文档库 最新最全的文档下载
当前位置:文档库 › 为什么农药喷洒无人直升机的动力无法采用电池

为什么农药喷洒无人直升机的动力无法采用电池

为什么农药喷洒无人直升机的动力无法采用电池
为什么农药喷洒无人直升机的动力无法采用电池

为什么农药喷洒无人直升机的动力无法采用电池?

无锡汉和航空技术有限公司飞行部

2011/02/25

虽然汉和航空早已成功的研发出20公斤载荷农药喷洒无人电动版直升机(见图片与视频),但这款飞机主要还是为农药研发和专业航拍等提供高附加值需求而研发的产品,这是由于采用锂电池作为动力虽然可以省去很多汽油发动机带来的麻烦。但很遗憾目前的电池技术,成本,充电,管理等原因还不能满足低附加值、大使用量的农村农药喷洒需求,使用聚锂电池作为动力存在着以下问题:

1. 聚锂电池成本太高

电池造价高,10公斤载荷能力的农药喷洒无人直升机一组电池的价格大约3000-5000元。聚锂电池循环寿命很不稳定,维护使用的好可能长一点,维护的不好可能只有几十次。

2. 循环快速充电,寿命急剧缩短

目前在航模行业有可能做到5C大电流充电,但短时间的大电流充放电,势必会造成聚锂电池的寿命急剧下降。 20-30分钟的循环充放电电池的寿命可能只有正常寿命的1/10。对电池的损坏很大。因此一般厂家推荐充电方法是每天充放一次。

3. 无法场外进行充电

场外作业必须解决充电电源的问题。如果载荷5公斤农药喷洒电动无人直升机,实际飞行时间大约是7-8分钟的为例:

采用12S/4.2V/8000AH的电池。电压:4.2*12=54V ,20分钟充满的话就需要用30A 的电流来充,所需功率1500W。这就需要有一个燃油发电机来供电。并且这个发电机的重量也不下10-20公斤。因为电池每次放电使用后内部的化学物质会急速升温,需要经过数小时的自然冷却达到环境温度后才可以进行下一次充电。因此还需要准备5-10组电池才来得及循环飞行。

喷洒作业是一个移动的过程,也就是说在田间地头喷洒还需要搬运好几十公斤重的发电机以及电池。很难想象一个2人喷洒小组携带1-2台1500W燃油发电机,一边喷洒作业一边进行充电管理。

实际上在给飞机电池充电的同时也消耗了相当于飞行所需要的燃油,因为电池的电力是从汽油转化来的。也就是做了2次能量转化,中间多了一道电池的储能、损耗以及折旧。因此这种方式的动力成本大大增加。

这个例子还只是载荷5公斤农药的无人直升机。如果是载荷10公斤的话,这些数据就都会放大1倍甚至更多。

4.使用不方便

如果每天单次使用锂电池,每天作业8小时的话,至少需要携带20-30组电池。前期电池,充电设备投资较大。每天晚上要安排专人负责充电。携带这么多聚锂电池场外作业,无论是使用、搬运、维护都是非常不方便的,而且也具有很大的危险性,一旦碰撞短路会引起剧烈的燃烧和爆炸。对使用者的责任心以及技能都有很高的要求。

总之,使用聚锂电池作为动力无人直升机比较适合于一些特殊用途,如艺术类的航拍等附加值较高对成本不太敏感的应用,因为空中拍摄都时间较短,收益较高,对汽油发动机引起振动要求较高。但用于低附加值得大规模使用的农药喷洒上无人直升机最大的瓶颈仍在电池上。以目前的电池制造水平、电动飞机在前期投资(飞机,电池,充放电,发电机等设备)、运营成本和管理上远远不如传统的汽油机方式,如汉和航空CD-10农药喷洒直升机采用工业标准设计属于工程型飞机,其动力就是采用日本原装进口小松80CC二冲程汽油发动机(97号汽油混合机油)成本约为0.4元/亩,不失为大规模低成本运营的一种选择。

喷洒农药安全注意事项(新版)

喷洒农药安全注意事项(新版) Understand the common sense of safety, you can understand what safety issues should be paid attention to in daily work, and enhance your awareness of prevention. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0626

