文档库 最新最全的文档下载
当前位置:文档库 › 大学物理《普通物理学简明教程》第十二章 电磁感应 电磁场

大学物理《普通物理学简明教程》第十二章 电磁感应 电磁场

大学物理《普通物理学简明教程》第十二章  电磁感应 电磁场
大学物理《普通物理学简明教程》第十二章  电磁感应 电磁场

第十二章 电磁感应 电磁场

问题

12-1 如图,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,试确定在下列情况下,ABCD 上的感应电动势的方向:(1)矩形线圈在纸面内向右移动;(2)矩形线圈绕AD 轴旋转;(3)矩形线圈以直导线为轴旋转.

解 导线在右边区域激发的磁场方向垂直于纸面向

里,并且由2I

B r

μ0=π可知,离导线越远的区域磁感强度越小,即磁感线密度越小.当线圈运动时通过线圈的磁通量会发生变化,从而产生感应电动势.感应电动势的方向由楞次定律确定.

(1)线圈向右移动,通过矩形线圈的磁通量减少,由楞次定律可知,线圈中感应电动势的方向为顺时针方向.

(2)线圈绕AD 轴旋转,当从0到90时,通过线圈的磁通量减小,感应电动势的方向为顺时针方向.从90到180时,通过线圈的磁通量增大,感应电动势的方向为逆时针. 从180到270时,通过线圈的磁通量减少,感应电动势的方向为顺时针.从270到360时,通过线圈的磁通量增大,感应电动势的方向为逆时针方向. (2)由于直导线在空间激发的磁场具有轴对称性,所以当矩形线圈以直导线为轴旋转时,通过线圈的磁通量并没有发生变化,所以,感应电动势为零.

12-2 当我们把条形磁铁沿铜质圆环的轴线插入铜环中时,铜环内有感应电流和感应电场吗? 如用塑料圆环替代铜质圆环,环中仍有感应电流和感应电场吗?

解 当把条形磁铁沿铜质圆环的轴线插入铜环过程中,穿过铜环的磁通量增加,铜环中有感应电流和感应电场产生;当用塑料圆环替代铜质圆环,由于塑料圆环中的没有可以移动的自由电荷,所以环中无感应电流和感应电场产生.

12-3 如图所示铜棒在均匀磁场中作下列各种运动,试问在哪种运动中的铜棒上会有感应电动势?其方向怎样?设磁感强度的方向铅直向下.(1)铜棒向右平移[图(a)];(2)铜棒绕通过其中心的轴在垂直于B 的平面内转动[图(b)];(3)铜棒绕通过中心的轴在竖直平面内转动[图(c)].

C

I

解 在磁场中运动的导体所产生的感应电动势为()d L

ε=

??v B l ?,

在图(a)与(c)中的运动情况中,

?v B 的方向与d l 方向垂直,铜棒中没有感应电动势.在图(b)中,铜棒绕中心轴运动,左右两段产生的感应电动势大小相等,方向相反,所以铜

棒中总的感应电动势为零.

12-4 有一面积为S 的导电回路,其n e 的方向与均匀磁场的B 的方向之间的夹角为θ.且B 的值随时间变化率为d d B t .试问角θ为何值时,回路中i ε的值最大;角θ为何值时,回路中i ε的值最小?请解释之.

解 由i d d d cos S S dt dt

εθ=-

-?B B

S =?,可得当0θ=时,回路中i ε的值最大,当90θ=时,回路中i

ε的值最小.

12-5 有人认为可以采用下述方法来测量炮弹的速度.在炮弹的尖端插一根细小的永久磁铁,那么,当炮弹在飞行中连续通过相距为r 的两个线圈后,由于电磁感应,线圈中会产生时间间隔为t ?的两个电流脉冲.您能据此测出炮弹速度的值吗?如0.1m r =,4

=210s t -??,炮弹的速度为多少?

解 带有小磁铁的炮弹飞向线圈,线圈中会产生感应电流, 测得的两个电流脉冲产生的时间间隔即炮弹飞过这两个线圈间距所用的时间. 由题意可知, 炮弹的速度为

1500m s r

v t

-=

=??

12-6 如图所示,在两磁极之间放置一圆形的线圈,线圈的平面与磁场垂直.问在下述各种情况中,线圈中是否产生感应电流?并指出其方向.(1)把线圈拉扁时;

(2)把其中

(a)(b)

(c)

B

一个磁极很快地移去时;(3)把两个磁极慢慢地同时移去时.

解 这三种情况中, 通过的磁通量均减小,线圈中均会产生感应电流, 从上往下看, 感应电流的方向沿顺时针方向.

12-7 如图所示,均匀磁场被限制在半径为R 的圆柱体内,且其中磁感强度随时间的变化率d d B t =常量,试问: 在回路1L 和2L 上各点的d d B t 是否均为零?各点的k E 是否均为零?

1

k d L ??

E l 和2

k d L ??E l 各为多少?

解 由于磁场只存在于圆柱体内,在回路1L 上各点d d B t 为常量,在回路2L 上各点d B t 为零.

空间中各点的感生电场分布为

r R < k d 2d r B

E t

=

r R > 2k d 2d R B

E r t

=

可见在回路1L 和2L 上各点的k E 均不为零.

对于在回路1L

11k d d d d d d L L S S t t ?=-=-??

B B E l S ? 对于回路2L 2

2

k d d 0d L t

Φ?=-

=?E l

12-8 一根很长的铜管铅直放置,有一根磁棒由管中铅直下落.试述磁棒的运动情况.

解 长直铜管可以看作由许多铜线圈组成,当磁棒下落,每通过一个线圈,线圈中的磁通量都会发生变化,在下落过程中,铜管中始终会有感应电流产生,并且感应电流产生的磁场的方向与磁棒磁场方向相反,因此,磁棒始终受到铜管对它的阻碍作用.

12-9 有一些矿石具有导电性,在地质勘探中常利用导电矿石产生的涡电流来发现它,这叫电磁勘探.在示意图中,A 为通有高频电流的初级线圈,B为次级线圈,

并连接电流计G,从次级线圈中的电流变

2

化可检测磁场的变化.当次级线圈B检测到其中磁场发生变化时,技术人员就认为在附近有导电矿石存在.你能说明其道理吗?利用问题12-9图相似的装置,还可确定地下金属管线和电缆的位置,你能提供一个设想方案吗?

