文档库 最新最全的文档下载
当前位置:文档库 › 1 5CrMoG螺旋水冷壁冷裂纹产生原因分析及解决方案

1 5CrMoG螺旋水冷壁冷裂纹产生原因分析及解决方案

1 5CrMoG螺旋水冷壁冷裂纹产生原因分析及解决方案
1 5CrMoG螺旋水冷壁冷裂纹产生原因分析及解决方案

1 5CrMoG螺旋水冷壁冷裂纹产生原因分析及解决方案

摘要:针对我公司施工的15CrMoG螺旋水冷壁管焊接裂纹产生的原因进行分析,确定裂纹产生的原因,改进对施工方案,减少焊接缺欠的产生。

关键词:15CrMoG 焊接冷裂纹应力

在我公司施工的15CrMoG小径螺旋水冷壁焊接施工初期,多次出现了裂纹缺欠,确认为冷裂纹后,通过对施工个环节的仔细观察与认真分析后,确定了主要原因是施工过程中存在拉应力,在明确应力产生原因后采取有针对性地措施,改进对施工方案,减少焊接缺欠的产生,提高焊口一次合格率,对提高施工生产的经济效益、安全效益和社会效益都有意义。

1施工情况

我公司承建的新疆阿拉尔盛源热电2×350 MW机组工程中锅炉为超临界参数变压运行螺旋管圈直流炉,上部水冷壁为垂直光管膜式水冷壁,炉膛下部水冷壁采用螺旋管圈布置(采用光管),由膜式水冷壁及散管组成,上下部水冷壁间采用中间混合集箱过渡。螺旋水冷壁规格为Ф32×5.5,材质为15 CrMoG。15 CrMoG钢可焊性较好,由于合金元素较多,具有淬硬倾向,易在焊缝和热影响区形成对裂纹敏感的显微组织,在扩散氢和拘束应力的共同作用下,容易产生冷裂纹缺欠。

焊工理论知识试卷(附有答案)

焊工理论知识试卷 一、判断题(第1题~第200题。将判断结果填入括号中。正确的填“√”,错误的填“×”。每题 0.5分,满分20分。) 1.()坚持文明生产,创造一个舒适的生活环境,是焊工职业守则内容之一。 2.()常见的剖视图有全剖视图、半剖视图和局部剖视图。 3.()一张完整的装配图应有一组视图,全部零件的尺寸,技术要求,标题栏、明细表、零件序号等。 4.()将亚共析钢加热到A 1以上30℃~70℃,在此温度下保持一定时间,然后快速冷却,该热处理工艺方法称为淬火。 5.()将钢加热到A 1或Acm以上50℃~70℃,保温后,在静止的空气中冷却的热处理工艺叫回火。 6.()材料在外力作用下抵抗永久变形和断裂的能力称为强度。 7.()根据GB/T1591—94规定,合金结构钢牌号由代表屈服点的字母“Q”,屈服点数值,质量等级符号三部分按顺序排列。 8.()电流的单位是xx。 9.()电阻的单位是欧姆(Ω),还有KΩ、MΩ。 10.()在电路中有两个以上的电阻一个接一个的依次连接,且流过这些电阻的电流相同,这就是电阻并联。 11.()交流电流表为扩大量程则应配用分流器。

12.()Cr是铬的元素符号,Ni是镍的元素符号。 13.()焊接局部通风主要为局部排风,即从焊接工作点附近捕集烟气,经净化后再排出室外。 14.()使用行灯照明时,按规定其电压不应超过18伏。 15.()板件对接组装时,应按规范和焊工技艺确定组对间隙,且终焊端和始焊端间隙大小一致。 16.()管件对接的定位焊缝长度一般为25~30mm,厚度一般为4~5mm。 17.()氩弧焊机供气系统由气瓶、预热器、干燥器、减压器、流量计、电磁气阀组成。 18.()一些化学性质活泼的金属,用其他电弧焊焊接非常困难,而用钨极氩弧焊则可容易地获得高质量的焊缝。 19.()低碳钢、低合金钢、不锈钢、铜、钛及其合金的钨极氩弧焊应采用直流正接。 20.()CO 2焊时必须使用直流电源,而且采用直流正接。 21.()缝焊主要用于要求气密的薄壁容器,壁厚一般不超过4mm。 22.()电阻焊与其他焊接方法相比的优点,主要有焊接变形小、易于获得质量较好的焊接接头、焊接速度快生产率高、可节省焊接材料成本低等。 23.()合金钢特别是高温合金电阻焊时,电极材料的主要性能要求是热强度稳定性;轻金属及合金电阻焊时,电极材料的主要性能要求是导电性,导热性。 24.()点焊工艺参数不包括焊件厚度,也不包括点焊顺序。 25.()等离子弧要求电源具有水平的外特性。

