文档库 最新最全的文档下载
当前位置:文档库 › 三轮机器人直线行走问题分析

三轮机器人直线行走问题分析

三轮机器人直线行走问题分析
三轮机器人直线行走问题分析

2012年数学建模机器人避障问题

机器人避障问题 摘要 本文主要运用直线逼近法等规律来解决机器人避障问题.对于问题一:要求最短路径运用直线逼近法证得圆弧角三角形定理,得出结论:若一大圆弧角三角形完全包括另一小圆弧角三角形,则该三角形曲线周长必大于小的三角形周长.那么可知机器人在曲线过弯时,选择最小半径可满足路径最短,即为10个单位半径,通过观察可得可能的所有曲线,通过仅考虑直线段的大致筛选选出总长较小、长度相近(之差小于100)的曲线,然后利用平面几何知识对相关切点,进而求出各直线、曲线的长度,求和可得最段路线.对于问题二:通过对机器人过弯规律2 1.0100 e 1)(ρ ρ-+= =v v v 的分析可知,当过弯 半径13ρ=时,机器人速度达最大速度为50=v 个单位/秒,再大就无变化了,那么可分两种情况考虑:1)当13ρ>时,过弯速度无变化,但由圆弧角三角形定理可知,此时随着ρ的不断变大,其路线总长不断变大,这时ρ越小O A →所用时间最短;2)当13ρ≤时,统计计算ρ分别为10、11、12、13时,过弯速度v 也不断变化,计算所用时间发现随ρ不断变大,O A →所用时间越短,此时当13ρ=时,时间最短.综合上述可知:当 13ρ=时,时间最短. 关键词: 质点机器人 安全范围 直线逼近法 圆弧角三角形定理 10单位半径

1 问题重述 在一个800×800的平面场景中,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动,其中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物, 物的距离至少超过10个单位).规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径.机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位.为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位. 机器人直线行走的最大速度为50=v 个单位/秒.机器人转弯时,最大转弯速度为 2100.11 0()(1e ) v v v ρρ--==+,其中ρ是转弯半径.如果超过该速度,机器人将发 生侧翻,无法完成行走. 下面建立机器人从区域中一点到达另一点的避障最短路径和最短时间路径的数学模型.对场景图中4个点O(0, 0),A(300, 300),B(100, 700),C(700, 640),具体计算: (1) 机器人从O(0, 0)出发,O→A 、O→B 、O→C 和O→A→B→C→O 的最短路径. (2) 机器人从O (0, 0)出发,到达A 的最短时间路径. 2 问题分析 2.1问题一: 该问题要求路径最短,即不要求速度与时间,则可认为以最小半径10的圆过弯. 如图2.1所示:由圆弧角三角形定理(简单证明见模型准备5.3)可知过弯时,只有采用10单位半径过弯时,才会使得过弯路径最短,因此解决问题一的过弯拐角问题均采用10单位半径过弯路径. 2.2问题二: 由于O→A 过程中,机器人至少要经过一

仿生机器人关键技术

仿生机器人关键技术 “仿生机器人”是指模仿生物、从事生物特点工作的机器人。,涉及到机械设计、计算机、传感器、自动控制、人机交互、仿生学等多个学科。因此,机器人领域中需要研究的问题非常多。主要研究问题包括以下五个方面: 1 建模问题 仿生机器人的运动具有高度的灵活性和适应性。其一般都是冗余度或超冗余度机器人,结构复杂,运动学和动力学模型与常规机器人有很大差别,且复杂程度更大。为此,研究建模问题,实现机构的可控化是研究仿生机器人的关键问题之一。 2 控制优化问题 机器人的自由度越多,机构越复杂,必将导致控制系统的复杂化。复杂巨系统的实现不能全靠子系统的堆积,要做到整体大于组分之和,同时要研究高效优化的控制算法才能使系统具有实时处理能力。 3 信息融合问题 在仿生机器人的设计开发中,为实现对不同物体和未知环境的感知,都装备有一定量的传感器。多传感器的信息融合技术是实现其具有一定智能的关键。信息融合技术把分布在不同位置的多个同类或不同类的传感器所提供的局部环境的不完整信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,从而提高系统决策、规划、反应的快速性和正确性。 4 机构设计问题 合理的机构设计是仿生机器人实现的基础。生物的形态经过千百万年的进化,其结构特征极具合理性,而要用机械来完全仿制生物体几乎是不可能的,只有在充分研究生物肌体结构和运动特性的基础上提取其精髓进行简化,才能开发全方位关节机构和简单关节组成高灵活性的机器人机构。 5 微传感和微驱动问题 微型仿生机器人有些已不是传统常规机器人的按比例缩小,它的开发涉及到电磁、机械、热、光、化学、生物等多学科。对于微型仿生机器人的制造,需要解决一些工程上的问题,如动力源、驱动方式、传感集成控制以及同外界的通讯等。实现微传感和微驱动的一个关键技术是机电光一体结合的微加工技术。同时,在设计时必须考虑到尺寸效应、新材料、新、工艺等问题。