解 该检测方法利用的原理是电磁感应。通有高频电流的初级线圈A 产生的交变磁场在导电矿石内产生涡电流,由涡电流产生的变化磁场,使其附近的次极线圈中B 产生感应电流,引起电流计G中指针偏转。(在探测中要使初、次级线圈的相对位置不变,以保证次级线圈B 中感应电流的变化由导电矿石中涡电流产生的磁场引起。)

要确定地下金属管线和电缆的位置,可以将通有高频电流的初级线圈A 和接有电流计的次级线圈B组成一个探测仪,使探测仪沿地面运动。当靠近金属管线时,管线中由于初级线圈的作用会产生感应电流,同时使得线圈B 中产生感应电动势,电流计指针发生偏转,当电流计指针变化最大时,可以判断出管线在探测仪正下方.

12-10 如图所示,一个铝质圆盘可以绕固定轴

OO 转动.为了使圆盘在力矩作用下作匀速转动,常在圆盘的边缘处放一永久磁铁.圆盘受到力矩作用后先作加速运动,当角速度增加到一定值时,就不再增加,试说明其作用原理.

解 我们可以把铝质圆盘看作许多根从盘中心到边缘的铝棒,当圆盘绕轴转动时,通过磁场的铝棒切割磁力线,铝棒中产生感应电动势,其方向由盘心指向边缘,同时在盘内闭合回路中产生感应电流,圆盘受到与外力矩相反的安培力力矩的作用.最初,外力矩大于安培力矩,圆盘做加速运动,角速度增大,同时安培力矩增大,导致圆盘加速度减小,当安培力力矩等于外力矩时,圆盘角加速度等于零,角速度增加到最大,安培力矩不再增加,圆盘匀速转动.

12-11 如图所示,设有一导体薄片位于与磁感强

度B 垂直的平面上.(1)如果B 突然改变,则在点P 附近B 的改变可不可以立即检查出来?为什么?(2)若导体薄片的电阻率为零,这个改变在点P 是

始终检查不出来的,为什么?(若导体薄片是由低电

阻的材料做成的,则在点P 几乎检查不出导体薄片下侧磁场的变化,这种电阻率很小的导体能屏蔽磁场变化的现象叫做电磁屏蔽)

解 (1)不能立即检测出来.电磁场改变,在导体薄片内产生涡电流,会有电磁场产生,而电磁场在导体中衰减很快,不能通过导体,即大部分电磁场都会被导体屏蔽掉,所以对于导体一边电磁场的突变,在导体另外一边不能立即检测出来. (2)导体电阻率越小,即电导率越高,电磁场在其中的衰减越快,导体电磁屏蔽的效果越显著,当导体薄片的电阻率为零时,电磁场能被完全屏蔽,因此,导体一边电磁场突变,在导体另外一边始终检测不出来.

B

P

12-12 如果要设计一个自感较大的线圈,应该从哪些方面去考虑?

解线圈的自感只与线圈匝数、线圈大小和线圈中磁介质有关,要设计自感较大的线圈,需要用较细的导线绕制,以增加单位长度内的匝数,并选取较大磁导率的磁介质防于线圈内.

12-13有的电阻元件是用电阻丝绕成的,为了使它只有电阻

而没有自感,常用双绕法(如图).试说明为什么要这样绕.

解将电阻丝双绕成一组线圈,当通入电流,相邻两根线圈

中的电流流向相反,它们产生的磁场方向相反,通过回路线圈中总

的磁通量为零,因此没有自感.

12-14有两个线圈,长度相同,半径接近相等,试指出在下列三

种情况下,哪一种情况的互感最大?哪一种情况的互感最小?(1)两个线圈靠得很近,轴线在同一直线上;(2)两个线圈相互垂直,也是靠得很近;(3)一个线圈套在另一个线圈的外面.

解互感的大小表示了两线圈的耦合程度,两线圈的互感除了跟线圈大小,形状、匝数有关,还与它们的相互位置有关. 若一线圈中电流所产生的磁场贯穿另一个线圈的部分越大,它们之间的互感越大. 在本题所述的三种情况中,第三种情况的互感最大,第二种情况中的互感最小.

12-15试从以下三个方面来比较静电场和有旋电场:(1)产生的原因;(2)电场线的分布;(3)对导体中电荷的作用.

解(1)静电场是由空间中的静止电荷所激发的,有旋电场是由变化的磁场产生的;

(2)静电场中电场线是有源场,始于正电荷,终止于负电荷;有旋电场的电场线是闭合的;

(3)它们对导体中的电荷都有作用力,但有旋电场对电荷的作用力不是库仑力,它对电荷作用促使电荷积累,形成电势差.

12-16变化电场所产生的磁场,是否也一定随时间发生?变化磁场所产生电场,是否也一定随时间发生变化?

解不一定.当电场随时间变化恒定时,它所产生的磁场恒定;当磁场随时间变化恒定时,它所产生的电场也是恒定的.

习题

12-1一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为

5sin100t

Φ=-

8.0?10π,式中Φ的单位为Wb,t的单位为s.求在2

=?

t-

1.010s 时,线圈中的感应电动势.

解 线圈中总的感应电动势为 ()()1d 2.51V cos 100s d N t t

Φ

ε-=-=π 在21.010s t -=?时,

()()

1

2.51V cos 100s 2.51V t ε-=π=

12-2 如图所示,用一根硬导线弯成半径为r 的一个半圆. 使这根半圆形导线在磁感强度为B 的匀强磁场中以频率f 旋转,整个电路的电阻为R ,求感应电流的表达式和最大值.

解 由于导线的转动,通过面积为2

12

S r =

π的半圆形导线的磁通量发生改变,导线中会产生动生电动势.取初始时刻0t =时,导线平面的法线与磁场的夹角0θ=. 经过时间t 导线平面转过的角度为

2f t θ=π 所以穿过回路的磁通量随时间的变化式为 ()2

1cos cos 22

t BS r B f t Φθ==

ππ 由法拉第电磁感应定律可知,回路中感应电动势为 22d sin 2d r f B f t t

Φ

ε=-=ππ 回路中感应电流为

22sin 2r f B

I f t R

π=

π 感应电流的最大值为 22max r f B I R

π=

12-3 有一测量磁感强度的线圈,其截面积2

4.0cm S =,匝数160N =匝,电

阻50R =Ω.线圈与一内阻30i R =Ω的冲击电流计相连.若开始时线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从

冲击电流计中测得电荷值54.010C q -=?.问此均匀磁场的磁感强度B 的值为多少?

