文档库 最新最全的文档下载
当前位置:文档库 › (完整版)高三数列复习总结专题

(完整版)高三数列复习总结专题

(完整版)高三数列复习总结专题
(完整版)高三数列复习总结专题

一、选择题

1.已知数列{n a }满足*

331log 1log ()n n a a n ++=∈N ,且2469a a a ++=,则

15793

log ()

a a a ++的值是

( )

A .15

-

B .5-

C .5

D .

15

2.若正项数列{}n a 满足1111n n ga ga +=+,且a 2001+a 2002+a 2003+a 2010=2013,则a 2011+a 2012+a 2013+a 2020的值为

( )

A .2013·1010

B .2013·10

11

C .

2014·1010

D .

2014·1011

3.在各项均为正数的等比数列{}n a 中,321,21,s a a =

-=+则2

326372a a a a a ++=

( )

A .4

B .6

C .8

D .842-

4.已知函数()()2

cos f n n n π=,且()()1,n a f n f n =++则123100a a a a +++???+=

( )

A .100-

B .0

C .100

D .10200

5.等差数列}{n a 中,482=+a a ,则它的前9项和=9S

( )

A .9

B .18

C .36

D .72

6.已知各项为正的等比数列{}n a 中,4a 与14a 的等比数列中项为22,则1172a a +的最小值 ( )

A .16

B .8

C .22

D .4

7.在各项均为正数的数列{a n }中,对任意m 、*n N ?都有m n m a a +=·n a 若636,a =则9a 等于 ( )

A .216

B .510

C .512

D .l024

8.如果等差数列{}n a 中,15765=++a a a ,那么943...a a a +++等于

( )

A .21

B .30

C .35

D .40

9.已知等差数列{}n a 的前n 项和为n S ,满足1313113a S a ===,则

( )

A .14-

B .13-

C .12-

D .11-

10.

{}n a 为等差数列,n S 为其前n 项和,已知77521

a S ==,,则10S = ( )

A .40

B .35

C .30

D .28

11.已知在等比数列{}n a 中, 13465

10,4

a a a a +=+=

,则该等比数列的公比为 ( )

A .

14

B .

12

C .2

D .8

12.已知数列{}n a 为等差数例,其前n 项的和为n S ,若336,12a S ==,则公差d =

( )

A .1

B .2

C .3

D .

53

13.已知数列{}n a 的前n 项和为n S ,且122-=n S n , 则=3a

( )

A .-10

B .6

C .10

D .14

14.已知等差数列{n a }中,74

a π

=

,则tan(678a a a ++)等于 ( )

A .33

-

B .2-

C .-1

D .1

15.已知等比数列{a n }的公比q=2,前n 硕和为S n .若S 3=

7

2

,则S 6等于 ( )

A .

312

B .

632

C .63

D .

127

2

二、填空题

16.设n S 是等差数列{}n a 的前n 项和,1

532,3a a a ==,则9S =_____________

;

17..等比数列}{n a ,2=q ,前n 项和为=2

4

a S S n ,则

____________. 数列{}n a 满足113,1,n n n n a a a a A +=-=表示{}n a 前n 项之积,则2013A =_____________.

18.在如图所示的数阵中,第9行的第2个数为___________.

19.已知等差数列{n a }中,35a a +=32,73a a -=8,则此数列的前10项和10S =____. 20.已知等差数列{}n a 的前n 项和为n S ,若2,4,3a 成等比数列,则5S =_________. 21.已知等比数列{a n }中,6710111,16a a a a ==g g ,则89a a g 等于_______

三、解答题

22.已知数列{a n }的前n 项和为S n ,且22n n S a =-.

(1)求数列{a n }的通项公式;

(2)记1213(21)n n S a a n a =+++-g g L g ,求S n

23.设数列{}n a 为等差数列,且9,553==a a ;数列{}n b 的前n 项和为n S ,且2=+n n b S .