喷洒农药安全注意事项(新版) 喷洒农药时,不注意安全防护,可引起慢性中毒、急性中毒、致癌、致突变等。急性中毒可导致死亡,也是最明显的农药危害。长期接触农药,使农药在体内不断蓄积,可破坏神经系统的正常功能,虽不危及人体生命,但可降低人体免疫力,致使疾病的发生。 在喷洒农药时,很多朋友完全没有防护,有的光着上身,穿着短裤就在喷;有的在中途休息时喝酒抽烟;还有手也不洗就直接用手拿食物吃的,导致农药中毒的事件时有发生。喷洒农药时,主要做好以下几个方面: 一、喷洒农药的安全防护方法有哪些? 1.个人防护用品 防护服、防护手套、防护鞋、防毒口罩(带有滤毒罐的)、防护镜等。

喷洒农药时,用人单位应提供相应的防护品。 如果没有防护品,那么不要光着腿脚、穿着短袖衣衫就去接触农药,要穿长袖长裤衣服、胶鞋,戴上橡胶手套和防毒口罩。皮肤容易暴露的地方,可以涂上一层肥皂沫,喷完立即用流水冲洗,也可以防护农药通过皮肤进入体内。 在配置和喷洒农药时,就要穿戴好,而不仅仅在喷洒农药时穿戴。 2.喷前检查准备 喷洒农药前,认真阅读农药的说明书,配置方法,配药禁忌,配药时注意操作,勿溅出来。还要检查喷洒装置,各个接头都要安装结实,不要有渗漏。 喷洒农药前须通知邻近人员(医务人员更佳),以便发生中毒事故时可被及时发现并得到救助。如有皮肤破损,不能参加农药配置和农药喷洒工作。 3.喷药时间的选择 最好在早上10点之前或者下午5点以后喷洒农药,这段期间日

飞机空气动力学复习

实用标准文案 飞机空气动力学复习 一.概念: 1.升力、翼型分离、压差阻力、压力中心和失速P116-120 2. 机翼展向压强变化P135-136 3.马蹄涡系、下洗与诱导阻力P137-140 4. 声速、马赫数、马赫线、马赫角和马赫锥P187-200 5. 亚声速、超声速与截面积关系P197-201 6. 亚声速小扰动理论P273-282 7. 跨声速翼型气动特性284-294 8. 超声速翼型P314-321 9. 超声速机翼P330-335,338-340 10.高超声速流P363-371 二.论述: 1.低速翼型气流分离的原因?论述后缘分离对压强分布的影响,并绘图示意。 P129-130 2.低速翼型的前缘气泡?论述产生前缘气泡的原因,并绘图示意前缘气泡对压强分布的影响。P130-131 3.分别论述后掠翼的前、后缘是亚声速流还是超声速流?并画出各机翼中某翼型处的压强系数与翼弦的分布示意图。P330-331,338 4.分别论述高超声速有粘性干扰的边界层和激波,并画出流动简图和压强分布图。P363-364 5. 论述超音速机翼锥形流法的含义,描述机翼前后缘均为超声速后掠机翼锥形流理论的处理方法,画出用锥形流法处理的区域示意图。P334 三.计算 1.已知某机翼平板二维机翼翼型参数,求二维机翼翼型升力及升力系数。 2.已知单翼椭圆机翼飞机飞行状态,求诱导阻力及根部剖面处的环量。 3.机翼为椭圆机翼低速平飞,已知重量、速度和翼展、展弦比,求飞机的升力系数﹑阻力系数和阻力。 4.一架飞机以某马赫数高速飞行,求飞机的飞行速度和皮托管测出的总压。 5.翼型以某马赫数和迎角运动,已知翼型参数, 用线化理论算翼型的升力系数和波阻系数。 精彩文档

飞机的空气动力学.

低速、亚音速飞机的空气动力 环境c091 王亚飞 飞机上的空气动力学和现在的流体力学有着相同的特点,研究空气动力学可以间接的学习流体力学,而空气动学上的最突出的应用就是飞机,所以现在着重讲述下飞机的空气学特点, 翼型的升力和阻力 飞机之所以能在空中飞行,最基本的事实是,有一股力量克服了它的重量把它托举在空中。而这种力量主要是靠飞机的机翼与空气的相对运动产生的。 迎角的概念飞行速度(飞机质心相对于未受飞机流场影响的空气的速度)在飞机参考平面上的投影与某一固定基准线(一般取机翼翼根弦线或机身轴线)之间的夹角,称为迎角(图2.3.5(a)),用α表示。当飞行速度沿机体坐标系(见2.4.1节)竖轴的分量为正时,迎角为正。 如果按照相对气流(未受飞机流场影响的气流)方向,则相对气流速度(未受飞机流场影响的空气相对于飞机质心的运动速度)在飞机参考平面上的投影与某一固定基准线之间的夹角就是迎角,且当相对速度沿机体坐标系竖轴的分量为负时,迎角为正(图2.3.5(b))。