解 线圈平面转动前后,通过线圈的磁链变化为

21NBS ψψψ?=-=

此过程中流过导体截面的电量为 ()i i

NBS

q I t t R R t R R ψ?=?=?=

+?+ 由上式可知,磁感强度为 ()

i 0.05T q R R B NS

+==

12-4 如图所示,一长直导线中通有 5.0A I =的电流,在距导线9.0cm 处,放一

面积为2

0.10c m ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在2

1.010s

-?内把此线圈移至距长直导线10.0cm 处. 求:(1)线圈中平均感应电动势;(2)设线圈的电阻为

21.010-?Ω,求通过线圈横截面的感应电荷.

解 带电直导线激发的磁场为非均匀磁场,由于线圈面积较小,我们可以认为穿过线圈的磁场为均匀磁场.

当线圈在19.0cm r =、210.0cm r =处,通过线圈平面的磁链分别为

01112N IS NB S r μψ==

π 0222

2N IS

NB S r μψ==π 所以线圈中平均感应电动势为 8

021

2111 1.1110V 2N IS t

t r r μψψε-??-=

=

-=? ??π???

(2)通过线圈横截面的感应电荷为

I

821

1.1110C q R

ψψ--=

=?

12-5 如图所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线OP 以匀速率v 向右移动时,求导线中感应电动势的大小.哪一端电势较高? 解 如图所示,连接导线OP 两端,使导线构成一闭合回路,此闭合回路由直导线OP 、半圆形导线OAP 组成,由于磁场分布均匀,所以此闭合回路中的感应电动势为零,0ε=.

所以半圆形导线中的感应电动势的大小与直导线OP 中的感应电动势大小相等,即 2OAP OP BRv εε=-= 由?v B 可知, P 端电势较高.

12-6 长度为L 的铜棒,以距端点r 处为支点,并以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.

解 以支点为原点O ,在棒上距原点l 处取一小段线元d l , 其速度为v ,则它产生的电动势为

d ()d ε=?v B l ? 将上式积分可得

1

d (2)2

L r

AB r

B l l BL L r εωω--=-=--?

12-7 如图所示,长度为L 的导体棒OP ,处于均匀磁场中,并绕OO '轴以角速度ω旋转,棒与转轴夹角恒为θ,磁感强度B 与转轴平行. 求OP 棒在图示位置处的电动势.

解 如图,在棒上距O 点为l 处取一小段线元d l ,其速度为sin v l ωθ=,所以导体棒产生的电动势为 d OP OP

ε=

??

v B l ?

sin cos(90)d L

l B l εωθθ=-?

B R O P

A

v

A

O

21

(sin )2

B L ωθ=

12-8 如图所示,金属杆AB 以匀速率12.0m s v -=?平行于一长直导线移动,此导线通有电流40A I =.问:此杆中的电动势为多大?杆的哪一端电动势较高?

解 如图所示,建立坐标系,在x 处取一小段线元

,此处的磁感强度为 2I

B x

μ0=π

所以,杆中电动势为

1.0m

50.1m

d d 3.8410V 2AB AB

I

v

x x

με-0=?-=-?π??

v B x =?

电动势方向由B 指向A ,A 端电动势较高.

12-9 如图所示,在一“无限长”直载流导线的近旁放置一个矩形导体线框.该线框在垂直于导线方向以匀速率v 向右移动.求在图示位置处线框中的感应电动势的大小和方向.

解 矩形线框中的感应电动势为各边框

导线产生的感应电动势之和.

由l

d ε=??

v B l ?可知,矩形线框中AB 、CD 与导线垂直,它们产生的感应电动势为零,所以线框的电动势为DA 、BC 两边所产生的电动势之和.

在图示位置处,导线DA 、BC 中产生的感应电动势分别为

222DA Il v

Bl v d

με0==

π

()

212BC Il v

d l με0=-

π+

这两边导线中电动势方向相反,此时线框中总的感应电动势为

I

I x I v

()

1212DA BC Il l v

d d l μεεε0=-=

π+

其方向为顺时针.

12-10 如图所示,一长为l 、质量为m 的导体棒CD ,其电阻为R ,沿两条平行的导电轨道无摩擦的滑下,导轨的电阻可不计,导轨与导体构成一闭合回路.导轨所在的平面与水平面成θ角,整个装置放在均匀磁场中,磁感强度B 的方向为铅直向上.求:(1)导体在下滑时速度随时间的变化规律;(2)导体棒CD 的最大速

度m v .

解 (1)导体在重力的作用下,沿轨道下滑,回路中磁通量发生变化,导体中有感应电动势产生,其大小为cos Blv εθ=,导体中有感应电流通过,从而受到水平向左的安培力作用,最初,导体棒的速度较小,导体沿轨道加速运动,速度增大,同时安培力也增大,当导体所受的安培力与其重力在轨道方向平衡时,导体加速度为零,速度达到最大值.导体达到最大速度由安培定律可得,导体受到的安培力大小为

22cos B l v F IBl Bl R R

ε

θ

===

所以导体下滑的动力学方程为

d sin cos d v

mg F m t

θθ-= 由上两式可得

222

d d cos sin v

t B l v g mR

θ

θ=-

将上式积分可得t 时刻导体棒的速度为

22

2

cos 222sin 1cos B l t mR

mgR v e B l θθθ??=- ? ???

- (2)由上问中分析可知,当导体所受的安培力与其重力在轨道方向平衡时,导

N F

体加速度为零,速度达到最大值,即

222max cos sin B l v mg R

θ

θ= max 222sin cos mgR v B l θ

θ

=

另外,由上问中速度与时间的关系可知,当t →∞,222cos 0B l t mR

e θ

→-

速度达到最大 max 222

sin cos mgR v B l θ

θ

=

12-11 有一磁感强度为B 的均匀磁场,以恒定的变化率

d d B

t

在变化.把一块质量为m 的铜拉成截面半径为r 的导线,并用它做成半径为R 的圆形回路,圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为 d 4d m B

I d t

ρ=

π

式中ρ为铜的电阻率,d 为铜的密度.