(I)求数列{}n a ,{}n b 的通项公式;

(II)若()+∈=

N n b a c n

n

n ,n T 为数列{}n c 的前n 项和,求n T . 24.已知数列{}n a 的前n 项和是n S ,且1

1()2

n n S a n *+

=∈N (Ⅰ)求数列{}n a 的通项公式;

(Ⅱ)设113

log (1)()n n b S n *+=-∈N ,令122311n T b b b b =

++1

1

n n b b ++

,求n T . 25.已知数列}{n a 的前n 项和为n S ,且

)(14*∈+=N n a S n n . (Ⅰ)求21,a a ;

(Ⅱ)设||log 3n n a b =,求数列{}n b 的通项公式.

26.在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且

2

222

12,,n n S b S q a b b +==

求与; 27.设数列{}n a 的前n 项和为n S ,若对于任意的正整数n 都有23n n S a n =-.

(I)设3n n b a =+,求证:数列{}n b 是等比数列,并求出{}n a 的通项公式; (II)求数列{}n nb 的前n 项和T n .

28.数列{}n a 是公差不小0的等差数列a 1、a 3,是函数2

()1(66)f x n x x =-+的零点,数列{}n b 的前n 项和为n T ,且*12()n n T b n N =-∈

(1)求数列{}n a ,{}n b 的通项公式;

(2)记n n n c a b =,求数列{}n c 的前n 项和S n .

29.已知数列{a n }的公差为2的等差数列,它的前n 项和为n S ,且1321,1,1a a a +++成等比数列.

(I)求{a n }的通项公式; (2)13{

},.4

n n n n T T S <记数列的前项求证: 30.已知等差数列{}n a 的前n 项和为n S ,且满足24a =,3417a a +=.

(1)求{}n a 的通项公式;

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-) 2(,) 1(,11n S S n a a n n n 注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化(求通 项) 例2:已知数列}{n a 的前n 项和???≥+==2,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:定义法;函数单调性法 (2)最大(小)项问题: 单调性法;图像法 (3)数列的周期性:(注意与函数周期性的联系)

例3:已知数列}{n a 满足????? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处)

例题: 例4(等差数列的判定或证明):已知数列{a n }中,a 1=35,a n =2-1 a n -1 (n ≥2,n ∈N * ),数列{b n }满足b n =1a n -1 (n ∈N *). (1)求证:数列{b n }是等差数列; (2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 ∵a n =2-1 a n -1 (n ≥2,n ∈N * ),b n =1 a n -1 . ∴n ≥2时,b n -b n -1=1a n -1-1 a n -1-1 = 1? ?? ??2-1a n -1-1 -1 a n -1-1 =a n -1 a n -1-1-1a n -1-1 =1. ∴数列{b n }是以-5 2 为首项,1为公差的等差数列.

高考理科数学《数列》题型归纳与训练

高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高中数列知识点总结

数列知识点总结 第一部分 等差数列 一 定义式: 1n n a a d --= 二 通项公式:n a 1()(1)m a n m d a n d =+-??=+-? 一个数列是等差数列的等价条件:b an a n +=(a ,b 为常数),即n a 是关于n 的一次函数,因为n Z ∈,所以n a 关于n 的图像是一次函数图像的分点表示形式。 三 前n 项和公式: 1()2n n n a a S +=na =中间项 1(1)2 n n na d -=+ 一个数列是等差数列的另一个充要条件:bn an S n +=2(a ,b 为常数,a ≠0),即n S 是关于n 的二次函数,因为n Z ∈,所以n S 关于n 的图像是二次函数图像的分点表示形式。 四 性质结论 1.3或4个数成等差数列求数值时应按对称性原则设置, 如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d 2.a 与b 的等差中项2 a b A +=; 在等差数列{}n a 中,若m n p q +=+,则 m n p q a a a a +=+;若2m n p +=,则2m n p a a a +=; 3.若等差数列的项数为2() +∈N n n ,则,奇偶nd S S =- 1 +=n n a a S S 偶奇 ; 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1 -=n n S S 偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设12,n A a a a =++?+,122n n n B a a a ++=++?+, 21223n n n C a a a ++=++?+,则有C A B +=2; 5.10a >,m n S S =,则前2m n S +(m+n 为偶数)或12 m n S +±(m+n 为奇 数)最大 第二部分 等比数列 一 定义:1 (2,0,0){}n n n n a q n a q a a -=≥≠≠?成等比数列。 二 通项公式:11-=n n q a a ,n m n m a a q -= 数列{a n }是等比数列的一个等价条件是: (1),(0,01n n S a b a b =-≠≠,) 当0q >且0q ≠时,n a 关于n 的图像是指数函数图像的分点表示形式。