行走机器人组装与制作实验报告

青岛理工大学(临沂) 开放性实验报告 项目名称:行走机器人组装与制作 院(系):机电工程系 专业: 学号: 学生姓名: 指导教师: 日期:2014.12.1- 2014.12.15

一、实训目的 足球由两个半球和底座组成,每个半球内装有一只亮膜小喇叭,底座内装有电路板,电路使用经典的2822双声道功放集成电路,带有电源开关、电源LED指示灯、双声道音量电位器、还有接外接电源用的空心插座。底座下面设有可以装4节7号电池的电池槽,或利用USB供电。套件产品附有双声道音频输入线,线上有3.5mm的双声道插头,可以摆放在床头、书桌、电脑桌等地放,音源可以使用MP3、电脑输出等。这块音箱不但造型精致,而且外观精巧大方、携带方便,能实现USB(+5v)供电,也可以通过电池供电。其高品质功放芯片和双声道电位器直接支持小音箱能高音质双声道播放。这款音箱实用性强、制作过程简单、操作工具要求不高,适合广大电子初学者。通过本次制作也可以了解PCB制作原理,进一步提高操作者本身电子焊接技术。加上产品本身能实现的巨大的功能,对于初学者有深远意义。 二、实习器材 (1) 电烙铁 (2) 螺丝刀、镊子等必备工具 (3) 锡丝:由于锡的熔点低,焊接时,焊锡能迅速散步在金属表面焊接牢固,焊点光亮美观 (4) 两节5号电池 (5) 收音机实验套件

三、实习内容 一、迷你功放音箱产品功能及特点 该迷你音箱可以作为MP3或笔记本及台式机的功放。如果从电脑取电,可以从USB,也可以直接从主机中引出12V,现在有些电脑电源带有供液晶显示器用的12V电源接口,更是方便。如果从USB取电,要注意占用一个独立的USB口,不 要和其他USB设备共用。TDA2822M采用5V供电时的工作电流只有200mA~300mA,只要主板质量合格,不会有什么问题。 本套件制作容易,是提高初学者学习电子技术兴趣的良好套材。 在拿到本套件后,请对照材料清单清点一遍,并用万用表粗略的(因出厂已测量过)测量一下各元件的参数,先检查元件有没有出错,对照装配图安装元件,有没有虚假错焊,只要元件安装无误,一般情况下是能够成功的。 四、个人总结 通过这次迷你足球小音箱的制作,让我深深地爱上了电子DIY 制作。也通过焊接PCB电路让我提高了自己的焊接水平,自己制作出的成品也得到老师的赞扬,这一切都深深鼓舞着我,再接再厉,努力学好自己的专业。 在小音箱的制作过程中,我积极查阅相关资料,期间认识和熟悉了D2822功放芯片,和K503双声道电位器。遇到问题的时候,通

机器人避障问题的解题分析(建模集训)

机器人避障问题的解题分析 摘要:本文对2012年全国大学生数学建模竞赛D题机器人避障问题进行了全面分析,对最短路的设计进行了理论分析和证明,建立了机器人避障最短路径的几何模型,对最短时间路径问题通过建立非线性规划模型,有效地解决了转弯半径、圆弧圆心位置和行走时间等问题。 关键词:机器人避障;最短路径;Dijkstra算法;几何模型;非线性规划模型 1 引言 随着科学技术的进步和计算机技术的发展,机器人的应用越来越广泛,在机器人的应用中如何使机器人在其工作范围内为完成一项特定的任务寻找一条安全高效的行走路径,是人工智能领域的一个重要问题。本文主要针对在一个场景中的各种静态障碍物,研究机器人绕过障碍物到达指定目的地的最短路径问题和最短时间问题。 本文以2012年“高教社”杯全国大学生数学建模竞赛D题“机器人避障问题”为例进行研究。假设机器人的工作范围为800×800的平面正方形区域(如图1),其中有12个不同形状的静态障碍物,障碍物的数学描述(如表1): 图1 800×800平面场景图

表1 在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动,机器人不能与障碍物发生碰撞,障碍物外指定一点为机器人要到达的目标点。规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。机器人直线行走的最大速度为50=v 个单位/秒。机器人转弯时,最大转弯速度为2 1.0100 e 1)(ρρ-+==v v v (ρ是转弯 半径)。如果超过该速度,机器人将发生侧翻,无法完成行走。 场景图中有4个目标点O(0, 0),A(300, 300),B(100, 700),C(700, 640),下面我们