证明 由电磁感应定律可知,圆形回路中的感应电动势为 2d d d d R t t ΦB

ε==π 又圆形回路总电阻为

22l R R R S r r

ρρ

ρ2π2'===π 所以回路中的感应电流为

2d 2d Rr B

I R t

ε

ρπ==

' 又由导体总的质量22

2m dV r Rd ==π可知2

2m

Rr d

π=

π,代入上式可得 d 4d m B

I d t

ρ=π

12-12 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与圆柱轴线平行.如图所示有一长为l 的金属棒放在磁场中,设B 随时间的变化率d d B

t

为常量.试证棒上的感应电动势的大小为

ε=

证明 变化的磁场会产生感生电场k E ,感生电场的方向与d d t

-

B

遵从右手螺旋定则.如图,连接OA ,OB ,使OAB 成为一闭合回路,回路中的感应电动势大小为为 k k k k d d d d d d OAB

OABO

OA

AB

BO

t

Φε=

?=?+?+?=

?

???E l E l E l E l 又OA ,OB 沿半径方向,与感生电场k E 垂直,所以OA ,OB 中感应电动势为零,所以AB 段,即金属棒上的感应电动势的大小为

k d d d d d OAB OAB AB

B

S t t

Φε=?=

=?E l

=

12-13 一半径为R ,电阻率为ρ的金属薄圆盘放在磁场中,B 的方向与盘面垂直,B 的值为()0

t

B t B τ

=,式中0B 和τ为常量,t 为时间.(1)求盘中产生的

涡电流的电流密度;(2)若0.20m R =,

86.010m ρ-=?Ω?,0 2.2T B =,

18.0s τ=,计算圆盘边缘处的电流密度.

解 (1)变化的磁场会产生感生电场,从而

在金属薄圆盘中产生涡电流.取圆盘中心为O ,圆盘上的感生电场线为一组以O 为圆心的同心圆,各点场强方向沿切线方向,圆盘上半径为r 的点感生电场强度大小为0

d 2d 2rB r B E t τ

==,该点电流密度大小为

2B E

j r ρ

ρτ

=

=

其方向与该点电场强度的方向一致.

B

(2)在边缘处,即0.20m r R ==处的电流密度为

520

2.0410A m 2B j R ρτ

-=

=??

12-14 截面积为长方形的环形均匀密螺绕环,其尺寸如图所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .

解 设螺绕环中线圈电流为I ,以螺绕环中心为圆点O ,取半径为r 12()R r R <<的圆形回路,由安培定律可得,12R r R <<区域内的磁感强度为 02NI

B r

μ=π

穿过螺绕环上线圈中总的磁链为 2

1

2001d d d 22R S

S

R NI

N Ih

N

N S r r

r

μμψ===

ππ

?

?

?

B S ? 202

1

ln

2N Ih

R R μ=π

螺绕环的自感为

202

1

ln 2N h R L I R μψ==π

12-15 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为1S 和2S ,磁导率分别为1μ和2μ,管长为l ,匝数为N ,求螺线管的自感(设管的截面很小).

解 设螺线管中线圈电流为I 由于螺线管截面很小,我们可以利用

N

B nI I l

μμ

==来求管内的磁感强度,其中μ为管内介质磁导率.本题中螺线管内由两种不同的介质填充,通过磁导率分别为1μ、2μ的介质截面的磁感强度分别为 11

N B I l μ= 22N B I l

μ=

22

,S N

则通过螺线管截面的总的磁链为

()21211221122N I

NB S NB S S S l

ψψψμμ=+=+=+

螺线管的自感为

()21122N L S S I l

ψ

μμ==+

12-16 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l 的

一对导线的自感(导线内部的磁通量可略去不计).

解 长为l 、相距为d 的两平行直导线可以看作无限长、宽为d 的矩形回路的一部分,设回路中

通有顺时针电流I .如图所示,建立坐标轴Ox ,

则在两平行导线间的磁感强度为 ()

0022I

I

B x

d x μμ=

+

ππ-

则通过两导线之间的矩形(宽为d 、长为l )面积

的磁通量为

0d d ln

d a

S

a

Il

d a

Bl x a

μΦ--===

π

??

B S ? 所以长为l 的两平行导线的自感为

0ln

l

d a

L I

a

μΦ

-=

=

π

12-17 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A B '',每个线圈的自感均为L ,求:(1)A 和A '相接时,B 和B '间的自感1L ,(2)A '和B 相接时,A 和B '间的自感2L .

解 (1)设当只有一组线圈中通有电流I 时,它穿过自身线圈回路的磁通量为LI Φ=;则当两组线圈中都通有相同的电流时,穿过两组线圈回路中总的磁通量为4Φ.

当A 和A '相接,线圈AB 和A B ''中的电流方向相反,通过线圈的磁通量也相反,

总的磁通量为1Φ=0,所以B 和B '间的自感10L =.

(2)A '和B 相接时,线圈AB 和A B ''中的电流方向相同,通过两线圈总的磁

l

通量为2ΦΦ=4,所以A 和B '间的自感24L L I

Φ

4==.

12-18 如图所示,一面积为24.0cm 共50匝的小圆形线圈A,放在半径为20cm 共100匝的大圆形线圈B的正中央,此两线圈同心且同平面.设线圈A内各点的磁感强度可看作是相同的.求:(1)两线圈的互感;(2)当线圈B中的电流的变化率为150A s --?时,线圈A中感应电动势的大小和方向.

解 (1)设线圈B中通有电流I ,则它在中心处的磁感强度为0B

2I

B N R

μ=,

则通过小线圈的磁链为

0B 2A A A A A I

N BS N N S R

μψ==

则两线圈的互感为

60

B

6.2810H 2A

A A M N N S I

R

μψ-=

==?

(2)当线圈B中的电流的变化率为1

50A s --?时,1d 50A s d I

t

-=-?,则线圈A中的感应电动势为

4d 3.1410V d A I

M

t

ε-=-=? 其方向与线圈B中的电流方向相同.

12-19 如图所示,两同轴单匝圆线圈A、C的半径分别为R 和r ,两线圈相距为d ,若r 很小,可认为线圈A在线圈C处产生的磁场是均匀的.求两线圈的互感.若线圈C的匝数为N 匝,则互感又为多少?