图2.3.5 迎角图2.3.6小迎角α下翼剖面上的空气动力 1—压力中心 2—前缘 3—后缘 4—翼弦 升力和阻力的产生根据我们已经讨论过的运动的转换原理,可以认为在空中飞行的飞机是不动的,而空气以同样的速度流过飞机。如图2.3.6所示,当气流流过翼型时,由于翼型的上表面凸些,这里的流线变密,流管变细,相反翼型的下表面平坦些,这里的流线变化不大(与远前方流线相比)。根据连续性定理和伯努利定理可知,在翼型的上表面,由于流管变细,即流管截面积减小,气流速度增大,故压强减小;而翼型的下表面,由于流管变化不大使压强基本不变。这样,翼型上下表面产生了压强差,形成了总空气动力R,R的方向向后向上。根据它们实际所起的作用,可把R分成两个分力:一个与气流速度v垂直,起支托飞机重量的作用,就是升力L;另一个与流速v平行,起阻碍飞机前进的作用,就是阻力D。此时产生的阻力除了摩擦阻力外,还有一部分是由于翼型前后压强不等引起的,称之为压差阻力。总空气动力R与翼弦的交点叫做压力中心(见图 2.3.6)。好像整个空气动力都集中在这一点上,作用在翼型上。 根据翼型上下表面各处的压强,可以绘制出翼型的压强分布图(压力分布图),如图 2.3.7(a)所示。图中自表面向外指的箭头,代表吸力;指向表面的箭头,代表压力。箭头都与表面垂直,其长短表示负压(与吸力对应)或正压(与压力对应)的大小。由图可看出,上表面的吸力占升力的大部分。靠近前缘处稀薄度最大,即这里的吸力最大。

南航直升机空气动力学习题集17页

直升机空气动力学习题集 绪论 (0-1)试计算Z-8直升机的旋翼实度σ、桨尖速度ΩR和海平面标准大气条件下的桨尖M数。 (0-2)Z-9直升机的旋翼桨叶为线性负扭转。试画出以桨距Ф7=11。作悬停飞行的桨叶上r=(0.29~1.0)一段的剖面安装角()rφ→分布。 (0-3)关于反扭矩的是非题: a) 尾桨拉力用以平衡发动机的反扭矩,所以尾桨的位置要比发动机高。() b) 尾桨拉力用以平衡旋翼的反扭矩,所以尾桨位置距旋翼轴很远。() c)双旋翼直升机的两付旋翼总是彼此反向旋转的。() d) 尾桨没有反扭矩。() (0-4) 关于旋翼参数的是非题: a)旋翼的半径就是桨叶的长度。() b) 测量桨叶的根部宽度及尖部宽度,就可以得到桨叶的根梢比。() c) 测量桨叶的根部及尖部之间的倾斜角之差,就得到桨叶的扭度。()

d) 台式电风扇实度接近1。 ( ) (0-5) 假定Y-2直升机在某飞行状态下,旋翼拉力T=1200公斤,试计算 其C T 值。(海平面标准大气) 第一章 (1-1) 论证在垂直上升状态旋翼的滑流形状是图(a )而不是图(b ) (1-2) 假定Y-2直升机在垂直飞行状态发动机的功率有84%传递给旋翼, 且悬停时悬疑的 型阻功率为诱导功率的一半,桨端损失系数к=0.92; a) 求在海平面标准大气条件下悬停时桨盘外的诱导速度; b) 求在海平面标准大气条件下悬停时的诱导功率、相对效率和直升机的单位马力载 荷; c) 若以V 0=(1/3)v 10的速度作垂直爬升,此时桨盘处的诱导速度多大?诱导功率多大? 若型阻功率与悬停时相同,旋翼消耗的总功率多大? (1-3) 上题中,若飞行重量增大20%,除增大桨距外保持其他条件及型阻 功率不变,那么其悬停诱导功率及相对效率将是多大? (1-4) 既然 a) 是否可以认为,只要把旋翼直径做得很大,就可以用很小功率的 发动机做成重型直升机? b) 直升机的发展趋势为什么是p 趋向增大? (1-5) 试根据0η的定义导出0η与桨盘载荷p 的关系。假定型阻功率与p