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

机器人避障问题——国家一等奖论文 推荐

D题机器人避障问题 摘要 本文综合运用分析法、图论方法、非线性规划方法,讨论了机器人避障最短路径和最短时间路径求解问题。 针对问题一,首先,通过分析,建立了靠近障碍物顶点处转弯得到的路径最短、转弯时圆弧的半径最小时和转弯圆弧的圆心为障碍物的顶点时路径最短、转弯在中间目标点附近时,中间目标点位于弧段中点有最短路径的三个原理,基于三个原理,其次对模型进行变换,对障碍物进行加工,扩充为符合条件的新的区域并在转弯处圆角化构成障碍图,并通过扩充的跨立实验,得到切线和圆弧是否在可避障区的算法,第三,计算起点、中间目标点和最终目标点和各圆弧及圆弧之间的所有可避障切线和圆弧路径,最后给这些定点赋一个等于切线长度或弧度的权值构成一个网络图,然后利用Dijkstra算法求出了O-A、O-B,O-C的最短路径为O-A:471.0372个单位,O-B:853.7001个单位,O-C:1086.0677个单位;对于需要经中间目标点的路径,可运用启发规则分别以相邻的目标点作为起点和终点计算,确定路径的大致情况,在进一步调整可得到O-A-B-C-O的最短路径为2748.699个单位。 针对问题二,主要研究的是由出发点到达目标点A点的最短时间路径,我们在第一问的基础上考虑路径尽可能短且圆弧转弯时的圆弧尽量靠近障碍物的顶点,即确定了圆弧半径最小时的圆弧内切于要确定的圆弧时存在最小时间路径,建立以总时间最短为目标函数,采用非线性规划模型通过Matlab编程求解出最短时间路径为最短时间路程为472.4822个单位,其中圆弧的圆心坐标为(81.430,209.41),最短时间为94.3332秒。圆弧两切点的坐标分别为(70.88,212.92)、(77.66,219.87)。 关键字:Dijkstra算法跨立实验分析法非线性规划模型

(完整版)基于单片机控制的双足行走机器人的设计

基于单片机控制的双足行走机器人设计 摘要:21世纪机器人发展日新月异,从传统的履带式机器人到如今的双足行走机器人,机器人的应用范围越来越广。本系统以单片机(STC89c52)为系统的中央控制器,以单片机(STC12c5410ad)为舵机控制模块。将中央控制器与舵机控制器,舵机,各类传感设备及受控部件等有机结合,构成整个双足行走机器人,达到行走、做动作的目的。单片机中央控制器与舵机控制器以串口通信方式实现。系统的硬件设计中,对主要硬件舵机控制器和STC89C52单片机及其外围电路进行了详细的讲述。硬件包括舵机控制器,STC12C5410AD 单片机,按键,各种传感器和数据采集与处理单元。软件包括单片机初始化、主程序、信号采集中断程序、通过串口通讯的接收和发送程序。论文的最后部分以双足行走机器人为基础,结合传感器,外围控制设备组成控制系统,并给出了此系统应用领域的一些探讨和研究。 关键词:单片机;舵机控制; STC12C5410AD

Bipedal robot design based on MCU Abstract:In the 21st century robot development changes with each passing day, from the traditional crawler robot to now bipedal robot, the robot's application scope is more and more widely.This system by single chip microcomputer (STC89c52) as the central controller in the system, STC12c5410ad MCU as the steering gear control module. The central controller and the servo controller, Steering gear, all kinds of sensing and control components such as organic combination, make up the whole bipedal robot, the purpose of to walk, do the action.Single chip microcomputer central controller and the servo controller to realize serial communication way.System hardware design, the main hardware servo controller and STC89C52 single-chip microcomputer and peripheral circuit in detail. Hardware including servo controller, STC12C5410AD micro controller, buttons, all kinds of sensor and data acquisition and processing unit. Software includes MCU initialization, the main program, and interrupts program signal collection, through a serial port communication to send and receive procedures. The last part of the paper on the basis of bipedal robot, combined with the sensor, the peripheral control device of control system, this system is also given some discussions and research in the field of application. Keywords:MCU; Servo Control; STC12C5410AD