解 设线圈A中通有电流I ,它在线圈C处产生的磁感强度为 ()

2032

2

22IR

B R d μ=

+

则穿过线圈C中的磁链为

()

22

032

222C C IR r BS R d μψπ==

+

所以两线圈的互感为 ()

22

032

2

22C

R r M I

R d

ψμπ==

+

12-20 一半径为R 的圆形回路与一无限长直导线共面,圆心到长直导线间的距离为d ,求它们之间的互感.

解 如图所示,以取圆形回路中心为原点O ,建立坐标轴Oxy .设长直导线中通有电流I ,它在线圈平面内的磁感强度为

()

02I

B d x μ=

π+

在圆形回路上取平行于长直导线、宽为d x 的面元d S ,d 2sin d S R x θ=,则穿过此面元的磁通量为

()

0d 2sin d 2I

R x d x μΦθ=

π+

又cos x R θ=,代入上式有 22

0d cos d cos I d R d R d R μΦθθθ??

-=-+ ?π+??

将上式积分可得

2200cos d cos I

d R d R d R μΦθθθπ

??

-=-+ ?π+??

?

(0I d μ=

所以,导线与圆形线圈之间的互感为

(0M d I

Φ

μ=

=

12-21 一个直径为0.01m ,长为0.10m 的长直密绕螺线管,共1000匝线圈,总电阻为7.76Ω.求:(1)如把线圈接到电动势 2.0V ε=的电池上,电流稳定后,线圈中所储存的磁能有多少?磁能密度是多少?(2)从接通电路时算起,要使线圈

储存磁能为最大储存磁能的一半,需经过多少时间?

I

解 (1)密绕螺线管的自感为20N S

L l

μ=,当接上电动势 2.0V ε=的电池

后,线圈中的电流为I R

ε

=

,则线圈中所储存的磁能为

2225

0m 2

1W 3.2810J 22N S LI lR

με-===? 螺线管内磁能密度为

3m

m W 4.17J m Sl

-==?w

(2)线圈接上电池ε后,线圈内的电流变化规律为

1R t L

I e R ε-?

?=

- ??

?

当电流稳定后可达最大值m I R

ε

=,设线圈储存磁能为最大储存磁能的一半时,电

流为I ,则有

22m 111222LI LI =?,

此时2

m I I =,将其代入电流变化规律式可得此时经过的时间为

4ln(1 1.5610s L t R -=-

=?

12-22 一无限长直导线,截面各处的电流密度相等,总电流为I ,试证:每单位长度导线内所贮藏的磁能为2

16I

μπ.

解 设导体半径为R ,则在导体内部磁感强度为 02

2Ir

B R

μ=π

因此导体内部的磁能密度为

2

2B μ=w m 则单位长度导线内所贮藏的磁能为

2

200m m 20

1

W d 2d 2216R

V Ir I V r r R μμμ??

==

π= ?ππ??

??

w

12-23 在真空中,若一均匀电场中的电场能量密度与一0.50T 的均匀磁场中的能量密度相等,该电场的电场强度为多少?

解 0.50T 的

均匀磁场中的能量密度为 2

2B μ=w m 设均匀电场中电场强度为E ,则其中电场能量密度为 201

2

E ε=

w e 由题可知 =w w m e 则电场强度为 81

1.5110V m E -==??

电磁场与电磁波习题及答案

. 1 麦克斯韦方程组的微分形式 是:.D H J t ???=+?u v u u v u v ,B E t ???=-?u v u v ,0B ?=u v g ,D ρ?=u v g 2静电场的基本方程积分形式为: 0C E dl =? u v u u v g ? S D ds ρ =?u v u u v g ? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为: 3.00n S n n n S e e e e J ρ??=??=???=???=?D B E H r r r r r r r r r 4线性且各向同性媒质的本构关系方程是: 4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=u v u v 5电流连续性方程的微分形式为: 5. J t ρ??=- ?r g 6电位满足的泊松方程为 2ρ?ε?=- ; 在两种完纯介质分界面上电位满足的边界 。 12??= 1212n n εεεε??=?? 7应用镜像法和其它间接方法解静态场边值问题的理 论依据是: 唯一性定理。 8.电场强度E ?的单位是V/m ,电位移D ? 的单位是C/m2 。 9.静电场的两个基本方程的微分形式为 0E ??= ρ?=g D ; 10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 1.在分析恒定磁场时,引入矢量磁位A u v ,并令 B A =??u v u v 的依据是( 0B ?=u v g ) 2. “某处的电位0=?,则该处的电场强度0=E ? ” 的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln( 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω=r r 则位移电流密度为:0sin d x r m D J e E t t ωεεω?==-?r r r 其振幅值为:3 04510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S u u v u u v g ?S d q =?得2 4q D r π= 24D e e u u v v v r r q D r π== 空间的电场分布2 04D E e u u v u u v v r q r επε== 导体球的电位 2 0044E l E r e r u u v u u v v u u v g g g r a a a q q U d d d r a πεπε∞∞∞====??? 导体球的电容04q C a U πε==

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

高中物理第二章 电磁感应与电磁场单元测试题及解析

第二章电磁感应与电磁场章末综合检测 (时间:90分钟;满分100分) 一、单项选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项正确) 1.下列过程中一定能产生感应电流的是( ) A.导体和磁场做相对运动 B.导体一部分在磁场中做切割磁感线运动 C.闭合导体静止不动,磁场相对导体运动 D.闭合导体内磁通量发生变化 2.关于磁通量的概念,下列说法中正确的是( ) A.磁感应强度越大,穿过闭合回路的磁通量也越大 B.磁感应强度越大,线圈面积越大,穿过闭合回路的磁通量也越大 C.穿过线圈的磁通量为零时,磁感应强度不一定为零 D.磁通量发生变化时,磁感应强度一定发生变化 3.如图2-3,半径为R的圆形线圈和矩形线圈abcd在同一平面内,且在矩形线圈内有变化的磁场,则( ) 图2-3 A.圆形线圈有感应电流,矩形线圈无感应电流 B.圆形线圈无感应电流,矩形线圈有感应电流 C.圆形线圈和矩形线圈都有感应电流 D.圆形线圈和矩形线圈都无感应电流 4.以下叙述不正确的是( ) A.任何电磁波在真空中的传播速度都等于光速 B.电磁波是横波 C.电磁波可以脱离“波源”而独自存在 D.任何变化的磁场都可以产生电磁波 5.德国《世界报》曾报道过个别西方发达国家正在研制电磁脉冲波武器——电磁炸弹.若一枚原始脉冲波功率10 kW、频率5千兆赫的电磁炸弹在不到100 m的高空爆炸,它将使方圆400 m2~500 m2地面范围内电场达到每米数千伏,使得电网设备、通信设施和计算机中的硬盘与软盘均遭到破坏.电磁炸弹有如此破坏力的主要原因是( ) A.电磁脉冲引起的电磁感应现象 B.电磁脉冲产生的动能 C.电磁脉冲产生的高温 D.电磁脉冲产生的强光 6.在图2-4中,理想变压器的原副线圈的匝数比为n1∶n2=2∶1,A、B为完全相同的灯泡,电源电压为U,则B灯两端的电压有( ) 图2-4 A.U/2 B.2U