砼表面裂缝原因分析

砼表面裂缝原因分析 The manuscript was revised on the evening of 2021

砼表面裂缝原因分析 一、混凝土裂缝类型及成因 实际上,钢筋混凝土结构裂缝的成因复杂而繁多,甚至多种因素互相影响,但每一条裂缝均有其产生的一种或几种原因,其中最常见的是混凝土早期裂缝,混凝土早期裂缝有以下几种:1、塑性沉降裂缝此类裂缝产生的主要原因是由于混凝土骨料沉降时受到阻碍(如钢筋、模板)而产生的。这种裂缝大多出现在混凝土浇注后小时至3小时之间,混凝土尚处在塑性状态,混凝土表面消失水光时立即产生,沿着梁及板上面钢筋的走向出现,主要是混凝土塌落度大、沉陷过高所致。另外在施工过程中如果模板绑扎的不好、模板沉陷、移动时也会出现此类裂缝。 1、塑性收缩裂缝 此类裂缝产生的主要原因是混凝土浇筑后,在塑性状态时表面水分蒸发过快造成的。这类裂缝形状不规则、长短宽窄不一、呈龟裂状,深度一般不超过50mm.多在表面出现,产生的原因主要是混凝土浇注后3—4小时左右表面没有被覆盖,特别是平板结构在炎热或大风天气混凝土表面水分蒸发过快,或者是基础、模板吸水过快,以及混凝土本身的水化热高等原因造成混凝土产生急剧收缩,此时混凝土强度趋近于零,不能抵抗这种变形应力而导致开裂。 2、温度的变化与湿度的变化 裂缝:混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。 3、原材料质量引起的裂缝

淬火开裂原因

淬火开裂原因 1材料弄混 2冷却不当,在M S点以下快冷,因组织应力大而开裂。淬火油中含水过多。 3未淬透工件心部硬度为36~45时,在淬硬层与非淬硬层交界处易形成淬火裂纹。 4具有最危险尺寸的工件易形成淬火裂纹。全淬透最危险尺寸是:水淬为8~15(mm),油淬为25~40(mm)。 5严重表面脱碳易形成网状裂纹。严重表面脱碳的高碳钢中,脱碳层的马氏体比体积小。易形成表面拉应力而导致形成网状裂纹。 6内径较小的深孔工件,由于内表面较外表面冷速慢,使得残余热应力作用小,所受的残余拉应力较外表面大,内壁易形成平行的纵向裂纹。 7淬火加热温度过高,引起晶粒粗化,晶界弱化,钢的脆断强度降低,易淬火开裂。 8重复淬火前,未进行中间退火,过热倾向大,前项淬火的应力还未消除,又增加了新的应力,应力叠加易开裂。另外,多次加热引起表面脱碳,促使开裂。 9大截面高合金钢工件淬火加热时,未经预热或加热速度过快,加热时的应力和组织应力增大,引起开裂。 10原始组织不良。如高碳钢球化退火质量欠佳,其组织是细片状珠光体和点状珠光体时,过热倾向大,晶粒粗化,马氏体含碳量高,淬火开裂倾向大。 11原材料显微裂纹,非金属夹杂物,严重的碳化物偏析,淬火开裂倾向增大。如非金属夹杂物,严重的碳化物沿轧制方向成带状分布,由于力学性能的各项异性,其横向性能比纵向性能低(30~50)%,在表面最大拉应力作用下,常呈纵向开裂。 12锻造裂纹在淬火时开裂。在普通炉内淬火加热时,破断面上有黑色的氧化皮,裂纹两侧有脱碳层。 13过烧裂纹。裂纹多呈网状,晶界有氧化或熔化现象。 14淬透性低的钢,被钳子夹持的地方,冷速慢,有非马组织,钳口位于淬硬层与非淬硬层交界处时易开裂。 15工件的尖角,孔,截面突变及粗加工刀痕等,因应力集中引起开裂。 16高速钢,高铬钢分级淬火工件,未冷至室温,就急于清洗而引起开裂。 17深冷处理因急冷,急热,引起较大的组织和热应力,且低温时,材料的淬断强度低,易开裂。 18淬火后未及时回火,工件内部的显微裂纹在淬火应力作用下扩展形成淬火裂纹。

第一节:铸件中的裂纹

第一节铸件中的裂纹 一热裂 热裂是铸件生产中常见的铸造缺陷之一,是在高温下形成的,裂口表面呈氧化色。热 裂又是沿晶粒边界产生和发展的,故裂口外 形曲折而不规则,如图1-1所示。 图1-1 铸件中的热裂

热裂分为外裂和内裂两种类型。在铸件表面可以看到的热裂纹为外裂,裂口从铸件表面开始逐渐延伸到铸件的内部,表面宽内部窄,裂口有时会贯穿铸件整个断面。外裂常产生要铸件的拐角处、截面厚度有突变处或局部冷凝慢以及产生应力集中的地方。内裂常产生在铸件内部最后凝固的部位如缩孔附近,裂口表面很不平滑,有分叉。 外裂大部分可以用肉眼就能观察出来,细小的外裂则需用磁粉和着色探伤检查;内裂必须用射线或超声波探伤才能检查出来。

1 热裂的形成机理 热裂的形成机理到现在为止尚存在分歧。 我们先来看看热裂纹的形成温度范围。 关于热裂纹的形成温度范围说法很多,归纳起来主要有两种观点:一种观点认为热 裂纹是在凝固温度范围内但邻近于固相线温 度时形成的,此时合金处于固-液态;另一 种观点认为热裂纹是在稍低于固相线温度时 形成的,此时合金处于固态。

有人对含碳量不同的碳钢进行了热裂形成温度范围的研究。该实验结果表明:不论含碳量多少,碳钢产生热裂的温度都在固相线附近,当钢中硫、磷含量增高时热裂温度便降到固相线下。 必须指出的是:在铸造条件下,由于铸件冷却速度较快而引起的过冷,使液相线和固相线下移,加上合金中存在低熔点组成物,所以实际的固相线有时远低于平衡状态图中的固相线。