飞行空气动力学

第三章 - 飞行空气动力学 飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。作用于飞机的力 至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。飞行员必须控制的是这些力之间的平衡。对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。 下面定义和平直飞行(未加速的飞行)相关的力。 推力是由发动机或者螺旋桨产生的向前力量。它和阻力相反。作为一个通用规则,纵轴上的力是成对作用的。然而在后面的解释中也不总是这样的情况。 阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。阻力和推力相反,和气流相对机身的方向并行。 重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。由于地球引力导致重量向下压飞机。和升力相反,它垂直向下地作用于飞机的重心位置。 升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。它垂直向上的作用于机翼的升力中心。 在稳定的飞行中,这些相反作用的力的总和等于零。在稳定直飞中没有不平衡的力(牛顿第三定律)。无论水平飞行还是爬升或者下降这都是对的。也不等于说四个力总是相等的。这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。例如,考虑下一页的图3-1。在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升

力)推力等于阻力,升力等于重力。必须理解这个基本正确的表述,否则可能误解。一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。必须强调的是,这是在稳定飞行中的力平衡关系。总结如下: ?向上力的总和等于向下力的总和 ?向前力的总和等于向后力的总和 对旧的“推力等于阻力,升力等于重力”公式的提炼考虑了这样的事实,在爬升中,推力的一部分方向向上,表现为升力,重力的一部分方向向后,表现为阻力。在滑翔中,重力矢量的一部分方向向前,因此表现为推力。换句话说,在飞机航迹不水平的任何时刻,升力,重力,推力和阻力每一个都会分解为两个分力。如图3-2

直升机空气动力学现状和发展趋势

直升机空气动力学现状 二级学院:航空维修工程学院 班级:航修六班 学号:14504604 姓名:李达伦 日期:2015年6月30日

直升机空气动力学现状 (航修六班14504604 李达伦) 摘要:直升机空气动力学是直升机技术研究及型号研制的基础性学科和先进学 科,本文概述了国外的直升机气动理论与方法研究、基于气动理论和方法的应用基础研究、直升机气动试验技术的研究现状。 关键词:空气动力学;直升机 Abstract:Aerodynamics of helicopter is a helicopter technological research and model development of basic disciplines and advanced subject. This paper summarizes the foreign helicopters gas dynamic theory and method of research, based on the aerodynamic theory and methods of applied basic research, helicopter aerodynamic test technology research status. Key word:Air dynamics; helicopter 1 前言 飞行器的设计和研制必须以其空气动力学为主要依据,这是飞行器研制区别 于其它武器平台的典型特征。直升机以旋翼作为主要的升力面、推力面和操纵面, 这种独特的构型和旋翼驱动方式,更使其气动特征具有复杂的非定常特征,其气 动分析和设计技术固定翼飞行器更具挑战性。 直升机气动研究是指认识直升机与空气之间作用规律、解释直升机飞行原 理、获取提升直升机飞行能力和效率的新知识、新原理、新方法的研究活动,其 主要任务是获得直升机的空气动力学特性[1]。由于直升机气动特征性直接决定了 型号飞行性能、振动特性、噪声水平,且是结构设计、寿命评估等的直接依据, 因此直升机气动研究是直升机技术研究的重要方面,更是型号研制的基础。尤其 是要实现舒适、安全、便利、快捷的直升机型号研制目标,直升机空气动力学将 体现其核心推动作用。 2 内容和范围 直升机空气动力学专业发展涵盖的内容和范围主要有直升机气动理论与方 法的研究、基于气动原理的应用基础研究以及气动特性试验研究三大内容。 直升机气动理论与方法的研究重点关注旋翼与周围空气相互作用现象及机 理的分析模型和方法,通过对气动理论和方法的研究,实现对直升机及其流场的 深入了解,以准确地计算其空气动力学特性。 气动应用研究是指基于气动理论和方法,以直升机研制为目标所展开的应用 基础研究,涵盖气动特性、气动弹性、气动噪声、结冰模拟、流动控制等应用领