高教社杯数学建模D题机器人避障问题论文

机器人避 障问题 摘要 本文研究了机器人避障最短路径和最短时间路径的问题。主要研究了在一个区域中存在12个不同形状障碍物,由出发点到达目标点以及由出发点经过途中的若干目标点到达最终目标点的多种情形,寻找出一条恰当的从给出发点到目标点的运动路径使机器人在运动中能安全、无碰撞的绕过障碍物而使用的路径和时间最短。由于规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径,机器人不能折线转弯。所以只要给定的出发点到目标点存在至少一个障碍物,我们都可以认为最短路径一定是由线和圆弧所组成,因此我们建立了切线圆结构,这样无论路径多么复杂,我们都可以将路径划分为若干个这种切线圆结构来求解。在没有危险碰撞的情况下,圆弧的半径越小,路径应该越短,因此我们尽量选择最小的圆弧半径以达到最优。对于途中经过节点的再到达目标点的状况,我们采用了两种方案,一种是在拐点和节点都采用最小转弯半径的形式,另一种是适当扩大拐点处的转弯半径,使得机器人能够沿直线通过途中的目标点。然后建立了最优化模型对两种方案分别进行求解,把可能路径的最短路径采用穷举法列举出来,用lingo 工具箱求解得出了机器人从O(0,0)出发,O→A、O→B、O→C 和O→A→B→C→O 的最短路径;利用matlab 中的fminbnd 函数求极值的方法求出了机器人从O(0,0)出发,到达A 的最短时间路径。本文提出一种最短切线圆路径的规划方法,其涉及的理论并不高深,只是应用了几何知识和计算机程序、数学工具计算,计算简易,便于实现,能搞提高运行效率。 问题一 O→A 最短路径为:OA L =471.0372 O→B 最短路径为:=1OB L 853.8014 O→C 最短路径为:4OC L =1054.0 O→A→B→C→O 最短路径为: 问题二机器人从O(0,0)出发,到达A 的最短时间路径: 最短时间是94.5649,圆弧的半径是11.5035,路径长4078 .472=OA L 关键词最短路径;避障路径;最优化模型;解析几何;数学工具 一、问题重述 图1是一个800×800的平面场景图,在原点O(0,0)点处有一个机器人,它只能在该平面场景范围内活动。图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍

双足机器人设计

小型双足步行机器人的结构及其控制电路设计 两足步行是步行方式中自动化程度最高、最为复杂的动态系统。两足步行系统具有非常丰富的动力学特性,对步行的环境要求很低,既能在平地上行走,也能在非结构性的复杂地面上行走,对环境有很好的适应性。与其它足式机器人相比,双足机器人具有支撑面积小,支撑面的形状随时间变化较大,质心的相对位置高的特点。是其中最复杂,控制难度最大的动态系统。但由于双足机器人比其它足式机器人具有更高的灵活性,因此具有自身独特的优势,更适合在人类的生活或工作环境中与人类协同工作,而不需要专门为其对这些环境进行大规模改造。例如代替危险作业环境中(如核电站内)的工作人员,在不平整地面上搬运货物等等。此外将来社会环境的变化使得双足机器人在护理老人、康复医学以及一般家务处理等方面也有很大的潜力。 双足步行机器人自由度的确定 两足步行机器人的机构是所有部件的载体,也是设计两足步行机器人最基本的和首要的工作[1]。它必须能够实现机器人的前后左右以及爬斜坡和上楼梯等的基本功能,因此自由度的配置必须合理:首先分析一下步行机器人的运动过程(前向)和行走步骤:重心右移(先右腿支撑)、左腿抬起、左腿放下、重心移到双腿中间、重心左移、右腿抬起、右腿放下、重心移到双腿间,共分8个阶段。从机器人步行过程可以看出:机器人向前迈步时,髓关节与踝关节必须各自配置有一个俯仰自由度以配合实现支撑腿和上躯体的移动;要实现重心转移,髋关节和踝关节的偏转自由度是必不可少的;机器人要达到目标位置,有时必须进行转弯,所以需要有髋关节上的转体自由度。另外膝关节处配置一个俯仰自由度能够调整摆动腿的着地高度,使上下台阶成为可能,还能实现不同的步态。这样最终决定髋关节配置3个自由度,包括转体(roll)、俯仰(pitch)和偏转(yaw)自由度,膝关节配置一个俯仰自由度,踝关节配置有俯仰和偏转两个自由度。这样,每条腿配置6个自由度,两条腿共12个自由度。髋关节、膝关节和踝关节的俯仰自由度共同协调动作可完成机器人的在纵向平面(前进方向)内的直线行走功能;髋关节的转体自由度可实现机器人的转弯功能;髋关节和踝关节的偏转自由度协调动作可实现在横向平面内的重心转移功能。 机器人的转体(roll)、俯仰(pitch)和偏转(yaw)定义如图1所示[2]。

机器人避障问题

精心整理 机器人避障问题 摘要 本文研究了在一个800800?平面场景里,机器人通过直线和圆弧转弯,绕过障碍物,到达目标点的问题,解决了到达目标点路径最短,以及到达A 点时间最短的问题。文章将路径划分为若干个这种线圆结构来求解。对于途中经过节点的再到达目标点的状况,我们采用了在拐点和节点最小转弯半径的形式. O A →O →B O →C O →A →B 10个单位为50=v 对场景图中4(1)(2)1.出发,分别做圆的切线,直到终点。对于经过路径中的目标点的问题,我们采用最小转弯模式,建立优化模型,最终求的最短路径。 2.问题二要求从起始点到达A 点所用的时间最短,从题意以及生活经验可得,拐弯半径越大,所用时间越短,拐弯半径越小,所用时间越大。半径最小不低于10,取最大值时机器人应刚好未碰到4、6三角形,可通过几何解法计算出来,并对时间进行优化处理。 三、模型假设 假设机器人可以抽象成点来处理 假设机器人的能源充足,且在整个行走过程中无故障发生 四,符号说明

