁厚须均匀,避免缺胶,尖角,以防应力集中。 2.PE 2.1性能和用途 PE< Polyethylene 聚乙烯),有高密度聚乙烯<低压聚合),低密度聚乙烯<高压聚合),线形低密度聚乙烯,超高分子量聚乙烯等多种,密度在0.91-0.97 g/cm3之间,成型收缩率为1.5-3.6%。熔点在120-140℃左右,分解温度在270℃以上。PE的耐腐蚀性,电绝缘性

三大岩石的主要特征以及类型

地球科学概论 地球上的岩石千变万化,它是一种或多种矿物的集合体,它是构成地壳的基本部分。按其成因可分为三大类:岩浆岩(火成岩)、沉积岩和变质岩。 一、三大岩石的主要特征以及类型 (一)、岩浆岩 岩浆岩又称火成岩,是由地壳下面的岩浆沿地壳薄弱地带上升侵入地壳或喷出地表后冷凝而成的。岩浆是存在于地壳下面高温、高压的熔融状态的硅酸盐物质(它的主要成分是SiO2,还有其他元素、化合物和挥发成分)。岩浆内部的压力很大,不断向压力低的地方移动,以至冲破地壳深部的岩层,沿着裂缝上升,喷出地表;或者当岩浆内部压力小于上部岩层压力时迫使岩浆停留下,冷凝成岩。 1、岩浆岩的主要特征 ①构造特征:岩浆岩中有一些自己特有的结构和构造特征,比如喷出岩是在温度、压力骤然降低的条件下形成的,造成溶解在岩浆中的挥发份以气体形式大量逸出,形成气孔状构造。当气孔十分发育时,岩石会变得很轻,甚至可以漂在水面,形成浮岩等; ②冷凝特征:岩浆岩是由岩浆直接冷凝形成的岩石,因此,具有反映岩浆冷凝环境和形成过程所留下的特征和痕迹,与沉积岩和变质岩有明显的区别。2、岩浆岩的分类 依冷凝成岩时的地质环境的不同,将岩浆岩分为三类: 喷出岩(火山岩):岩浆喷出地表后冷凝形成的岩浆岩称为喷出岩。在地表的条件下,温度下降迅速,矿物来不及结晶或者结晶差,肉眼不易看清楚。如流纹岩、安山岩、玄武岩等; 浅成岩:岩浆沿地壳裂缝上升至距地表较浅处冷凝形成的岩浆岩。由于岩浆压力小,温度下降较快,矿物结晶较细小。如花岗斑岩、正长斑岩、辉绿岩等; 深成岩:岩浆侵入地壳深处(约距地表3公里)冷凝形成的岩浆岩。由于岩浆压力大,温度下降缓慢,矿物结晶良好。如花岗岩、正长岩、辉长岩等。 其中,深成岩和浅成岩又统称侵入岩。

铜及铜合金的高温特性

Thesis Submitted By Ramkumar Kesharwani Roll No: 208ME208 In the partial fulfillment for the award of Degree of Master of Technology In Mechanical Engineering
Department of Mechanical Engineering National Institute of Technology Rourkela-769008, Orissa, India. May 2010

Thesis Submitted By Ramkumar Kesharwani Roll No: 208ME208 In the partial fulfillment for the award of Degree of Master of Technology In Mechanical Engineering
Under the supervision of Prof. S. K. Sahoo
Department of Mechanical Engineering National Institute of Technology Rourkela-769008, Orissa, India. May 2010

National Institute of Technology Rourkela
CERTIFICATE
This is to certify that thesis entitled, “High Temperature behavior of Copper” submitted by Mr. “Ramkumar Kesharwani” in partial fulfillment of the requirements for the award of Master of Technology Degree in Mechanical Engineering with specialization in “Production Engineering” at National Institute of Technology, Rourkela (Deemed University) is an authentic work carried out by him under my supervision and guidance. To the best of my knowledge, the matter embodied in this thesis has not been submitted to any other university/ institute for award of any Degree or Diploma.
Date: Dept. of Mechanical Engineering
Prof. S.K. Sahoo National Institute of Technology Rourkela-769008