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

高考数学数列知识点及题型大总结

20XX 年高考数学数列知识点及题型大总结 等差数列 知识要点 1.递推关系与通项公式 m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --= --= --=-+=-+==-+1; )1()()1(1111变式:推广:通项公式:递推关系: 为常数) 即:特征:m k m kn n f a d a dn a n n ,(,)(), (1+==-+= ),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。 2.等差中项: 若c b a ,,成等差数列,则b 称c a 与的等差中项,且2 c a b +=;c b a ,,成等差数列是c a b +=2的充要条件。 3.前n 项和公式 2 )(1n a a S n n += ; 2)1(1d n n na S n -+= ) ,()(,)2(22212为常数即特征:B A Bn An S Bn An n f S n d a n d S n n n +=+==-+= 是数列 {}n a 成等差数列的充要条件。 4.等差数列 {}n a 的基本性质),,,(*∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若反之,不成立。 ⑵d m n a a m n )(-=- ⑶m n m n n a a a +-+=2

⑷n n n n n S S S S S 232,,--仍成等差数列。 5.判断或证明一个数列是等差数列的方法: ①定义法: )常数)(*+∈=-N n d a a n n (1?{}n a 是等差数列 ②中项法: )22 1*++∈+=N n a a a n n n (?{}n a 是等差数列 ③通项公式法: ),(为常数b k b kn a n +=?{}n a 是等差数列 ④前n 项和公式法: ),(2为常数B A Bn An S n +=?{}n a 是等差数列 练习:1.等差数列 {}n a 中, ) (3 1 ,1201191210864C a a a a a a a 的值为则-=++++ A .14 B .15 C .16 D .17 165 1203232)(32) 2(3 1 318999119=?==-=+-=-a d a d a a a a 2.等差数列 {}n a 中,12910S S a =>,,则前10或11项的和最大。 解:0912129 =-=S S S S , 003011111121110>=∴=∴=++∴a a a a a a ,又,, ∴ {}n a 为递减等差数列∴1110S S =为最大。 3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为-110 解:∵ ,,,,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为 10010=S ,前10项的和为10100=S 解

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

高三数学数列专题训练(含解析)

数列 20.(本小题满分12分) 已知等差数列{}n a 满足:22,5642=+=a a a ,数列{}n b 满足n n n na b b b =+++-12122 ,设数列{}n b 的前n 项和为n S 。 (Ⅰ)求数列{}{}n n b a ,的通项公式; (Ⅱ)求满足1413<

(1)求这7条鱼中至少有6条被QQ 先生吃掉的概率; (2)以ξ表示这7条鱼中被QQ 先生吃掉的鱼的条数,求ξ的分布列及其数学期望E ξ. 18.解:(1)设QQ 先生能吃到的鱼的条数为ξ QQ 先生要想吃到7条鱼就必须在第一天吃掉黑鱼,()177 P ξ== ……………2分 QQ 先生要想吃到6条鱼就必须在第二天吃掉黑鱼,()61667535 P ξ==?= ……4分 故QQ 先生至少吃掉6条鱼的概率是()()()1166735P P P ξξξ≥==+== ……6分 (2)QQ 先生能吃到的鱼的条数ξ可取4,5,6,7,最坏的情况是只能吃到4条鱼:前3天各吃掉1条青鱼,其余3条青鱼被黑鱼吃掉,第4天QQ 先生吃掉黑鱼,其概率为 64216(4)75335P ξ==??= ………8分 ()6418575335 P ξ==??=………10分 所以ξ的分布列为(必须写出分布列, 否则扣1分) ……………………11分 故416586675535353535 E ξ????= +++=,所求期望值为5. (12) 20.∵a 2=5,a 4+a 6=22,∴a 1+d=5,(a 1+3d )+(a 1+5d )=22, 解得:a 1=3,d=2. ∴12+=n a n …………2分 在n n n na b b b =+++-1212 2 中令n=1得:b 1=a 1=3, 又b 1+2b 2+…+2n b n+1=(n+1)a n+1, ∴2n b n+1=(n+1)a n+1一na n . ∴2n b n+1=(n+1)(2n+3)-n (2n+1)=4n+3,