】 5(为起点,,OA 圆弧的切点,角度 1OO A ∠=,11OO M ∠=,11AO N ∠=,111M O N θ∠=.设这段路程机器人的总路程为L. 解法如下: 如上图可得有以下关系: 1 AOO ?在中: 在11Rt OO M ?: 222arccos(2b c a bc α+-=

在11Rt AO N 中: 所以: 从而可得: 结果如下: 机器人行走路线 1OM =1N A 弧11M N = 224.7221; b= 237.6973 c= O 同理了解 比较可得, O 从上面绕到到目标点A 的距离最短,最短路径为471.0372。

手把手教你做四足步行机器人

手把手教你做四足步行机器人 用两个飞机模型舵机就能DIY个四足机器人!简单易做.你可试试. 来源:机器人天空原创时间:2008-05-19

第一步:准备零件和所需的材料 制作一个四腿的行走机器人非常简单,所需零件也非常少,两个电机,机器人的腿(用直径合适的铁丝弯制),电池,底板(我用的是一种非常酷的塑胶材料,当它被在热水中加热时就会变软,冷却后又会回复硬度),用来将电池和电机固定在底板上的螺钉,一小块电路实验版(可以在电子市场买到),一个用来安放 ATMega的28针芯片插座,胶,烙铁 和焊锡,以及刀子。 装配之前我还画了一张草图,在上面标出了需要打孔和切割的位置,有一张草图可以让你少走很多弯路,所以我建议大家在对手之前都要做一番“纸上谈兵”的工作。

第二步: 现在需要用刀子在机器人的底板上划出两个安放电机的洞,我先按照草图划出一个洞后用切下来的那部分做标尺直接在另一边划另外一个洞。切的时候不要忘了在下面垫一块纸板, 我差一点切了我的咖啡桌。 打好两个洞后试一试电机,我划的洞似乎稍微宽了一点,长度倒是刚好。

第三步:弯曲底板,安装电机

很不幸,本人手劲不足,无法直接把底板弯曲成照片中的角度,只好采用技术含量比较高 的办法: 首先烧一壶开水 然后将底板放入水中一到二分钟,主要要用一个东西按住底板,免得它浮上来(不要用手!)。 拿出来后底板应该软一些了,戴着手套将它弯曲到自己想要的角度直到冷却。 根据网上高手的建议,最佳角度为30度。 钻上两个螺纹孔,然后用螺钉将电机固定在底板上。

第四步:固定腿部到伺服电机的十字臂 我用尖嘴钳截了两段粗铜线作为机器人的前腿和后腿,然后把它们弯曲成适合伺服电机的 十字臂的形状。 一条经典的BEAM准则就是需要连接零件时,如果可能的话尽量采用铁丝来捆绑。用铁丝捆绑要优于采用焊锡连接。用铁丝捆绑的话会给零件一定的自由空间,并且也利于零部件的 再次使用。

机器人避障问题的最短路径分析

机器人避障问题的最短路径分析 摘要 本论文研究了机器人避障最短路径和最短时间路径的问题。主要讨论了在一个区域中存在12个障碍物,由出发点到达目标点以及由出发点经过若干目标点最终到达出发点的两种情况。采用传统的避障方法——切线图法。建立了线圆结构,这样任何路径,我们都可以将路径划分为若干个这种线圆结构来求解。对于途中经过节点再到达目标点的状况,我们采用在转弯点和节点都采用最小转弯半径,以节点为切点的形式。然后建立了最优化模型,利用MATLAB软件对方案进行求解。 问题一:把路径分解成若干个线圆结构来求解,然后把可能的最短路径采用穷举法列举出来,最终得出最短路径: A O→最短路径为:471.0 O→最短路径为:869.5 B O→最短路径为:1093.3 C 对于O → → →我们将A、B、C看作切点,同样采用线圆结构 C B A O→ 计算。 O→ → → →最短路径为:2827.1 A O C B 问题二:考虑避障路径和转弯速度,我们建立时间与路径之间的模型,用MATLAB软件求出最优解。当转弯半径为11.5的时候,可以得出最短时间为:T=94.3 关键词最优化模型避障路径线圆结构切线图法

一、问题重述 本文是求一个机器人在800×800的平面场景图中避开障碍物,建立从原点O(0, 0)点处出发达到终点的最短路径和最短时间路径的模型。即求:1、O→A 、O→B 、O→C 和O→A→B→C→O 的最短路径。2、O →A 的最短时间路径。 机器人在行走时的要求是:1、它只能在该平面场景范围内活动2、图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物(障碍物的分布如图1)3、障碍物外指定一点为机器人要到达的目标点(要求目标点与障碍物的距离至少超过10个单位)。4、规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。5、为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞。 机器人直线行走的最大速度为50=v 个单位/秒。机器人转弯时,最大转弯速 度为2 1.0100 e 1)(ρρ-+==v v v ,其中ρ是转弯半径。 已知场景图中4个点O(0, 0),A(300, 300),B(100, 700),C(700, 640)。图中各个点 的坐标见下表。 图1 编号 障碍物名称 左下顶点坐标 其它特性描述 1 正方形 (300, 400) 边长200 2 圆形 圆心坐标(550, 450),半径70 3 平行四边形 (360, 240) 底边长140,左上顶点坐标(400, 330)