热固性塑料与热塑性塑料

热固性塑料与热塑性塑料

塑料是以高分子量合成树脂为主要成分,在一定条件下(如温度、压力等)可塑制成一定形状且在常温下保持形状不变的材料。 塑料按受热后表面的性能,可分为热固性塑料与热塑性塑料两大类。前者的特点是在一定温度下,经一定时间加热、加压或加入硬化剂后,发生化学反应而硬化。硬化后的塑料化学结构发生变化、质地坚硬、不溶于溶剂、加热也不再软化,如果温度过高则就分解。后者的特点为受热后发生物态变化,由固体软化或熔化成粘流体状态,但冷却后又可变硬而成固体,且过程可多次反复,塑料本身的分子结构则不发生变化。 塑料都以合成树脂为基本原料,并加入填料、增塑剂、染料、稳定剂等各种辅助料而组成。因此,不同品种牌号的塑料,由于选用树脂及辅助料的性能、成分、配比及塑料生产工艺不同,则其使用及工艺特性也各不相同。为此模具设计时必须了解所用塑料的工艺特性。 第一节热固性塑料

常用热固性塑料有酚醛、氨基(三聚氰胺、脲醛)聚酯、聚邻苯二甲酸二丙烯酯等。主要用于压塑、挤塑、注射成形。硅酮、环氧树脂等塑料,目前主要作为低压挤塑封装电子元件及浇注成形等用。 一、工艺特性 (一)收缩率 塑件自模具中取出冷却到室温后,发生尺寸收缩这种性能称为收缩性。由于收缩不仅是树脂本身的热胀冷缩,而且还与各成形因素有关,所以成形后塑件的收缩应称为成形收缩。 1.成形收缩的形式成形收缩主要表现在下列几方面: (1)塑件的线尺寸收缩由于热胀冷缩,塑件脱模时的弹性恢复、塑性变形等原因导致塑件脱模冷却到室温后其尺寸缩小,为此型腔设计时

必须考虑予以补偿。 (2)收缩方向性成形时分子按方向排列,使塑件呈现各向异性,沿料流方向(即平行方向)则收缩大、强度高,与料流直角方向(即垂直方向)则收缩小、强度低。另外,成形时由于塑件各部位密度及填料分布不匀,故使收缩也不匀。产生收缩差使塑件易发生翘曲、变形、裂纹,尤其在挤塑及注射成形时则方向性更为明显。因此,模具设计时应考虑收缩方向性按塑件形状、流料方向选取收缩率为宜。 (3)后收缩塑件成形时,由于受成形压力、剪切应力、各向异性、密度不匀、填料分布不匀、模温不匀、硬化不匀、塑性变形等因素的影响,引起一系列应力的作用,在粘流态时不能全部消失,故塑件在应力状态下成形时存在残余应力。当脱模后由于应力趋向平衡及贮存条件的影响,使残余应力发生变化而使塑件发生再收缩称为后收缩。一般塑件在脱模后10小时内变化最大,24 小时后基本定型,但最后稳定要经30~60天。通常热塑性塑料的后收缩比热固性大,挤塑

各种耐热钢不锈钢的特性和用途

各种耐热钢不锈钢的特性和用途 钢号特性用途 奥氏体钢 301 17Cr-7Ni-低碳 与304钢相比,Cr、Ni含量少,冷加工时抗拉强度 和硬度增高,无磁性,但冷加工后有磁性。 列车、航空器、传送带、 车辆、螺栓、螺母、弹 簧、筛网301L 17Cr-7Ni-0.1N-低 碳 是在301钢基础上,降低C含量,改善焊口的抗晶 界腐蚀性;通过添加N元素来弥补含C量降低引起 的强度不足,保证钢的强度。 铁道车辆构架及外部 装饰材料 304 18Cr-8Ni 作为一种用途广泛的钢,具有良好的耐蚀性、耐热 性,低温强度和机械特性;冲压、弯曲等热加工性 好,无热处理硬化现象(无磁性,使用温度 -196℃~800℃)。 家庭用品(1、2类餐具、 橱柜、室内管线、热水 器、锅炉、浴缸),汽 车配件(风挡雨刷、消 声器、模制品),医疗 器具,建材,化学,食 品工业,农业,船舶部 件 304L 18Cr-8Ni-低碳 作为低C的304钢,在一般状态下,其耐蚀性与304 刚相似,但在焊接后或者消除应力后,其抗晶界腐 蚀能力优秀;在未进行热处理的情况下,亦能保持 良好的耐蚀性,使用温度-196℃~800℃。 应用于抗晶界腐蚀性 要求高的化学、煤炭、 石油产业的野外露天 机器,建材耐热零件及 热处理有困难的零件304Cu 13Cr-7.7Ni-2Cu 因添加Cu其成型性,特别是拔丝性和抗时效裂纹 性好,故可进行复杂形状的产品成形;其耐腐蚀性 与304相同。 保温瓶、厨房洗涤槽、 锅、壶、保温饭盒、门 把手、纺织加工机器。 304N1 18Cr-8Ni-N 在304钢的基础上,减少了S、Mn含量,添加N元 素,防止塑性降低,提高强度,减少钢材厚度。 构件、路灯、贮水罐、 水管 304N2 18Cr-8Ni-N 与304相比,添加了N、Nb,为结构件用的高强度 钢。 构件、路灯、贮水罐 316 18Cr-12Ni-2.5Mo 因添加Mo,故其耐蚀性、耐大气腐蚀性和高温强 度特别好,可在苛酷的条件下使用;加工硬化性优 (无磁性)。 海水里用设备、化学、 染料、造纸、草酸、肥 料等生产设备;照像、 食品工业、沿海地区设 施、绳索、CD杆、螺 栓、螺母316L 18Cr-12Ni-2.5Mo 低碳 作为316钢种的低C系列,除与316钢有相同的特性 外,其抗晶界腐蚀性优。 316钢的用途中,对抗 晶界腐蚀性有特别要 求的产品。 321 18Cr-9Ni-Ti 在304钢中添加Ti元素来防止晶界腐蚀;适合于在 430℃-900℃温度下使用。 航空器、排气管、锅炉 汽包 铁素 409L 11.3Cr-0.17Ti-低 C、N 因添加了Ti元素,故其高温耐蚀性及高温强度较 好。 汽车排气管、热交换 机、集装箱等在焊接后 不热处理的产品。