人教版高中数列知识点总结(知识点+例题)

人教版高中数列知识点总结(知识点+例题) Lesson6 数列 知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1) d . 3.等差中项 a +b 如果 A =2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *) . (2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *) ,则 (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *) 是公差为的等差数列. 5.等差数列的前n 项和公式 n (a 1+a n )n (n -1) 设等差数列{a n }的公差d ,其前n 项和S n 或S n =na 1+22. 6.等差数列的前n 项和公式与函数的关系 d d 2? S n 2+ a 1-2n . 数列{a n }是等差数列?S n =An 2+Bn ,(A 、B 为常数) . ?? 7.等差数列的最值 在等差数列{a n }中,a 1>0,d 0,则S n 存在最小值. [难点正本疑点清源] 1.等差数列的判定 (1)定义法:a n -a n -1=d (n ≥2) ; (2)等差中项法:2a n +1=a n +a n +2.

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

高考数学必背公式大全

高考数学必背公式大全 由于高中数学公式很多,同学们复习的时候不方便查阅,下面是我给大家带来的高考必背数学公式,希望能帮助到大家! 高考必背数学公式1 两角和公式 sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb ) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga ) 倍角公式 tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 高考必背数学公式2 和差化积

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) 2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b) 3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2) 4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb 5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb 等差数列 1、等差数列的通项公式为: an=a1+(n-1)d(1) 2、前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项. , 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式. 3、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

数列高考题型分类汇总

题型一 1.设{a n }是公比为正数的等比数列a 1 =2,a 3 =a 2 +4. (Ⅰ)求{a n }的通项公式; (Ⅱ)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n项和S n . 题型二 2.已知数列{a n }、{b n }、{c n }满足. (1)设c n =3n+6,{a n }是公差为3的等差数列.当b 1 =1时,求b 2 、b 3 的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n ≥b k ; (3)设,.当b 1=1时,求数列{b n }的通项公式. 题型三 3.已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2am+n ﹣1+2(m﹣n)2 (1)求a 3,a 5 ; (2)设b n =a 2n+1 ﹣a 2n﹣1 (n∈N*),证明:{b n }是等差数列; (3)设c n =(a n+1 ﹣a n )q n﹣1(q≠0,n∈N*),求数列{c n }的前n项和S n . 题型四 4.已知数列{an}满足,,n∈N×. (1)令b n =a n+1 ﹣a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 5.设数列{an}的前n项和为Sn=2an﹣2n, (Ⅰ)求a 1,a 4 (Ⅱ)证明:{a n+1 ﹣2a n}是等比数列; (Ⅲ)求{a n }的通项公式. 6.在数列{a n }中,a 1 =1,.

(Ⅰ)求{a n }的通项公式; (Ⅱ)令 ,求数列{b n }的前n 项和S n ; (Ⅲ)求数列{a n }的前n 项和T n . 7.已知数列{a n }的首项, ,n=1,2,3,…. (Ⅰ)证明:数列是等比数列; (Ⅱ)求数列的前n 项和S n . 8.在数列{}n a 中,10a =,且对任意*k N ∈k N ∈,21221,,k k k a a a -+成等差数列, 其公差为k d 。 (Ⅰ)若k d =2k ,证明21222,,k k k a a a -+成等比数列(*k N ∈); (Ⅱ)若对任意*k N ∈,21222,,k k k a a a -+成等比数列,其公比为k q . 设1q ≠1.证明11k q ????-??是等差数列; 9.设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+ (I )设12n n n b a a +=-,证明数列{}n b 是等比数列 (II )求数列{}n a 的通项公式。 10. 设数列{}n a 的前n 项和为n S ,已知()21n n n ba b S -=- (Ⅰ)证明:当2b =时,{}12n n a n --?是等比数列; (Ⅱ)求{}n a 的通项公式