仿生机器人论文

目录 摘要 (2) 1 目前仿生机器人的发展状况 (2) 2 预测未来仿生机器人的发展 (2) 2.1 群体型机器人 (2) 2.2 多环境适应型机器人 (3) 2.3 学习型机器人 (3) 3 结语 (3) 参考文献 (4)

论仿生机器人未来的几种可能发展 摘要:自然界在长期的演化中孕育出了各种各样的生物,而这些生物都具有神奇的结构和功能,能够在复杂多变的环境中生存下去,因此,通过研究,学习,模仿来复制和再造某些生物特性和功能将极大的提高人类对自然的适应和改造能力。从20世纪60年代开始仿生学诞生,到现在短短的几十年时间,在这方面的研究成果已经非常可观,大到军事小到日常生活,我们已经可以处处见其身影了。那么未来的仿生机器人又会往什么方向发展呢?该文将对未来仿生机器人的几种可能的发展趋势,包含群体型机器人,多环境适应型机器人以及学习型机器人进行分析。 关键词:群体型机器人多环境适应型机器人学习型机器人 1 目前仿生机器人的发展状况 仿生学发展到现在已经延伸到很多领域,机器人学就是其主要的结合和应用领域之一。仿生学在机器人上的应用可以分为五个方面,它们分别是:结构仿生,材料仿生,功能仿生,控制仿生以及群体仿生。而且目前世界上的仿生机器人已经涉及海陆空各个领域,并且在各个领域上的发展都已经达到盛况空前地步。而在仿人机器人方面也在不断的突破中。 但是,目前的仿生机器人大多都是独立的一个个体,也就是彼此之间并没有什么联系。然而就目前的机器人技术水平而言,单机器人在信息的获取,处理以及控制能力等方面都是有限的,对于复杂的工作任务及多变的工作环境,单机器人更显不足。所以,当前的仿生机器人虽然已经发展到一定的高度,可是,它们本身还是存在不少的局限性的。 为了改善日前机器人存在的不足,新的技术手段已经成为了一种必须。在未来的日子里,新型机器人的性能将大幅度的提高,它们将会一步步的取代现有的机器人。 2 预测未来仿生机器人的发展 2.1 群体型机器人 在自然界中有着众多不是独立生存的生物,他们靠着一门属于自己的社交语言和其他的个体组成一个集体一起生活,并借着集体的力量去完成个体很难或者无法办到的事情,比如生活中常见的蚂蚁和蜜蜂,它们的强大我们都是已经有着切身体会的了。所以,如果我们能够借鉴生物间的这种生存方式去制造群体型的机器人,那么,在机器人这条道路上我们将会有一个质的飞跃,看到另一片新的天地。 那么群体型机器人比单个机器人的优势体现在哪里呢?首先,由于群体机器人彼此之间会有信息的交流和互动,那么,单个个体的结构和性能复杂程度将会得到大大的降低,因为它们可以通过群体的协调来弥补掉这些不足。其次,群体型机器人在执行任务的时候完成任务的概率要比单个机器人大很多,同时还能够减少完成任务的时间,提高任务的效率,这些,都是我们一直以来所要追求的。再者,群体型机器人通过彼此之间的联系,可以达到预测未知状况的目的,这样的一种能力对于完成任务来说有着举足轻重的作用。所以,群体型机器人在未来的机器人发展中是一种必然的趋势。