环氧树脂特性

环氧树脂 目录 材料简介应用特性类型分类使用指南国内主要厂商环氧树脂应用领域环氧树脂行业 材料简介 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。 应用特性 1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。 2、固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。 3、粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。 4、收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。 5、力学性能。固化后的环氧树脂体系具有优良的力学性能。 6、电性能。固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料。 7、化学稳定性。通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。 8、尺寸稳定性。上述的许多性能的综合,使环氧树脂体系具有突出的尺寸稳定性和耐久性。 9、耐霉菌。固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。 类型分类 根据分子结构,环氧树脂大体上可分为五大类: 1、缩水甘油醚类环氧树脂 2、缩水甘油酯类环氧树脂 3、缩水甘油胺类环氧树脂 4、线型脂肪族类环氧树脂 5、脂环族类环氧树脂 复合材料工业上使用量最大的环氧树脂品种是上述第一类缩水甘油醚类环氧树脂,而其中又以二酚基丙烷型环氧树脂(简称双酚A型环氧树脂)为主。其次是缩水甘油胺类环氧树脂。 1、缩水甘油醚类环氧树脂 缩水甘油醚类环氧树脂是由含活泼氢的酚类或醇类与环氧氯丙烷缩聚而成的。

常用热塑性塑料原料性能和用途解析

常用热塑性塑料原料性能和用途 一、PP是Polypropylene的英文简写,中文名为聚丙烯。 聚丙烯(PP)的优点: 1、具有优良的力学性能,其强度、弹性都比HDPE高,抗弯曲疲劳性好。 2、具有良好的耐热性,熔点在164-170℃,制品能在100℃以上温度进行消毒灭菌,热变形温度通常能达到110℃,脆化温度为-35℃。 3、化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它化学试剂都比较稳定。 4、聚丙燃的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受温度影响。 聚丙烯(PP)的缺点: 1、收缩率大,厚壁制品易凹陷。 2、在低温下,冲击强度较差。 3、静电度高,与铜接触易老化。 4、对紫外线很敏感。 聚丙烯(PP)性能表: 注:PP性能参数以扬子石化的J340为依据。 抗冲击改性PP与纯PP对比,其优点在于: 1、冲击强度、韧性和力学模量显著提高,由性能表可以看出,改性后的PP,代表刚性的拉伸强度、弯曲强度和硬度都比纯PP高,而代表韧性的冲击强度也提高,尤其提高了PP的低温脆性。 2、降低了收缩率,有效改善制品的翘曲变形和表面缩陷现象。 3、提高PP的抗老化性,大大增加了制品的使用寿命。 二、HDPE是High Density Polyethylene 的英文简写,中文名为高密度聚乙烯。 高密度聚乙烯(HDPE)的优点: 1、抗冲击性以及耐寒性好,耐抗环境应力开裂。 2、化学稳定性极佳,耐油性好。