微型飞行器空气动力学研究

2005年9月系统工程理论与实践第9期 文章编号:100026788(2005)0920137205 微型飞行器空气动力学研究 李占科,宋笔锋,张亚锋 (西北工业大学航空学院,陕西西安710072) 摘要: 围绕与微型飞行器相关的低雷诺数空气动力学问题,进行了低雷诺数翼型气动特性的数值分析 研究、低马赫数低雷诺数流场数值计算方法研究、考虑扑翼结构弹性变形的气动特性估算方法研究、微 型飞行器气动特性估算的非定常涡格法研究和微型飞行器的风洞试验研究,取得的研究成果对微型飞 行器的发展具有重要的参考价值和指导意义. 关键词: 微型飞行器;雷诺数;扑翼;风洞试验 中图分类号: V27912 文献标识码: A Aerodynamics Research on M icro Air Vehicles LI Zhan2ke,S ONG Bi2feng,ZHANG Y a2feng (School of Aeronautics,N orthwestern P olytechnical University,X i’an710072,China) Abstract: In the paper,Based on the low Reynolds number aerodynamics of the micro air vehicles(M AVs),s ome researches were done.such as aerodynamics characteristic numerical analysis research on the air foil at low Reynolds numbers,numerical calculation method of low Mach low Reynolds numbers fluid field,estimation method research on aerodynamic characteristic of the aeroelastic flapping wing,unsteady v ortex method of aerodynamics characteristic estimation and wind tunnel test of M AVs.The results of this paper have im portant reference value and instructive meaning to the development of M AVs. K ey w ords: micro air vehicles(M AVs);Reynolds number;flapping wing;wind tunnel test 1 引言 近年来,微型飞行器作为一种新型的航空飞行器,在国内外形成了新的研究热潮.低速和小尺寸共同决定了微型飞行器的飞行雷诺数很低(105左右),这远低于传统飞行器(包括普通的无人驾驶飞机)的飞行雷诺数范围(106~108以上).微型飞行器必须在低雷诺数条件下仍能保持良好的气动性能,而这方面的研究目前尚处在探索阶段.本文主要围绕与微型飞行器有关的低雷诺数空气动力学问题,进行了数值计算和风洞试验等方面的研究,取得了具有一定参考价值的研究成果. 2 微型飞行器空气动力学研究 211 低雷诺数翼型气动特性的数值分析研究 微型飞行器外形尺寸小,速度低,基于微型飞行器尺寸的雷诺数也比较小,粘性效应相对强烈,流动易分离,准确求解这种低雷诺数的流场对湍流模型乃至整个数学模型都是一个极大的挑战.本研究针对低雷诺数问题,利用求解雷诺平均的NS方程,数值模拟了绕翼型的低雷诺数流动,分析了与低雷诺数流动有关的不稳定性.研究表明,分离流动都是不稳定的,会产生周期性的脱出涡.结合绕翼型的低雷诺数流动,对采用的计算模型进行了以下研究: 1)FNS方程与T LNS方程数值准确性的对比研究 分别采用FNS方程和T LNS方程计算了在条件:Ma=012,雷诺数Re=110×105,攻角α=1°时绕 收稿日期:2003207207 资助项目:总装气动预研项目(413130401)及国防基础科研项目(J1500C001)联合资助 作者简介:李占科(1973-),男,陕西岐山人,西北工业大学飞机系博士,主要从事与微型飞行器有关的研究.

纸飞机的空气动力学

纸飞机的空气动力学 作者:Ken Blac…文章来源:https://www.wendangku.net/doc/7b13826635.html,点击数:5666 更新时间:2007-2-4 4:41:01 如果图片太小,你可以在图片上面滚动鼠标滑轮来放大图片观察,也可以在图片上单击右键选择〔图片另存为〕保存图片到你的电脑上面再进行查看。 1.介绍 这里打算介绍关于纸飞机的空气动力学知识。如果你想全面了解为什么飞机能飞行,为什么有时坠毁,可以参阅我的《世界记录纸飞机》和《孩童纸飞机》中的任何一本书。本来打算在这里也用一个章节来写一些这方面的知识,但限于篇幅,不能写了。希望这些内容不会过于专业性,其中一些细节可能比较复杂,但大多数原则是很简单明了的。我的目标是高中生能理解大部分内容。我希望能在不久的将来在我的网站上放一个全面的空气动力学介绍 了解纸飞机和真正的飞机飞行的基本原理很重要。它们同样产生升力和拖力,并且同样会因此而稳定或不稳定。但纸飞机不但外形看上去和真飞机不同,它的空气动力原理也和真飞机有不同之处。这些不同点虽然不明显,但确实影响纸飞机的飞行。 2.为什么纸飞机很真飞机外形不同大多数真飞机有机翼、尾翼和机身(来承载飞行员和乘客)。大多数纸飞机只是将纸折出一对翅膀和一个手可以握住、投掷的部分。有以下几点理由来说明这种不同:

2.1 折纸时间 造成纸飞机和真飞机外形不同的主要原因是折纸飞机的人总想又快又简单地折出一个纸飞机。加一个机尾或其他部分总需要将纸折更多次,有时侯还可能需要剪刀、胶带或胶水。最简单的纸飞机就是一个飞行的翅膀。 2.2不需要尾翼真飞机的水平尾翼有一个升降系统,飞行员可以通过旋转该系统使飞机抬头而缓慢飞行,或低头加速飞行。纸飞机通过将翅膀后端边缘的纸折起而达到上升缓慢飞行或下降加速飞行的目的。 有一些真飞机没有尾翼也能成功飞行。Northrop XB-35 and B-2、贺顿兄弟的滑翔机都是很稳定,很好的飞行器。许多人都以为飞机尾翼是必要的稳定器,但上面提到的飞机及成百万的纸飞机都证明没有尾翼飞机也能平稳。

纸飞机的空气动力学

纸飞机的空气动力学 1.介绍 这里打算介绍关于纸飞机的空气动力学知识。如果你想全面了解为什么飞机能飞行,为什么 有时坠毁,可以参阅我的《世界记录纸飞机》和《孩童纸飞机》中的任何一本书。本来打算 在这里也用一个章节来写一些这方面的知识,但限于篇幅,不能写了。希望这些内容不会过 于专业性,其中一些细节可能比较复杂,但大多数原则是很简单明了的。我的目标是高中生 能理解大部分内容。我希望能在不久的将来在我的网站上放一个全面的空气动力学介绍 了解纸飞机和真正的飞机飞行的基本原理很重要。它们同样产生升力和拖力,并且同样会因 此而稳定或不稳定。但纸飞机不但外形看上去和真飞机不同,它的空气动力原理也和真飞机 有不同之处。这些不同点虽然不明显,但确实影响纸飞机的飞行。 2.为什么纸飞机很真飞机外形不同大多数真飞机有机翼、尾翼和机身(来承载飞行员和乘 客)。大多数纸飞机只是将纸折出一对翅膀和一个手可以握住、投掷的部分。有以下几点理 由来说明这种不同:

2.1 折纸时间 造成纸飞机和真飞机外形不同的主要原因是折纸飞机的人总想又快又简单地折出一个纸飞 机。加一个机尾或其他部分总需要将纸折更多次,有时侯还可能需要剪刀、胶带或胶水。最 简单的纸飞机就是一个飞行的翅膀。 2.2不需要尾翼真飞机的水平尾翼有一个升降系统,飞行员可以通过旋转该系统使飞机抬头 而缓慢飞行,或低头加速飞行。纸飞机通过将翅膀后端边缘的纸折起而达到上升缓慢飞行或 下降加速飞行的目的。

有一些真飞机没有尾翼也能成功飞行。Northrop XB-35 and B-2、贺顿兄弟的滑翔机都是很稳定,很好的飞行器。许多人都以为飞机尾翼是必要的稳定器,但上面提到的飞机及成百万的纸飞机都证明没有尾翼 飞机也能平稳。 飞机通过尾翼向前后不同的方向倾斜来保持飞机的稳定性。飞机只有在重心点上时才能保持平衡,而这 个重心点会因承载的人员和货物的多少,甚至燃料的多少而前后移动。如果飞机的重心移到飞机的中点 之后,飞机会不平稳,如果重心移到中点之前,又会过于平稳,需要更多的升力。升降系统安装在尾翼 比在机翼上更有效。所以有尾翼的飞机比没有尾翼的飞机更好控制重心。纸飞机的重心不移动,所以不 需要尾翼。