由此可以看出热裂是在合金接近完全凝固时的温度范围内形成的。此时大部分合金已凝固成结晶骨架,而在骨架之间还剩有少量的液体。下面我们再来讨论热裂纹的形成机理,主要有两种理论:强度理论和液膜理论。

混凝土表面裂缝产生的原因及处理方法通用版

安全管理编号:YTO-FS-PD798 混凝土表面裂缝产生的原因及处理方 法通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

混凝土表面裂缝产生的原因及处理 方法通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz'no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混凝土浇筑完毕后立即将表面覆盖并及时洒水养生。 对于体积过大的混凝土,应分层浇筑。在上层混凝土浇筑的过程中,会在混凝土在自重作用下产生沉降。当混

各种焊接裂纹成因特点及防止措施这条必须收藏了

各种焊接裂纹成因特点及防止措施,这条必须收藏了 焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。1.热裂纹是在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si骗高)和单相奥氏体钢、镍基合金以及某些铝合金焊逢中。这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短脆性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。(2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成

物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。这一种裂纹的防治措施与结晶裂纹基本上是一致的。特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。(3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。2.再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。再热裂纹产生在焊接热影响区的过热粗晶部位,其走向是沿熔合线的奥氏体粗晶晶界扩展。防治再热裂纹从选材方面,可以选用细晶粒钢。在工艺方面,选用较小的线能量,选用较高的预热温度并配合以后热措施,选用低匹配的焊接材料,避免应力集中。3.冷裂纹主要发生在高、中碳钢、低、中合金钢的焊接热影响区,但有些金属,如某些超高强钢、钛及钛合金等有时冷裂纹也发生在焊缝中。一般情况下,钢种的淬硬倾向、焊接接头含氢量及分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂纹的三大主要因素。焊后形成的马氏体组织在氢元素的作用下,配合以拉应力,便形成了冷裂纹。他的形成一般是穿晶或沿晶的。冷裂纹一般分

锻造裂纹与热处理裂纹原理形态

一:锻造裂纹与热处理裂纹形态 一:锻造裂纹一般在高温时形成,锻造变形时由于裂纹扩大并接触空气,故在100X或500X 的显微镜下观察,可见到裂纹内充有氧化皮,且两侧是脱碳的,组织为铁素体,其形态特征是裂纹比较粗壮且一般经多条形式存在,无明细尖端,比较圆纯,无明细的方向性,除以上典型形态外,有时会出现有些锻造裂纹比较细。裂纹周围不是全脱碳而是半脱碳。 淬火加热过程中产生的裂纹与锻造加热过程形成的裂纹在性质和形态上有明显的差别。对结构钢而言,热处理温度一般较锻造温度要低得多,即使是高速钢、高合金钢其加热保温时间则远远小于锻造温度。由于热处理加热温度偏高,保温时间过长或快速加热,均会在加热过程中产生早期开裂。产生沿着较粗大晶粒边界分布的裂纹;裂纹两侧略有脱碳组织,零件加热速度过快,也会产生早期开裂,这种裂纹两侧无明显脱碳,但裂纹内及其尾部充有氧化皮。有时因高温仪器失灵,温度非常高,致使零件的组织极粗大,其裂纹沿粗大晶粒边界分布。 结构钢常见的缺陷: 1 锻造缺陷 (1)过热、过烧:主要特征是晶粒粗大,有明显的魏氏组织。出现过烧说明加热温度高、断口晶粒粗大,凹凸不平,无金属光泽,晶界周围有氧化脱碳现象。 (2)锻造裂纹:常产生于组织粗大,应力集中处或合金元素偏析处,裂纹内部常充满氧化皮。锻造温度高,或者终端温度低,都容易产生裂纹。还有一种裂纹是锻造后喷水冷却后形成的。 (3)折叠:冲孔、切料、刀板磨损、锻造粗糙等原因造成了表面缺陷,在后续锻造时,将表面氧化皮等缺陷卷入锻件本体内而形成折缝。在显微镜上观察时,可发现折叠周围有明显脱碳。 2 热处理缺陷 (1)淬裂:其特点是刚健挺直,呈穿晶分布,起始点较宽,尾部细长曲折。此种裂纹多产生于马氏体转变之后,故裂纹周围的显微组织与其它区域无明显区别,也无脱碳现象。(2)过热:显微组织粗大,如果是轻度过热,可采用二次淬火来挽救。 (3)过烧:除晶粒粗大外,部分晶粒已趋于熔化,晶界极粗。 (4)软点:显微组织有块状或网状屈氏体和未溶铁素体等。加热不足,保温时间不够,冷却不均匀都会产生软点。 二:锻造裂纹与热处理裂纹产生原因 锻造裂纹:钢在锻造过程中,由于钢材存在表面及内部缺陷,如发纹、砂眼、裂纹、夹杂物、皮下气泡、缩孔、白点和夹层等,都可能成为锻打开裂的原因。另外,由于锻打工艺不良或操作不当,如过热、过烧或终锻温度太低,锻后冷却速度过快等,也会造成锻件开裂。 热处理裂纹:淬火裂纹是宏观裂纹,主要由宏观应力引起。在实际生产过程中,钢制工件常由于结构设计不合理,钢材选择不当、淬火温度控制不正确、淬火冷速不合适等因素,一方面增大淬火内应力,会使已形成的淬火显微裂纹扩展,形成宏观的淬火裂纹,另一方面,由于增大了显微裂纹的敏感度,增加了显微裂纹的数量,降低了钢材的脆断抗力Sk,从而增大淬火裂纹的形成可能性。 影响淬裂的因素很多,这里仅将生产中常碰到的几种情况作一介绍: 1.原材料已有缺陷而导致的淬裂:

抹灰裂缝产生原因及防治措施

引言 抹灰工程是用胶凝材料及其砂浆以薄层涂抹在建筑物表面上直接做成饰面层的装饰工程。抹灰工程分一般抹灰和装饰抹灰,一般抹灰工程在普通等级的装饰工程上应用非常广泛。本文主要讨论室内一般抹灰的施工要点及产生室内抹灰裂缝的主要原因和控制措施。 1 施工要点 1.1 抹灰层的层次 为了保证抹灰层质量,抹灰必须分层操作,通常分为不同构造的三个层次。①底层,主要起与基层粘结作用,并对基层进行初步找平。 ②中层,主要起找平作用,使物面平整,并弥补因底层收缩出现的裂纹。③面层(罩面),主要起装饰作用。 底层灰的用料应根据基层材料种类的不同(如砖、混凝土或加气混凝土等)而选用不同的砂浆。一般底层灰砂浆较常用的是水泥砂浆、石灰砂浆、水泥石灰砂浆。底层灰厚度约为6.8mm。 中层灰浆的种类一般参照底层灰的选择处理,即与底层灰选择同种砂浆,配比也大致相同。厚度略厚于底层灰,约为10mm。 面层灰浆多为麻刀灰、纸筋灰、玻璃丝灰(纤维材料起良好的止裂作用)以及石灰砂浆,高级墙面用石膏灰浆。若用砂浆,配比中砂的用量要略为减少,细度要更细,以保证面层平整细腻。厚度约为2.5mm。 抹灰要分层进行的原因:①抹灰层分作用和用料不同的底层、中

层和面层,当然不能一次完成。②即使各层材料相同,若要一次完成,也有不易压实的操作困难。③厚厚的一层抹灰层自重大,当它超过砂浆与基层的粘结力时,抹灰层会掉落下来。采用分层抹灰,每层薄一些,并且后一层是在前一层6-7成干后抹上,此时前一层与前物面的粘结力已相当大,而后一层与前一层的粘结力只要承受薄薄的后一层自重。④使用含石灰膏的抹灰砂浆时,由于石灰膏的硬化是其主要成分Ca(OH)2 吸收空气中的CO2。生成CaCO3和H2O(水分要蒸发)。而空气中CO2含量很少,所以石灰膏硬化很缓慢。若不分层抹灰,在厚厚的抹灰层深处,石灰膏长时间不能结硬。采用分层抹灰,每层薄一些,各层之间有一定的施工间歇,就能使各层的石灰膏有充分硬化的环境条件。 1.2 抹灰层厚度控制 内墙抹灰层平均总厚度应不大于下列规定:普通抹灰—l8mm;中级抹灰—20mm;高级抹灰—25mm。抹灰层平均总厚度大于质量标准规定,不仅要增加造价,而且会影响质量。当抹灰层过厚时:①灰浆层自重大,易产生下垂现象,拉松灰浆与基层的粘结,导致出现空鼓。②抹灰层自重超过灰浆与基层的粘结力时,抹灰层脱落。③灰浆干燥收缩量大,所产生的收缩应力超过灰浆强度时,抹灰层开裂。另外,高级抹灰控制厚度要比普通抹灰大些,这是由于高级抹灰的表面平整度要求比普通抹灰要高些,即表面平整允许偏差要小些,抹灰层的表面平整是靠砂浆层厚度来调整的,表面平整度越高用以调整的砂浆层厚度应越宽裕些。

混凝土表面裂缝产生的原因及处理方法

1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz’no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混凝土浇筑完毕后立即将表面覆盖并及时洒水养生。 对于体积过大的混凝土,应分层浇筑。在上层混凝土浇筑的过程中,会在混凝土在自重作用下产生沉降。当混凝土初凝到未终凝前这段时间内,如果遇到钢筋或模板的连接螺栓等物体时,这种沉降现象就会受到阻挠产生裂缝。特别是当模板存在不平整或粉刷的脱膜剂不均匀时,模板的摩擦力也会阻止沉降,以至在混凝土的垂直表面产生裂缝。水泥混凝土在硬化过程中会产生并释放大量的水化热,使混凝土内部温度不断升高,在大体积混凝土内,水化热使温度升高的现象更加明显,致使在混凝土表面与内部形成很高的温差,特别是在桥梁大体积承台混凝土浇筑中,