第十二章 电磁感应电磁场(一)作业答案

第十二章 电磁感应 电磁场(一) 一.选择题 [ A ]1.(基础训练1)半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60?时,线圈中已通过的电量与线圈面积及转动时间的关系是: (A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【解析】 [ D ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解析】 dt dI L L -=ε,在每一段都是常量。dt dI [ B ]3.(基础训练6)如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B ? 平 行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应 电动势和a 、c 两点间的电势差U a – U c 为 (A) =0,U a – U c =221l B ω (B) =0,U a – U c =22 1l B ω- (C) =2l B ω,U a – U c =2 2 1l B ω (D) =2l B ω,U a – U c =22 1 l B ω- 【解析】金属框架绕ab 转动时,回路中 0d d =Φ t ,所以0=ε。 2012c L a c b c bc b U U U U v B d l lBdl Bl εωω→→→ ??-=-=-=-??=-=- ??? ?? [ C ]5.(自测提高1)在一通有电流I 的无限长直导线所在平面内,有一半经 为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。当直导线的电流被切断后,沿着导线环流过的电量约为: (A))1 1(220r a a R Ir +-πμ (B) a r a R Ir +ln 20πμ (C)aR Ir 220μ (D) rR Ia 220μ 【解析】直导线切断电流的过程中,在导线环中有感应电动势大小:t d d Φ = ε B ? a b c l ω a I r o R q 2 1 φφ-=

电磁场与电磁波例题详解

电磁场与电磁波例题详解

————————————————————————————————作者:————————————————————————————————日期:

第1章 矢量分析 例1.1 求标量场z y x -+=2)(φ通过点M (1, 0, 1)的等值面方程。 解:点M 的坐标是1,0,1000===z y x ,则该点的标量场值为 0)(0200=-+=z y x φ。其等值面方程为 : 0)(2=-+=z y x φ 或 2)(y x z += 例1.2 求矢量场222zy a y x a xy a A z y x ++=的矢量线方程。 解: 矢量线应满足的微分方程为 : z y dz y x dy xy dx 222== 从而有 ???????==z y dz xy dx y x dy xy dx 2222 解之即得矢量方程???=-=2 2 21c y x x c z ,c 1和c 2是积分常数。 例1.3 求函数xyz z xy -+=22?在点(1,1,2)处沿方向角 3 ,4 ,3 π γπ βπ α= = = 的方向导数。 解:由于 1) 2,1,1(2) 2,1,1(-=-=??==M M yz y x ?, 02) 2,1,1() 2,1,1(=-=??==M M xz xy y ?, 32) 2,1,1() 2,1,1(=-=??==M M xy z z ?, 2 1cos ,22cos ,21cos === γβα 所以

1cos cos cos =??+??+??= ??γ?β?α??z y x l M 例1.4 求函数xyz =?在点)2,1,5(处沿着点)2,1,5(到点)19,4,9(的方向导数。 解:点)2,1,5(到点)19,4,9(的方向矢量为 1734)219()14()59(z y x z y x a a a a a a l ++=-+-+-= 其单位矢量 3147 31433144cos cos cos z y x z y x a a a a a a l ++=++=γβα 5, 10, 2) 2,1,5()2,1,5()2,1,5() 2,1,5() 2,1,5() 2,1,5(==??==??==??xy z xz y yz x ? ?? 所求方向导数 314 123 cos cos cos = ??=??+??+??=?? l z y x l M ?γ?β?α?? 例1.5 已知z y x xy z y x 62332222--++++=?,求在点)0,0,0(和点)1,1,1( 处的梯度。 解:由于)66()24()32(-+-++++=?z a x y a y x a z y x ? 所以 623) 0,0,0(z y x a a a ---=?? ,36) 1,1,1(y x a a +=?? 例1.6 运用散度定理计算下列积分: ??++-+=S z y x S d z y xy a z y x a xz a I )]2()([2322 S 是0=z 和2 2 22y x a z --=所围成的半球区域的外表面。 解:设:)2()(2322z y xy a z y x a xz a A z y x ++-+= 则由散度定理???=??τ τs S d A d A 可得

电磁感应++习题解答

第八章电磁感应电磁场 8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则() (A)线圈中无感应电流 (B)线圈中感应电流为顺时针方向 (C)线圈中感应电流为逆时针方向 (D)线圈中感应电流方向无法确定 分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B). 8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则() (A)铜环中有感应电流,木环中无感应电流 (B)铜环中有感应电流,木环中有感应电流 (C)铜环中感应电动势大,木环中感应电动势小 (D)铜环中感应电动势小,木环中感应电动势大 分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A). 8 -3有两个线圈,线圈1 对线圈2 的互感系数为M21,而线圈2 对线圈1的互感系数为

M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε< (D )2112M M = ,1221εε< 分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;t i M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场 (B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理 分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ). 8 -5 下列概念正确的是( ) (A ) 感应电场是保守场 (B ) 感应电场的电场线是一组闭合曲线 (C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).