机器人避障问题论文

机器人避障问题 【摘要】 本文主要是对机器人在一个平面区域内通过不同障碍物到指定目标点进行研究,通过建立机器人与障碍物的最小安全距离的禁区模型,进而建立从区域一点到另一点的最短距离、最短时间的数学模型。在最优转弯顶点为障碍物,最优转弯半径为安全距离10的基础上,把路径概括为基本的三种数学模型。利用穷举的算法找出最短路径和最短时间。 针对区域中从一点到另一点避障的最优路径问题,把障碍物划分为有顶点和无顶点两大类。首先本文证明对于有顶点障碍物,机器人以障碍物顶点为圆心且转弯的圆弧半径为10时路径最优,我们还注意到在某些路径中适当增加圆的半径可以把曲线路线转换为直线路径,进一步优化行进路径;对于无顶点障碍物通过论证找出以障碍物圆心为转弯圆心,以障碍物半径与安全距离的和为转弯半径的最优转弯圆弧。其次本文将寻找最短路径的的问题转换为最短路径的优选问题。本文巧妙的将优化模型转变为研究不与障碍物边界相交、不与圆弧相交的路线中的最优解的问题。在这个数学模型的基础上进行相应的改善并且使用穷举的算法找出最优路径。 针对不同的目标点,我们将机器人的行进分为单目标点和多目标点两种情况针对多目标点问题,由于机器人不能直线转向,所以在经过目标点时,应该提前转向,且中间目标点应该在转弯弧上。因此先建立优化模型(模型三)对行进时中间目标点处转弯圆弧圆心搜索求解。求出中间目标点转弯圆心后,用把中间目标点的圆心看做“障碍物”的办法把问题转化为单目标点问题。然后根据模型二和模型一利用MATLAB软件编程求得了O→A、O→B、O→C、O→A→B→A→C的最短路径,最短路径长分别为 471.0372、857.6778、1094.5、2799.0121,其中O-->A的最短路径对应圆弧的圆心坐标为(80,210);O→B的最短路径对应圆弧的圆心坐标:(60,300)、(150,435)、(220、470)、(220,530)、(150,600);O→C经过的圆心:(230,60)、(410,100)、(500,200)、(720,520), (720,600);对于多目标点问题利用模型三进行分割求解得到O→A→B→C→O最短路径对应圆心坐标(80,210)、(307.7715)、(306.2932)、(220,530)、(150,600)、(109.8478,701.7379)、(270,680)、(370,680)、(430,680)、(540,730)、(670,730)、(709.7933)、(642.0227)、(720,600)、(720,520)(500,200),(410,100),(230,60)。对于最短时间路径问题,根据转弯半径和速度的关系,在问题一求出的最短路径的模型的基础上,进行路线优化,建立以最短时间为目标的非线性规划模型,利用lingo 求解最短时间获得了机器人从O点出发,到达A的最短时间路径,求得最短时间路径下转弯半径为12.9885 ,同时最短时间路径时间长为94.2283个单位,路径长为471.129个单位。相应圆弧的圆心坐标为(82.1414,207.9153)。 关键词:机器人避障覆盖法穷举法非线性规划

机器人制作教程

两年前,爸爸给我买了套机器人组合套件,希望我在进入小学高年级之前掌握基本的机器人知识。去年暑假爸爸辅导我阅读《简易机器人制作》(江苏教育)一书,开始学习认识机器人,掌握初级的计算机控制和简单的机械知识。这个寒假我利用所掌握的知识,在爸爸指导下,开始实际制作一个简单的完整模型——智能机器人小车。 一、小车功能介绍 智能机器人小车可独立完成4个功能: 1、小车碰壁拐弯——小车在行进过程中碰到障碍物倒退拐弯并继续前行; 2、小车悬崖回头——小车在浅色水平桌面行进,探测到行进方向是桌子边沿时停步并转弯回头; 3、小车边走边唱——小车在行进过程中播放音乐; 4、小车走8字——小车按照8字的形状行走; 二、设计思路 最初爸爸找到一个类似范例,但由于结构件不同,而且没有源程序,我们参考了这个范例的结构和功能,经过独立思考,多次实验调测,完成这个小车的制作。 1、确定任务 依照不同程序,能够分别使小车完成碰壁拐弯、边走边唱、悬崖回头和走8字。 2、确定总方案 根据任务确定智能小车所需完成的动作,小车需要具备探测障碍物、探测桌面边沿、以及相应需要完成的前进、后退、拐弯、唱歌这些动作。 3、结构设计

结构设计成有两个电机分别控制两个后轮,前轮使用一个万向轮,另外需要一个接触传感器和一个双光反射传感器。结构上需要将接触传感器触点放在小车最前端,双光反射传感器设在接触传感器稍微靠后的位置,面向地面,距地面8-10mm。结构设计中的难点是万向轮很容易卡住,连接线不够长影响控制板安装位置。 4、控制电路设计 控制电路要设计成让传感器(接触传感器、光反射传感器)判断有没有信号,然后确定两个电机正转或反转,实现小车前进、后退和拐弯这些动作。 5、控制软件设计 软件设计首先需要制定机器人控制的输入输出分配方案: 根据所要完成的任务,绘制出控制软件的流程图草案,并最终完成软件程序流程。 6、组装调试 根据设计安装好小车,并将完成的程序写入主控制器中,然后让它试运行,再找出结构或程序的问题,不断的调试,直到将问题解决。 三、制作总结 制作成功这个智能机器人小车,我感觉很有成就感。这个制作加深了我对计算机控制基本知识的理解,激发了我继续深入学习机器人制作的兴趣。在现有小车的结构下,我还将编写新的控制程序,完成小车的第五个动作——沿黑线轨迹行走,并且进一步通过学习子程序的调用,把小车的五个动作集合到一起,通过接触传感器预先设定,完成不同的动作。未来还计划把这个小车改装成一个服务机器人,可以在不同的指定位置拿水杯、倒水和放杯。 附录一、智能机器人小车外观介绍