2020年高考数学 大题专项练习 数列 三(15题含答案解析)

2020年高考数学 大题专项练习 数列 三 1.已知数列{a n }满足a n+1=λa n +2n (n ∈N *,λ∈R),且a 1=2. (1)若λ=1,求数列{a n }的通项公式; (2)若λ=2,证明数列{n n a 2 }是等差数列,并求数列{a n }的前n 项和S n . 2.设数列{}的前项和为 .已知=4,=2+1,.(1)求通项公式 ;(2)求数列{}的前项和. 3.已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,数列{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19. (1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n .

4.设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式; (2)设数列{b n }的通项公式为b n =,问:是否存在正整数t ,使得b 1,b 2,b m (m≥3,m an an +t ∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 5.已知数列满足:,。数列的前n 项和为,且 .⑴求数列、的通项公式;⑵令数列满足,求其前n 项和为 6.已知{a n }是递增数列,其前n 项和为S n ,a 1>1,且10S n =(2a n +1)(a n +2),n ∈N *. (1)求数列{a n }的通项a n ; (2)是否存在m ,n ,k ∈N *,使得2(a m +a n )=a k 成立?若存在,写出一组符合条件的m ,n ,k 的值;若不存在,请说明理由.

高三复习数列知识点总结

数列专题解析方法 一、数列通项公式的求解 类型一:观察法 例 1: 写出下列数列的一个通项公式 (1)3,5,9,17,33 ,; (2)11,22,33,44, ; 2345 (3)7,77.777.7777. (4)2, 1,10, 17,26, ; 3 7 9 11 (5)3,9,25,65, ; 2 4 8 16 类型二:公式法 (1) a n a1 (n 1)d a m (n m)d 例 2:已知等差数列a n 中,a1 1,a3 3,求a n 的通项公式 n 1 n m (2)a n a1q n1 a m q n m 例 3:已知等比数列a n 中,a2 6,6a1 a3 30, 求a n 的通项公式类型三:利用“ S n ”求解 S1,(n 1) (1) (1) a n n S n S n 1(n 2)

例 4:已知数列a n 的前n项和S n n2 24n(n N* ),求a n 的通项公例 5:已知数列a n 的前n项和为S n,且有a1 3,4S n 6a n a n 1 4S n 1,求a n 的通项公式 例 6:已知数列a n 的前n 项和为S n,且有a1 1,a n 1 2S n 1(n 1), 求a n 的通项公式 例 7:已知正数数列a n 的前n项和为S n ,且对任意的正整数n满足 2 S n a n 1, 求a n 的通项公式 (2)S n S n 1的推广 例 8:设数列a n满足a13a232a33n 1a n n,n N*求a n的通项公 3 式 类型四:累加法 形如a n 1 a n f (n)或a n a n 1 f (n)型的递推数列(其中f(n)是关于n 的函数) (1)若 f (n)是关于n的一次函数,累加后可转化为等差数列求和例 9:a n 1 a n 2n 1,a1 2, 求a n 的通项公式 (2)若 f (n)是关于n的指数函数,累加后可转化为等比数列求和例 10:a n 1 a n 2n,a1 2, 求a n 的通项公式 (3)若 f (n) 是关于n 的二次函数,累加后可分组求和 例11:a n 1 a n n n 1,a1 1, 求a n 的通项公式 (4)若 f (n)是关于n的分式函数,累加后可裂项求和 例 12:a n 1 a n 21,a1 1, 求a n的通项公式 n 2 2n n 类型五:累乘法 形如an1f(n)或an f (n)型的递推数列(其中f(n)是关于n的函数) a n a n 1

相关文档
相关文档 最新文档