习题9电磁感应与电磁场

习题9 9-1在磁感应强度B 为0.4T 的均匀磁场中放置一圆形回路,回路平面与B 垂直,回路的面积与时间的关系为:S=5t 2+3(cm 2),求t=2s 时回路中感应电动势的大小? 解:根据法拉第电磁感应定律得 dt d m Φ- =εdt dS B =Bt 10= V 4108-?=ε 9-2 如题9-2图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环感应电动势的大小和方向及MN 两端的电压U M -U N . 题9-2 解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ? +-<+-= =b a b a MN b a b a Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向, 大小为 b a b a Iv -+ln 20πμ M 点电势高于N 点电势,即 b a b a Iv U U N M -+= -ln 20πμ

题9-3 9-3 如题9-3图所示,在两平行载流的无限长直导线的平面有一矩形线圈.两导线中的电流 方向相反、大小相等,且电流以d I d t 的变化率增大,求: (1)任一时刻线圈所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I a b b a d d m +-+= -= ?? ++μμμΦ (2) t I b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε 题9-4 9-4 如题9-4图所示,长直导线通以电流I =5 A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06 m ,宽a =0.04 m ,线圈以速度v =0.03 m/s 垂直于直线平移远离.求:d =0.05 m 时线圈中感应电动势的大小和方向. 解: AB 、CD 运动速度v 方向与磁力线平行,不产生感应电动势.

《电磁场与电磁波》经典例题

一、选择题 1、以下关于时变电磁场的叙述中,正确的是( ) A 、电场是无旋场 B 、电场和磁场相互激发 C 、电场与磁场无关 2、区域V 全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是( ) A 、能量流出了区域 B 、能量在区域中被消耗 C 、电磁场做了功 D 、同时选择A 、C 3、两个载流线圈之间存在互感,对互感没有影响的的是( ) A 、线圈的尺寸 B 、两个线圈的相对位置 C 、线圈上的电流 D 、空间介质 4、导电介质中的恒定电场E 满足( ) A 、0??=E B 、0??=E C 、??=E J 5、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是( ) A 、镜像电荷是否对称 B 、电位方程和边界条件不改变 C 、同时选择A 和B 6、在静电场中,电场强度表达式为3(32)()y x z cy ε=+--+x y z E e e e ,试确定常数 ε的值是( ) A 、ε=2 B 、ε=3 C 、ε=4 7、若矢量A 为磁感应强度B 的磁矢位,则下列表达式正确的是( ) A 、=?B A B 、=??B A C 、=??B A D 、2=?B A 8、空气(介电常数10εε=)与电介质(介电常数204εε=)的分界面是0z =平面, 若已知空气中的电场强度124= +x z E e e 。则电介质中的电场强度应为( ) A 、1216=+x z E e e B 、184=+x z E e e C 、12=+x z E e e 9、理想介质中的均匀平面波解是( ) A 、TM 波 B 、TEM 波 C 、TE 波 10、以下关于导电媒质中传播的电磁波的叙述中,正确的是( ) A 、不再是平面波 B 、电场和磁场不同相 C 、振幅不变 D 、以T E 波的形式传播 二、填空 1、一个半径为α的导体球作为电极深埋地下,土壤的电导率为 σ,略去地面的影响,则电极的接地电阻R = 2、 内外半径分别为a 、b 的无限长空心圆柱中均匀的分布着轴向电流I ,设空间离轴距离为()r r a <的某点处,B= 3、 自由空间中,某移动天线发射的电磁波的磁场强度

大物B课后题08-第八章 电磁感应 电磁场

习题 8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。 解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为 02m i d B dS ldx x μφπ=?= 通过矩形面积CDEF 的总磁通量为 0000ln ln sin 222b m a i il I l b b ldx t x a a μμμφωπππ===? 由法拉第电磁感应定律有 00ln cos 2m d I l b t dt a φμωεωπ=- =- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小 线圈中感应的电动势。 解 无限长直螺线管内部的磁场为 0B nI μ= 通过N 匝圆形小线圈的磁通量为 2 0m NBS N nI r φμπ== 由法拉第电磁感应定律有 20m d dI N n r dt dt φεμπ=- =- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。 解 通过小线圈的磁通量为 0m BS niS φμ== 由法拉第电磁感应定律有 000cos m d di nS nSi t dt dt φεμμωω=- =-=- 8-9 如图所示,矩形线圈ABCD 放在1 6.010B T -=?的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=?,长为0.20m 的AB 边可左右滑动。若令AB 边以速率 15.0v m s -=?向右运动,试求线圈中感应电动势的大小及感应电流的方向。 解 利用动生电动势公式

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案 第1章 矢量分析 1、如果矢量场F 的散度处处为0,即0F ??≡,则矢量场是无散场,由旋涡源所 产生,通过任何闭合曲面S 的通量等于0。 2、如果矢量场F 的旋度处处为0,即0F ??≡,则矢量场是无旋场,由散度源所 产生,沿任何闭合路径C 的环流等于0。 3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是: 散度(高斯)定理:S V FdV F dS ??=?? ?和 斯托克斯定理: s C F dS F dl ???=??? 。 4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。( √ ) 5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( √ ) 6、标量场的梯度运算和矢量场的旋度运算都是矢量。( √ ) 7、梯度的方向是等值面的切线方向。( × ) 8、标量场梯度的旋度恒等于0。( √ ) 9、习题, 。

第2章 电磁场的基本规律 (电场部分) 1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。 2、在国际单位制中,电场强度的单位是V/m(伏特/米)。 3、静电系统在真空中的基本方程的积分形式是: V V s D dS dV Q ρ?==? ?和 0l E dl ?=?。 4、静电系统在真空中的基本方程的微分形式是:V D ρ??=和0E ??=。 5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。 6、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =0;而磁场→ B 的法向分量 B 1n -B 2n =0。 7、在介电常数为 的均匀各向同性介质中,电位函数为 22 11522 x y z ?= +-,则电场强度E =5x y z xe ye e --+。 8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。 9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。 A.导体 B.固体 C.液体 D.电介质 10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。 A.ε0εr B. 1/ε0εr C. εr D. 1/εr 11、导体电容的大小( C )。 A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关 D.与导体间电位差有关 12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

完整版电磁感应综合典型例题

电磁感应综合典型例题 【例11电阻为R的矩形线框abed,边长ab=L, ad=h,质量为m 自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁 场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线 框中产生的焦耳热是 _________ ?(不考虑空气阻力) 【分析】线框通过磁场的过程中,动能不变。根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热?所以,线框通过磁场过程中产生的焦耳热为 Q=W=mg- 2h=2mgh 【解答1 2mgh