现场实测内外温差有时会达到50℃以上。当表层混凝土收缩时受到阻碍,混凝土的受拉一旦超过混凝土的应变力将产生裂缝。为尽量减少收缩约束以使混凝土能有足够强度抵抗所引起的应力反应,就必须采取措施控制混凝土内部温度升温的速率。在混凝土中掺加适量的矿粉及煤灰,能使水化热释放速度减缓;控制原材料的温度,即在混凝土内部采用冷却管道以循环水也能阻止混凝土内部升温的速率。 在拌制水泥混凝土时,同一混凝土使用不同品牌的水泥也会使昆凝土产生裂缝。在混凝土施工时,应严禁不同品牌、不同标高的水泥混在一起使用。碱性骨料也会引起混凝土表面产生裂缝。由于硅酸盐水泥中会有碱性金属成份(钠和钾),因此,混凝土内的孔隙液体中氢氧根离子的含量较高,这种高碱溶液和某些骨料中的活性二氧化硅发生反应,产生碱硅胶,碱硅胶吸收水份膨胀后产生的膨胀力会使混凝土产生裂缝。 对于混凝土浅层裂缝的修补通常是采用涂刷水泥浆或低粘度聚合物封堵以防止水份侵入;对于较深或较宽的裂缝,就必须采用压力灌浆技术修补,修补工作要及时,使混凝土达到内实外光的质量要求。 2 混凝土表面产生破损的原因及处理方法 混凝土表面破损包括:表面产生蜂窝,麻面、表面产生气孔,表面冲蚀等。对于表面蜂窝,主要原因是振捣不到位引起,在施工中只要加强责任心,振捣到位就能避免,现针对表面麻面,气

焊接冷裂纹

焊接冷裂纹 1.前言 1.1焊接裂纹的简介 焊接裂纹是指金属在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区金属原子结合力遭到破坏所产生的缝隙。在焊接生产中由于钢种和结构的类型不同,可能出现各种裂纹,焊接裂纹产生的条件和原因各有不同。有些裂纹在焊后立即产生,有些在焊后延续一段时间才发生,有的在一定外界条件诱发下才产生;裂纹既出现在焊缝和热影响区表面,也产生在其内部。 焊接裂纹对焊接结构的危害有:①减少了焊接接头的工作截面,因而降低了焊接结构的承载能力②构成了严重的应力集中。裂纹是片状缺陷,其边缘构成了非常尖锐的切口应力集中,既降低结构的疲劳强度,又容易引发结构的脆性破坏。 ③造成泄漏。由于盛装或输送有毒且可燃的气体或液体的各种焊接储罐和管道,若有穿透性裂纹,必然发生泄漏。④表面裂纹能藏污纳垢,容易造成或加速结构的腐蚀。⑤留下隐患,使结构变得不可靠。由于延迟裂纹产生具有不定期性,微裂纹和内部裂纹易于漏检,这些都增加了焊接结构在使用中的潜在危险。 焊接裂纹是焊接结构最严重的工艺缺陷,直接影响产品质量,甚至引起突发事故,例如,焊接桥梁坍塌,大型海轮断裂,各种类型压力容器爆炸等恶性事故。随着现代钢铁、石油化工、船舶和电力等工业的发展,在焊接结构方面都趋向大型化、大容量和高参数方向发展,有的在低温、深冷或腐蚀介质下工作,都广泛采用各种低合金高强钢材料,而这些金属材料通常对裂纹十分敏感。因此,从焊接裂纹的微观形态、起源与扩展及影响因素等进行深入分析,对防止焊接裂纹和保证工程结构的质量稳定性是十分重要的。 1.2焊接裂纹分类 焊接裂纹按产生的机理可分为热裂纹、冷裂纹、再热裂纹、层状撕裂和应力腐蚀裂纹等。 (1)热裂纹 焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也不同。