3、吸水及微小,透水率低,有机蒸汽的透过率较大。 4、电绝缘性好,在一切频率范围内,介电性能都极其优异。 高密度聚乙烯(HDPE)的缺点: 1、HDPE的使用温度不高,一般在110℃以下。 2、HDPE的耐老化性差,在大气、阳光、氧的作用下,逐渐变脆,力学强度和电性能下降。 3、在成型温度下,会因氧化作用,而引起粘度下降,出现变色,产生条纹。 高密度聚乙烯(HDPE)性能表: 悬臂梁缺口冲击强度J/m 拉伸屈服强度 /Mpa 断裂伸长率 /% 洛氏硬 度 密度g/cm3熔体流动速率g/10min >49>27>800>610.955-0.962 6.1-8.0 注:HDPE性能参数以盘锦石化的5070EA为依据。 三、ABS是Acrylonitrile Butadiene Styrene 的英文简写,中文名为丙烯晴--丁二烯--苯乙烯共聚物。 丙烯晴--丁二烯--苯乙烯共聚物(ABS)的优点: 1、刚性好,冲击强度高,且在低温时也不会快速下降。 2、耐热性和耐低温性好,耐磨性很高,耐化学药品性,电器性能优良。 3、易于加工,加工尺寸稳定性。 4、表面光泽好,容易涂装、着色,还可以进行喷涂金属、电镀、焊接和粘接等二次加工性能。 丙烯晴--丁二烯--苯乙烯共聚物(ABS)的缺点: 1、ABS在空气中的吸湿性较强,在注塑成型前必须先进行干燥,需将树脂在70-80°C预干燥4h以上。 2、耐候性差。 丙烯晴--丁二烯--苯乙烯共聚物(ABS)性能表: 悬臂梁缺口冲击强度/ kg.cm/cm 拉伸强度/ kg/cm2 断裂伸长 率/% 弯曲强度 kg/cm2 洛氏硬 度/R 密度 g/cm3 熔体流动速率200℃ ×5kgg/10min 1848020790116 1.05 1.8

PERT耐热增强聚乙烯的特点及性能

分子结构特征 耐热聚乙烯属于中密度聚乙烯,英文名称缩写为PE-RT(Polyethylene with Rai sed Temperature resistance),它是由乙烯单体和1-辛烯单体共聚而成的,很显然 辛烯与乙烯单体共聚时具有能形成较长支链的烯类单体,支链上含有六个碳原子(C), 其聚合反应如下: nCH2==CH2+mCH2==CH-茂金属 催化剂 一个和几个共聚单元上带有的6C长支链,使得这种半结晶材料的结晶也有足够的“链段”数目,分子链之间无需引入活性交联分子,晶格间支链化程度非常高。分子链 之间以及长支链之间互相无序缠绕,形成了“立体网状结构”,这种特殊结构的形成使 材料的力学性能及抵抗外应力作用的蠕变性能大大提高,提高了其热稳定性、长期静液 压强度、抗慢速裂纹增长(SCG)和快速裂纹扩张(RCP)性能。 PE-RT与非耐热聚乙烯 通过分子设计技术,并采用茂金属催化剂的新型合成工艺是合成PE80级以上承压管道材料的先进工业技术特征之一。PE-RT也属于PE80级,其工作温度范围可提高到8 0℃以上,并能保证50年的使用寿命,当然其必须通过国际权威独立试验室进行认证的, 满足德国标准DIN 4721和DIN16883的要求。PE-RT耐热性的提高主要得益于所用的共 聚单体是1-辛烯而不是1-丁烯、1-己烯等,这样优化了支链的密度和微观晶体结构, 达到了与交联聚乙烯同样的耐温性能。 E-RT成型加工特性 PE-RT属中密度聚乙烯,作为耐热聚乙烯,它在生产加工过程中无需交联,克服了交联聚乙烯生产工艺的复杂性、交联度控制不稳定性,使得整个管材绝对的均质,质量 稳定。但PE-RT的加工温度范围不是很宽,其熔体温度一般控制在190℃左右,管材生 产时若温度过高,其熔体强度低,会影响其成型的稳定性。管件的注塑成型一样应采取