数学建模机器人避障论文

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

机器人避障问题 摘要 针对题中机器人避障最短路径问题,文章使用简化后建立的最短路径的数学模型来解决此类问题。 对于问题1,我们matlab中自带函数graphshortestpath函数求解最短路径的数学模型。其主要思想是:首先先证明出两点之间的最短路径是由两条线段和以中间点为圆心的圆的一段圆弧组成,然后证明圆弧的半径为定值10。然后对模型简化使模型化为标准的最短路径模型,最后用graphshortestpath函数对模型求解。 针对问题2,我们建立了优化模型。在问题1的基础上,我们对两种行走方案进行分析,根据转弯弧的半径变化对速度的影响我们锁定到一条路径,然后利用lingo对优化模型进行求解。 关键词:graphshortestpath函数、最短路径、避障问题

简易机器人设计制作活动方案

简易机器人设计制作活动方案 发布者:章初发布时间:2012-2-12 20:00:23 [设计思路] 机器人科学知识是一项很适合在少年儿童中开展的,并深受学生喜爱的活动项目。机器人制作兴趣小组活动意在培养学生对机器人的兴趣,让学生了解和掌握机器人是如何感知光信号的;学习LOGO语言,学会会编写简单LOGO程序指挥机器人做预定动作,并利用所掌握的知识和技能制作出沿轨迹行走机器人。 活动采用分组合作研究制作方式,小组成员分工协作(2人一个小组)。教师作为活动的组织者,充分调动学生参与活动的积极性,注重培养每一个学生的科学思维能力;活动设计始终以学生为主体,有意识的进行多学科的融合与渗透,使活动具有综合性,从而培养学生良好的科学素质。 [活动目标] 1、组装富有个性的机器人; 2、学会编写程序,调试并运行机器人程序; 3、运用乐高机器人套件设计、制作自己的轨迹机器人,并进行比赛。 4、在活动中提高学生的观察、分析、动手、创造能力,培养他们的参与、竞争、实践、协作意识。 [活动对象、时间] 对象:初中学生8—10人 时间:1、利用暑假时间组织夏令营活动。 2、每周六上午进行兴趣小组活动。 [活动内容] 拼装乐高机器人,编写程序,调试机器人运行。 [活动方法] 演示、讲授、讨论、实践操作、小组合作 [活动准备] 一、9797 蓝牙套装(已有)

二、9648 蓝牙配件套装4套每套价格1350.00 三、9698 FLL(智能交通)价格1980.00 四、赛台(自制) 赛台的内部尺寸长为1143mm、宽2362mm,四周装有边框,高为100mm,如图所示。边框内侧为黑色,所有外侧和内侧边框均采用防火板。

机器人避障问题的MATLAB解法探析

机器人避障问题的MATLAB解法探析 摘要:本文对2012年全国大学生数学建模竞赛D题“机器人行走避障问题”,给出了利用matlab这一数学软件进行求解的方法,并对该方法的优缺点进行了分析。 关键词:机器人避障matlab 2012年全国大学生数学建模竞赛D题“机器人行走避障问题”如下: 在一个800×800的平面场景图中,原点O(0,0)点处有一个机器人,它只能在该平面场景范围内活动。图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物。规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。机器人不能折线转弯,转弯路径由与直线路径相切的圆弧组成,每个圆弧的半径最小为10个单位。为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位。计算机器人从O(0,0)出发,O→A、O→B、O→C和O→A→B→C→O的最短路径。 一、问题的分析 为达到要求,我们按照以下原则选择路径: (1)在障碍物拐点处的圆弧半径为临界半径个单位; (2)因为直线速度大于转弯速度,所以在不转弯的地方尽可能走直线; 按照上述原则,我们选取以下步骤求最短路径: (1)穷举出起始点与目标点的所有可能直线路径,判断出最短直线路径; (2)针对上述最短直线路径,在障碍物拐点处加入弧线转弯,然后计算实际最短行走路径。 二、问题的求解 按照上述步骤,逐步求最短路径: (1)首先画出O到A允许行走所有直线路线,如图所示。 (2)计算出各节点到下一节点的距离作为权值给各条边赋权,可以求解出最优直线路径。用MATLAB软件,程序如下: sets: cities/O,B1,B2,C1,C2,A/; roads(cities,cities)/O,B1 O,B2 O,C1 B1,A B1,C2 C1,B1 C1,B2 B2,C2 B2,A C2,A /:w,x; data: w= 224.7 237.7 100 237.7 150 150 150 150 250 114; n=@size(cities); min=@sum(roads:w*x); @for(cities(i)|i #ne# 1 #and# i #ne# n: @sum(roads(i,j):x(i,j))=@sum(roads(j,i):x(j,i))); @sum(roads(i,j)|i #eq# 1:x(i,j))=1; end 计算出结果(只列出有用部分): Global optimal solution found. Total solver iterations:0 Variable Value Reduced Cost

相关文档
相关文档 最新文档