锻造裂纹成因分析

锻造裂纹 裂纹是锻压生产中常见的主要缺陷之一,通常是先形成微观裂纹,再扩展成宏观裂纹。锻造工艺过程(包括加热和冷却)中裂纹的产生与受力情况、变形金属的组织结构、变形温度和变形速度等有关。锻造工艺过程中除了工具给予工件的作用力之外,还有由于变形不均匀和变形速度不同引起的附加应力、由温度不均匀引起的热应力和由组织转变不同时进行而产生的组织应力。 应力状态、变形温度和变形速度是裂纹产生和扩展的外部条件;金属的组织结构是裂纹产生和扩展的内部依据。前者是通过对金属组织及对微观机制的影响而对裂纹的发生和扩展发生作用的。全面分析裂纹的成因应当综合地进行力学和组织的分析。 (一)形成裂纹的力学分析 在外力作用下物体内各点处于一定应力状态,在不同的方位将作用不同的正应力及切应力。裂纹的形式一般有两种:一是切断,断裂面是平行于最大切应力或最大切应变;另一种是正断,断裂面垂直于最大正应力或正应变方向。 至于材料产生何种破坏形式,主要取决于应力状态,即正应力σ与剪应力τ之比值。也与材料所能承受的极限变形程度εmax及γmax有关。例如,①对于塑性材料的扭转,由于最大正应力与切应力之比σ/τ=1是剪断破坏;②对于低塑性材料,由于不能承受大的拉应变,扭转时产生45°方向开裂。由于断面形状突然变化或试件上有尖锐缺口,将引起应力集中,应力的比值σ/τ有很大变化,例如带缺口试件拉伸σ/τ=4,这时多发生正断。 下面分析不同外力引起开裂的情况。 1.由外力直接引起的裂纹 压力加工生产中,在下列一些情况,由外力作用可能引起裂纹:弯曲和校直、脆性材料镦粗、冲头扩孔、扭转、拉拔、拉伸、胀形和内翻边等,现结合几个工序说明如下。 弯曲件在校正工序中(见图3-34)由于一侧受拉应力常易引起开裂。例如某厂锻高速钢拉刀时,工具的断面是边长相差较大的矩形,沿窄边压缩时易产生弯曲,当弯曲比较严重,随后校正时常常开裂。 镦粗时轴向虽受压应力,但与轴线成45°方向有最大剪应力。低塑性材料镦粗时常易产生近45°方向的斜裂(见图片8-355)。塑性好的材料镦粗时则产生纵裂,这主要是附加应力引起的。 工件的几何形状对应力分布有明显影响。例如,拉伸试棒在缩颈形成前各处可以视为受均匀的单向拉应力,一旦形成缩颈后,缩颈表面就受三向拉应力;镦粗时也有类似的情况,只是应力的符号相反。 工件在冷却过程中所形成的热应力及组织应力在不断变化,其分布方向恰好相反,但从数量上并不能正好抵消;热应力早在高温冷却初期即产生,而淬火组织应力则在较低的温度(Ms以下)时才开始出现;冷至室温后的最终残余内应力,其大小与分布情况取决于热应力与组织应力在每一瞬时相互叠加作用的结果。 对于无同素异构转变的锻件,在锻后空冷或其它缓慢的冷却过程中,热应力通常并不引起严重后果。虽然冷却初期温差较大,表层为拉应力(中心部分受压应力),但因温度较高,塑性较好,不致引起开裂;冷却后期温差不太大,且表层受压应力,所以也不引起开裂。奥氏体(如、50Mn18Cr4WN)的任何大断面锻件都可以直接空冷而不需缓冷,甚至水淬时也不产生裂纹。 组织应力在较低温度下才开始发生,这时材料塑性较低,这是造成冷却时开裂的主要原因。高速钢冷却裂纹及马氏体不锈钢冷却裂纹附近没有氧化脱碳现象也证明了这一点。对于马氏体不锈钢即使采取一些缓冷措施,仍必须退火后才能进行酸洗,否则在腐蚀时易出现应力腐蚀开裂。 W18Cr4V钢锻件一侧因锻后激冷形成的裂纹。加热时温度分布及其变化情况与冷却时正相反,升温过程中表层温度超过心部温度,并且导热性越差,断面越大,温差也越大。 对于热应力,这时表层受压内层受拉,在受拉应力区由于温度低,塑性差有可能形成开裂。在加热初期金属尚处于弹性状态的时候,在加热速度不变的条件下,根据计算,在圆柱体坯料轴心区沿轴向的拉应力是沿径向和切向拉应力值的两倍。因此,加热时坯料一般是横向开裂。 加热过程中由于相变不同时进行也有组织应力发生,但这时由于温度较高,材料塑性较好,其危险程度远较冷锭快速加热时为小。

铸件常见缺陷和处理

铸件常见缺陷、修补及检验 一、常见缺陷 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 1.1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。

缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。 产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。

1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆

混凝土表面裂缝产生的原因及处理方法(正式)

编订:__________________ 审核:__________________ 单位:__________________ 混凝土表面裂缝产生的原因及处理方法(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8880-97 混凝土表面裂缝产生的原因及处理 方法(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz'no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混

材料成型工艺综合复习题

问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止?

11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序?

锻造裂纹分析

锻造裂纹 钢在锻造过程中形成的裂纹是多种多样的,形成原因也各不相同。主要可分为原材料缺陷引起的锻造裂纹和锻造本身引起锻造裂纹两类。属于前者的原因有残余缩孔、钢中夹杂物等冶金缺陷;属于后者的原因有加热不当、变形不当及锻后冷却不当、未及时热处理等。有些情况下裂纹的产生可能同时含有几方面的原因。 锻造变形不当常引起裂纹。最常见的是变形速度太大,钢的塑性不足以承受形压力而引起的破裂。这种裂纹往往在锻造开始阶段就发生,并迅速扩展。应及时采取措施纠正锻造工艺,并切除有裂纹的钢材或报废锻件。另外一种是低温锻裂,在裂纹处往往有较多的低温相组织。为避免这种裂纹产生,应使钢在锻造变形过程中不发生相变,要正确掌握和控制终锻温度。 鉴别裂纹形成的原因,应首先了解工艺过程,以便找出裂纹形成的客观条件,其次应当观察裂纹本身的状态,然后再进行必要的有针对性的显微组织分析,微 区成分分析。举例如下: 对于产生龟裂的锻件,粗略分析可能是:①由于过烧;②由于易溶金属渗入基体金属(如铜渗人钢中);③应力腐蚀裂纹;④锻件表面严重脱碳。这可以从工艺过程调查和组织分析中进一步判别。例如在加热钢以后加热钢料或两者混合加热或钢中含铜量过高时,则有可能是铜脆。从显微组织上看,铜脆开裂在晶界,除了能找到裂纹外,还能找到亮的铜网,而在单纯过烧的晶界只能找到氧化物。应力腐蚀开裂是在酸洗后出现,在高倍观察时,裂纹的扩展呈树枝状形态。锻件严重脱碳时,在试片上可以观察到一层较厚的脱碳层。 裂纹与折叠的鉴别,不仅可以从受力及变形的条件考察,亦可以低倍和高倍组织来区分。一般裂纹与流线成一定交角,而折叠附近的流线与折叠方向平行,而且对于中、高碳钢来说,折叠表面有氧化脱碳现象。折叠的尾部一般呈圆角, 而裂纹通常是尖的。 具有裂纹的锻件经加热后,裂纹附近有严重的氧化脱碳,冷却裂纹则无此现 象。 由缩管残余引起的裂纹通常是粗大而不规则的。