环氧树脂化学成分

环氧树脂化学成分 主要成份是:酚醛树脂; 酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂,其中以苯酚和甲醛树脂为最重要。也是世界上最早由人工合成的,至今仍很重要的高分子材料。因选用催化剂的不同,可分为热固性和热塑性两类。酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,广泛应用于防腐蚀工程、胶粘剂、阻燃材料、砂轮片制造等行业。 NL固化剂是酚醛树脂呋喃树脂的高效低毒固化剂。NL固化剂毒性低,基本无刺激味,树脂固化后强度高、耐蚀性好,使用用量少,操作方便,贮存期长。本品适用于热固性酚醛树脂及呋喃树脂的常温固化。用来配制酚醛树脂及呋喃胶泥;玻璃钢制品;制笔、制刷、竹木等制品的粘合;也可用作铸造树脂的室温固化剂。质量指标外观暗灰色液体相对密度(20℃)1.16±0.01粘度(涂-4,25℃)秒20-30 总酸度(以H2SO4计)% 18±2 游离酸(以H2SO4计)% 3-5 贮存期一年以上(密闭存放)应用对酚醛树脂或呋喃树脂,NL固化剂的用量范围一般为5-12%。环境温度20℃时,2130酚醛树脂的NL固化剂用量为8%左右,NL固化剂用量可随温度调整。参考配方酚醛树脂酒精NL固化剂石英粉酚醛胶泥100 0-5 6-10 150-200玻璃钢腻子100 0-5 6-10 120-200玻璃钢面料100 10 8-15 10-1520℃时NL用量为8%,1小时左右初凝,使用期30分钟左右配方注意:酚醛树脂或呋喃树脂用NL固化剂来固化时,对填料的要求较高,要求填料的耐酸性达到规范的要求。劣质填料含有碳酸钙等会与酸性固化剂反应产生气泡,影响制品质量,并可能造成树脂不固化。包装及贮运10Kg、25Kg塑料桶装。室温密闭储存。可长期贮存,超过一年复测合格可继续使用。

耐高温水泥

耐高温水泥的概念,顾名思义,就是可以耐高温的水泥.它的种类很多: 高铝水泥 铝酸盐系列耐高温水泥 N型超早强铝酸盐水泥 纯铝酸钙水泥 磷酸盐系列耐高温胶凝材料 特点:耐高温,耐腐蚀 组成:主要为铝酸盐系列,另外还有磷酸盐系列 用途:窑炉内衬(电力、石化、冶金、建材) 一、高铝水泥 凡以铝酸钙为主,氧化铝含量约50%的熟料,磨制的水硬性胶凝材料,称为高铝水泥。1、定义:高铝水泥(以前称矾土水泥)是以铝矾土和石灰为原料,按一定比例配制,经煅烧、磨细所制得的一种以铝酸盐为主要矿物成分的水硬性胶凝材料,又称铝酸盐水泥。 2、品质指标 (1).标号 高铝水泥的标号系按本标准规定的强度检验方法测得的3天抗压强度表示,分为425、525、625和725四个标号。(根据GB201-2000要求,高铝水泥标准修订为铝酸盐水泥标准,铝酸盐水泥以铝含量为划分标准,其中CA50系列取消原标号,设立了按照3天强度细分的如A600,A700,A900 等品种) (2)细度 0.088毫米方孔筛筛余不得超过10% 注:水泥细度允许用比表面积来代替,按GB 207-63《水泥比表面积测定方法》测定不得小于2400厘米2/克,如有争议,以筛析法为准。 (3)凝结时间 初凝不得早于40分钟,终凝不得迟于10小时。 (4)强度 各龄期强度不得低于下表数值。 ━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━ | 水泥标号| 抗压强度,公斤/厘米2 │抗压强度,公斤/厘米2 ├─────- ┬──────┼──────┬─────── │1天│ 3 天│ 1 天│ 3 天 | ────────┼──────┼──────┼──────┼─────── 425 │ 360 │ 425 │40 │ 45 ────────┼──────┼──────┼──────┼─────── 525 │ 460 │ 525 │50 | 55 ────────┼──────┼──────┼──────┼───────

高温超导材料的特性测试和低温温度计实验报告

实验二十三:高温超导材料的特性测试和低温温度计 2016.12.29 一、实验数据记录 1.室温检测: 表1.室温检测数据表 2.低温温度计对比数据及超导转变曲线数据: 见下表

3.液氮沸点监测数据:

表2:液氮沸点监测数据 二、实验数据分析、处理和结论 1.处理室温检测数据,给出三部分测量电路的电流、室温、室温下的超导样品的电阻:(1)电流:铂电阻:109.03mA Si半导体电阻:100.00μA 样品电流:10.0165mA (2)室温: T=2.4516*109.03+25.736=293.03K (3) 室温下,样品的电阻: R=0.162/10.0165=0.0162Ω 2.处理低温温度计对比数据,作图给出对比结果,总结三种温度计的特点: 图1:Si电压-温度曲线