飞行器空气动力学课程设计网络版

空气动力学课程设计A型机纵向气动特性的估算与分析 南京航空航天大学 航空宇航学院

任务书 题目:A型机纵向气动特性的估算与分析 给定飞机(详见附图),无动力装置,全动水平尾翼。 飞机高度:米 飞行数:0.3,0.6,0.8,0.94,1.0,1.10,1.40。 飞行迎角:,,,。 舵面不偏转: 试估算全机的升力特性,阻力特性和纵向力矩特性。 1.单独外露机翼升力系数,升力线斜率随数变化曲线(以迎角为参数); 2.单独全机翼升力线斜率随数变化曲线; 3.全机升力线斜率随数变化曲线; 4.全机零升阻力系数随数变化曲线; 5.全机诱导阻力系数随数变化曲线; 6.全机阻力系数随数变化曲线; 7.全机极曲线; 8.全机焦点随数变化曲线; 9.全机对重心的纵向力矩系数随数的变化曲线; 机身(截尾)外形曲线

式中, 。 原始几何数据: 一.飞机重心 距机头顶点7.96(位于机身轴线上),长度以米为单位(面积为米2)。 二.外形尺寸 剖面机翼双弧形平尾圆弧形立尾NACA0006 0.06 0.06 0.06 0.5 0.5 0.3 厚度位置 展弦比(全翼) 3.09 3.99 稍根比0.39 0.33 全翼面积38.81 7.74 3.77 1.51 全翼平均气动

第一部分全机升力特性 一.单独外露机翼升力系数及升力线斜率随数变化曲线由图a可得外露机翼相应几何参数为: 机翼与机身连接部分的机身平均半径 外露机翼根弦长,稍弦长,跟梢比; 外露机翼面积; 外露机翼展弦比; 其中相似参数:,; 查阅讲义图1.1a,得到下表 0.3 0.6 0.8 0.94 1 1.1 1.4 2.876 2.412 1.809 1.028 0 1.381 2.954 0.02 0.021 0.023 0.026 0.027 0.024 0.018 0.057 0.062 0.068 0.078 0.079 0.07 0.054 表1 升力线斜率随M数变化曲线如图1所示。

纸飞机的空气动力学

纸飞机的空气动力学 作者:文章来源:点击数:5666 更新时间:2007-2-4 4:41:01 如果图片太小,你可以在图片上面滚动鼠标滑轮来放大图片观察,也可以在图片上单击右键选择〔图片另存为〕保存图片到你的电脑上面再进行查看。 1.介绍 这里打算介绍关于纸飞机的空气动力学知识。如果你想全面了解为什么飞机能飞行,为什么有时坠毁,可以参阅我的《世界记录纸飞机》和《孩童纸飞机》中的任何一本书。本来打算在这里也用一个章节来写一些这方面的知识,但限于篇幅,不能写了。希望这些内容不会过于专业性,其中一些细节可能比较复杂,但大多数原则是很简单明了的。我的目标是高中生能理解大部分内容。我希望能在不久的将来在我的网站上放一个全面的空气动力学介绍 了解纸飞机和真正的飞机飞行的基本原理很重要。它们同样产生升力和拖力,并且同样会因此而稳定或不稳定。但纸飞机不但外形看上去和真飞机不同,它的空气动力原理也和真飞机有不同之处。这些不同点虽然不明显,但确实影响纸飞机的飞行。 2.为什么纸飞机很真飞机外形不同大多数真飞机有机翼、尾翼和机身(来承载飞行员和乘客)。大多数纸飞机只是将纸折出一对翅膀和一个手可以握住、投掷的部分。有以下几点理由来说明这种不同:

折纸时间 造成纸飞机和真飞机外形不同的主要原因是折纸飞机的人总想又快又简单地折出一个纸飞机。加一个机尾或其他部分总需要将纸折更多次,有时侯还可能需要剪刀、胶带或胶水。最简单的纸飞机就是一个飞行的翅膀。 不需要尾翼真飞机的水平尾翼有一个升降系统,飞行员可以通过旋转该系统使飞机抬头而缓慢飞行,或低头加速飞行。纸飞机通过将翅膀后端边缘的纸折起而达到上升缓慢飞行或下降加速飞行的目的。 有一些真飞机没有尾翼也能成功飞行。Northrop XB-35 and B-2、贺顿兄弟的滑翔机都是很稳定,很好的飞行器。许多人都以为飞机尾翼是必要的稳定器,但上面提到的飞机及成百万的纸飞机都证明没有尾翼飞机也能平稳。

相关文档
相关文档 最新文档