裂纹分类

裂纹分类 凡是使金属的连续性被破坏的缺陷,而此种缺陷又具有一定的深度、长度和宽度,或直线或曲线状分布于钢材或工件表面或内部,即称裂纹。 裂纹的分类: 1. 按裂纹存在的形状和大小可分为:龟纹、“V型”纹、“y型”纹、“之状”裂纹、环状裂纹、鸡爪状裂纹、丝纹、发纹、裂纹、裂缝等宏观裂纹及微观裂纹。 2. 按裂纹存在于钢材或工件上的不同方向分为:纵裂纹、横裂纹即为定向裂纹等。 3. 按裂纹存在的不同部位分为:表皮裂纹、皮下裂纹、心部裂纹与钢锭的头部裂纹、中部裂纹、尾部裂纹及角部裂纹等。 4. 按裂纹产生的不同根源分为:铸造裂纹、锻造裂纹、轧制裂纹、拔制裂纹、研磨裂纹、淬火裂纹、焊接裂纹及疲劳裂纹等。 低倍组织结构内容 1. 偏析、疏松、气孔、树枝状结晶、缩孔、缩管、晶粒粗大、气泡翻皮、金属夹杂物、非金属夹杂物、裂纹等。 2. 在加热过程中产生的缺陷:过烧、氧化铁皮、脱碳层、晶粒粗大、斑疤、夹层、重皮、皱纹、裂纹、飞边、折叠、白点等。

3. 使用过程中产生的:疲劳断口、脆性断裂、裂口、分层等缺陷。 钢中低倍组织结构的检验方法 一、表面质量检验法: 1.目的: i. 避免因表面质量不良而造成在生产工艺上发生废品的损失、降低使用寿命; ii. 确定钢锭、钢坯、钢材及零件等是否必须经过中间清理或维修工序; iii. 查明表面缺陷的类别、特征、对质量危害的程度,从而分析其产生的原因,提供今后的改进质量的有效技术措施。 二、敲击检验法 视小铁锤回跳情况与工件发出声音的情况来判断是否有裂纹。 三、断口质量检验法 1.目的 i. 检验常存的一些缺陷:缩孔、非金属夹杂物、夹砂、斑点、晶粒粗大、晶粒不均、脱碳、气孔、带状组织、层状组织、白点等; ii. Cr-Ni,Cr-Ni-Mo,Cr和高碳钢中的白点; iii. 分析产生断裂的原因与断裂的性质。 四、冷热酸蚀检验法 1.热酸蚀法:将酸的水溶液(1:1盐酸)加热到70~80℃时把试样

水泥混凝土路面表面裂缝产生的原因及处理措施(1)

水泥混凝土路面表面裂缝产生的原因及 处理措施 水泥混凝土路面是一种刚度大、扩散荷摘载能力强、稳定性强的路面结构。但由于在施工中水泥混凝土的原材料及配合比的控制未达到设计标准,施工工艺不规范。使得水泥混凝土路面道板出现了早期损坏,导致路面出现裂缝与断板,这就降低了路面使用性能,不能确保水泥混凝土路面的正常使用年限,不能发挥道路建设的投资效益。因此,需要对路面出现的裂缝与断板进行认真观测、分析、确定裂缝原因,制定切实可行的修补方案。 一、裂缝分类与产生的原因 水泥混凝土道面的裂缝,可分为表面裂缝和贯穿板全厚度的裂缝(简称贯穿裂缝)。 (一)、表面裂缝 水泥混凝土道面表面裂缝主要是由混凝土混合料的早期过快失水干缩和碳化收缩引起的。 混凝土混合料是一种多相不均匀材料。由于构成混合料的各种固体颗粒大小、密度不同,混合料不可避免地会发生分层离析。 1、泌水裂缝 在路面水泥混凝土道面施工中混合料发生分层离析大

多是由于粗骨料在混合料中下沉,水分向上迁移,从而形成表层泌水。泌水的结果,使水泥混凝土道面表面含水量增加,经蒸发后混凝土表面形成凹面,此时混合料颗粒间产生较强的表面张力。当混凝土表面尚未充分硬化,不能抵御这一张力时,混凝土表面则发生裂缝。在混凝土浇筑后数小时,混凝土表面将出现大面积细微的龟裂。 2、碳化裂缝 当混凝土的水泥用量较低、水灰比较大时,空气中的二氧化碳易渗透到混凝土中,混凝土的碳化反应在空气相对湿度为30%-50%时最为激烈,此时混凝土的碳化收缩将引起混凝土表面龟裂。 根治这类病害的方法是:在混凝土路面的混合料铺筑、振捣后,立即采用真空吸水工艺,此方法可以将混凝土中富裕的水分和空气一并吸出。这样既提高了混凝土强度又可控制混凝土表面的网裂病害。 (二)、贯穿裂缝 水泥混凝土路面贯穿裂缝为贯穿板全厚度的横向裂缝、纵向裂缝、交叉裂缝和板交裂缝。 1、横向裂缝 垂直与行车方向的不规则裂缝称为横向裂缝,导致水泥混凝土路面出现横向裂缝的原因较多,其主要原因有以下三方面。