Y=-0.0026x+1.2798 R2= 0.9994 图2:温差电偶电压-温度曲线

线性拟合:Y=0.0279x-2.6711 R2=0.990 非线性拟合:Y=0.000057x2+0.0061x-0.75127 R2=0.9998 结论:由图1:Si半导体电压随着温度呈线性相关,且是负相关。 由图2:温差电偶与温度成正相关,在拟合过程中发现,二次拟合要比一次的拟合精确的多。因此温差电偶电压应该与温度成二次关系。比较两图一直,Si半导体的温敏线性较好,成的是线性关系,温差电偶电压与温度成二次关系,铂电阻R与T成线性关系。 3.作图并用最小二乘法处理超导样品测量数据,给出转变温度。 图3:样品电阻-温度曲线 图4:样品电阻-温度电压(最小二乘法)

环氧树脂种类及性能

环氧树脂种类及性能 一、定义 1、环氧树脂(Epoxy Resin)是泛指含有两个或两个以上环氧基,以脂肪族、脂环族或芳香族等有机化合物为骨架并能通过环氧基团反应形成有用的热固化产物的高分子低聚体(Oligomer) o当聚合度n为零时,称之为环氧化合物,简称环氧化物(Epoxide) o这些低相对分子质量树脂虽不完全满足严格的定义但因具有环氧树脂的基本属性在称呼时也不加区别地统称为环氧树脂。典型的环氧树脂结构如下式。 2、环氧基是环氧树脂的特性基团,它的含量多少是这种树脂最为重要的指标。描述环氧基含量有以下几种不同的表示法: (1)环氧当量:是指含有1 mol环氧树脂的质量,低相对分子质量(分子量)环氧树脂的环氧当量为175?200g/mol, 随着分子量的增大环氧基间的链段越长,所以高分子量环氧树脂的环氧当量就相应的高。 (2)环氧值:每100g树脂中所含有环氧基的物质的量(摩尔)。这种表示方法有利于固化剂用量的计量和用量的表示。 因为固化剂用量的含义是每100g环氧树脂屮固化剂加入量 (part perhundred of resin缩写成phr)。我国采用环氧值 这一物理量。 环氧当量二100/环氧值 3、粘度的定义 粘度:液体在流动时,在其分子间产生的内摩擦的性质,称为 液体的黏性,黏性的大小用黏度表示,是用来表征液体性质相关的阻力因子。 粘度单位有两种:I、厘泊(cps) 2、毫帕秒(m ?

pas) 1厘泊(cps)二1毫帕秒(iD?pas) 一、种类及性能 1、双酚A型环氧树脂:双酚A (即二酚基丙烷)型 环氧树脂即二酚基丙烷缩水甘油瞇。在环氧树脂屮它的原材料易得、成本最低,因而产量最大(在我国约占环氧树脂总产量的90%,在世界约占环氧树脂总产量的75%?80%),用途最广,被称为通用型环氧树脂。由双酚A型环氧树脂的分子结构决定了它的性能具有以下特点: (1)是热塑性树脂,但具有热固性,能与多种固化剂,催化剂及添加剂形成多种性能优异的固化物,几乎能满足各种使用需求。 (2)树脂的工艺性好。固化时基本上不产生小分子挥发物,可低压成型。能溶于多种溶剂。 (3)固化物有很高的强度和粘结强度。 (4)固化物有较高的耐腐蚀性和电性能。 (5)固化物有一定的韧性和耐热性。 (6)主要缺点是:耐热性和韧性不高,耐湿热性和耐候性差。 2、双酚F型环氧树脂:这是为了降低双酚A型环氧树脂本身的粘度并具有同样性能而研制出的一种新型环氧树脂。通常是用双酚F (二酚基甲烷)与环氧氯丙烷在NaOH作用下反应而得的液态双酚F型环氧树脂。 双酚F型环氧树脂的特点是黏度小,不到双酚A型环氧树脂黏度的1/3,对纤维的浸渍性好。其固化物的性能与双酚A 型环氧树脂几乎相同,但耐热性稍低而耐腐蚀性稍优。液态双酚F型环氧树脂可用于无溶剂涂料、胶粘剂、铸塑料、玻璃钢及碳纤维复合材料等。

相关文档
相关文档 最新文档