焊接冷裂纹产生原因及防止措施

焊接冷裂纹产生原因及防止措施 【摘要】本文主要分析了焊接冷裂纹产生机理及影响因素,并根据分析依据制定出防止产生裂纹的措施。 【关键词】焊接冷裂纹;产生原因;防止措施 随着钢铁、石油化工、电力等工业的发展,在焊接结构方面都取向大型化、大容量和高参数的方向发展,有的还在低温、深冷、腐蚀介质等环境下工作,因此,各种低合金、高强钢、中高合金钢、超高强钢,以及各种合金材料的应用日益广泛。但是随着这些钢种和合金材料的应用,在焊接生产上带来了许多新问题,其中较为普遍而又十分严重的就是焊接裂纹。焊接裂纹不仅给生产带来许多困难,造成停产、停工,而且可能带来灾难性的事故。世界上好多焊接结构所出现各种事故中,除少数是由于设计不当、选材不合理和运行操作上的问题之外,绝大多数是由裂纹而引起的脆性破坏,因此,裂纹是引起焊接结构发生破坏事故的主要原因。为了能有效的减少由于焊接裂纹引起的事故,保障安全生产,保障生命财产,很有必要对焊接裂纹产生原因进行分析,并制定出防止产生裂纹的措施。 一、焊接裂纹的分类 在焊接生产中由于钢种和结构的类型不同,可能出现各种裂纹,裂纹的形态和分布特征都是很复杂的,有焊缝的表面、内部裂纹,有热影响区的横向、纵向裂纹,有焊缝和焊道下的深埋裂纹,也有在弧坑处出现的弧坑裂纹。如果按产生裂纹的本质来分,可分为:热裂纹、再热裂纹、冷裂纹、层状撕裂、应力腐蚀裂纹五大类。在这里我们将对冷裂纹进行讨论、分析。 二、焊接冷裂纹形成机理与影响因素 (一)焊接冷裂纹的形成机理 大量实践和理论研究证明,钢种的淬硬倾向,焊接接头含氢量及其分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂纹的三大主要因素。 高强钢在淬硬时,特别是在焊接条件下,近缝区的加热温度很高,使奥氏体晶粒发生严重长大,当快速冷却时,粗大的奥氏体将转变为粗大的马氏体,从金属强度理论可以知道,马氏体是一种脆硬的组织,发生断裂时将消耗较低的能量,因此,焊接接头有马氏体存在时,裂纹易于形成和扩展。另外,在焊接过程中,由于热源的高温作用,焊缝金属中溶解了很多的氢,当焊缝由奥氏体转变为铁素体、珠光体等组织时,氢的溶解度突然下降,而氢在铁素体、珠光体中的扩散速度很快,因此氢就很快地从焊缝越过熔合线向未发生分解的奥氏体热影响区扩散。由于氢在奥氏体中的扩散速度较小,不能很快把氢扩散到距熔合线较远的母材中去,因而在熔合线附近就形成了富氢地带。当滞后相变的热影响区由奥氏体向马氏体转变时,氢便以过饱和状态残留在马氏体中,促使这个地区进一步脆化。

常见锻造缺陷

锻造缺陷 一、原材料缺陷造成的锻造缺陷 1. 层状断口 2. 碳化物偏析:含碳量高的合金钢开坯和轧制时共晶碳化物未被打碎造成不均匀偏析。 危害:带状碳化物使工件在淬火时产生较大的变形,并沿着碳化物带状处产生裂纹。当碳化物级别较高时,对高速钢刀具的使用寿命极为不利,级别>5级是,可造成刀具崩刃或断裂。 3. 缩管残余:钢锭冒口部分切除不净,开坯轧时将夹杂物缩松或偏析残留在钢材内部,淬火时形成裂纹。 二、落料不当造成的锻件缺陷 1. 锻件端面与轴线倾斜:剪切时未压紧 2. 撕裂:刀片间隙太大 3. 毛刺:切料时,部分金属被带入剪刀间隙之间,产生尖锐和毛刺。 后果:造成加热时局部过烧,锻造时产生折叠和开裂。

4. 端部裂纹:剪切大断面坯料时,圆形端面变成椭圆形,材料中产生很大的内应力,引起应力裂纹。另外,气割落料前,原材料没有预热,产生加工应力导致裂纹 5. 凸芯开裂:车床下料时,棒料端面中心留有凸芯,锻造时凸芯冷却快,由于应力集中造成开裂。 三、锻造工艺不当造成的缺陷 1. 过热:加热停留时间过长或加热温度过高引起材料晶粒粗大 2. 过烧:过烧时,晶粒特别粗大,断口呈石状。对碳钢,金相组织出现晶界氧化和熔化;工模具钢晶界因为熔化而出现鱼骨状莱氏体;铝合金出现晶界熔化三角区或复熔球。 3. 锻造裂纹 1)加热裂纹:尺寸大的坯料快速加热造成内外温差大,热应力大造成开裂。 特征:由中心向四周辐射状扩展,多产生于高合金材料 2)心部开裂:常在坯料的头部,开裂深度与加热和锻造有关,有事贯穿整个坯料。 原因:加热时保温不足,坯料未热透,外部温度高,塑性好,变形大,内部温度低变形小,内外产生不均匀变形

相关文档