【说明】本题也可以直接从焦耳热公式Q=l2Rt进行推算: 设线框以恒定速度v通过磁场,运动时间 从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感 线产生的感应电流的大小为 cd边进入磁场时的电流从d到c, cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上, 大小恒为 据匀速下落的条件,有 因线框通过磁场的时间,也就是线框中产生电流的时间,所以据 焦耳定律,联立(I )、(2)、(3)三式,即得线框中产生的焦耳热 为

Q=2mgh 两种解法相比较,由于用能的转化和守恒的观点,只需从全过程 考虑,不需涉及电流的产生等过程,计算更为简捷. 【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1 Q的矩形线圈,从离匀强磁场上边缘高h i=5m处由静止自由下落.进 入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运 动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s,求: (1)匀强磁场的磁感强度B; (2)磁场区域的高度h2;

电磁感应电磁场习题

第十三章 电磁感应 电磁场习题 (一) 教材外习题 电磁感应习题 一、选择题: 1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将 (A )加速铜板中磁场的增加 (B )减缓铜板中磁场的增加 (C )对磁场不起作用 (D )使铜板中磁场反向 ( ) 2.在如图所示的装置中,当把原来静止的条形磁铁从螺线管中按图示情况抽出时, (A )螺线管线圈中感生电流方向如A 点处箭头所示。 (B )螺线管右端感应呈S 极。 (C )线框EFGH 从图下方粗箭头方向看去将逆时针旋转。 (D )线框EFGH 从图下方粗箭头方向看去将顺时针旋转。 ( ) 3.在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A )以情况Ⅰ中为最大 (B )以情况Ⅱ中为最大 (C )以情况Ⅲ中为最大 (D )在情况Ⅰ和Ⅱ中相同 ( ) 4.如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中 出来,到无场空间中。不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对

时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正) 5.如图,一矩形线框(其长边与磁场边界平行)以匀速v 自左侧无场区进入均匀磁场又穿出,进入右侧无场区,试问图(A )—(E )中哪一图象能最合适地表示线框中电流i 随时间t 的变化关系?(不计线框自感) ( ) 6.在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa '和bb ',当线圈aa '和bb '如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是 (A )M 1 = M 2 ≠ 0 (B )M 1 = M 2 = 0 (C )M 1 ≠ M 2,M 2=0 (D )M 1≠M 2,M 2≠0 ( ) 7.真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如图。已知导线中的电流强度为I ,则在两导线正中间某点P 处的磁能密度为 (A )200)2(1a I πμμ (B )200)2(21 a I πμμ (C )200)2(21 a I πμμ (D )0 ( )

第十二章电磁感应 电磁场

第十二章 电磁感应 电磁场和电磁波 12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且 t i t i d d d d 2 1<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε< (D )2112M M = ,1221εε< 分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 1 2121=;t i M εd d 21212=.因 而正确答案为(D ). 12-5 下列概念正确的是( ) (A ) 感应电场是保守场 (B ) 感应电场的电场线是一组闭合曲线 (C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ). 12-7 载流长直导线中的电流以 t I d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势. 分析 本题仍可用法拉第电磁感应定律t Φ d d - =ξ ,来求解.由于回路处在非均匀磁场中,磁通量就需用??= S S B Φd 来计算. 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题 1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。 2、 散度 在直角坐标系的表达式 z A y A x A z y x A A ?? ????++=??= div ; 散度在圆柱坐 标系下的表达 ; 3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。当S 点P 时,存在极限环量密度。 二者的关系 n dS dC e A ?=rot ; 旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。

4.矢量的旋度在直角坐标系下的表达式 。 5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。 梯度的大小为该点标量函数?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达 式 ; 7、直角坐标系下方向导数 u l ??的数学表达式是cos cos cos l αβγ????????uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ???=++=?=???; 8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。

(完整版)电磁感应经典例题

电磁感应 考点清单 1 电磁感应现象 感应电流方向 (一)磁通量 1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ). 2.磁通量的计算 (1)公式Φ=BS 此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直. (2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积. θsin S B ?=Φ 其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”. (3)磁通量的方向性 磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量. (4)磁通量的变化 12Φ-Φ=?Φ ?Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意. (二)电磁感应现象的产生条件 1.产生感应电流的条件:穿过闭合电路的磁通量发生变化. 2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源. [例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( ) 图13-36 A.A 可能带正电且转速减小 B.A 可能带正电且转速增大 C.A 可能带负电且转速减小 D.A 可能带负电且转速增大 [解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.

电磁感应习题解答电磁场习题解答

第十三章 电磁感应 一 选择题 3.如图所示,一匀强磁场B 垂直纸面向内,长为L 的导线ab 可以无摩擦地在导轨上滑动,除电阻R 外,其它部分电阻不计,当ab 以匀速v 向右运动时,则外力的大小是: R L B R L B R L B R BL L B 222222222 E. D. 2 C. B. A.v v v v v 解:导线ab 的感应电动势v BL =ε,当 ab 以匀速v 向右运动时,导线ab 受到的外力与安培力是一对平衡力,所以R L B L R B F F v 22===ε 安外。 所以选(D ) 4.一根长度L 的铜棒在均匀磁场B 中以匀角速度ω旋转着,B 的方向垂直铜棒转动的平面,如图,设t = 0时,铜棒与Ob 成θ角,则在任一时刻t 这根铜棒两端之间的感应电动势是:( ) A. )cos(2θωω+t B L B. t B L ωωcos 2 12 C. )cos(22θωω+t B L D. B L 2ω E. B L 22 1ω 解:???= ==??=L L BL l l B l B )00221d d d ωωεv l B v ( 所以选(E ) 6.半径为R 的圆线圈处于均匀磁场B 中,B 垂直于线圈平面向上。如果磁感应强度为B =3 t 2+2 t +1,则线圈中的感应电场为:( ) A . 2π(3 t + 1)R 2 ,顺时针方向; B. 2π(3 t + 1)R 2 ,逆时针方向; C . (3 t + 1)R ,顺时针方向; D . (3 t + 1)R ,逆时针方向; 解:由??? ???-=?S B l E d d i t ,则感应电场的大小满足 选择题4图 选择题3图 v

电磁场与电磁波习题集

电磁场与电磁波 补充习题 1 若z y x a a a A -+=23,z y x a a a B 32+-=,求: 1 B A +;2 B A ?;3 B A ?;4 A 和B 所构成平面的单位法线;5 A 和B 之间较 小的夹角;6 B 在A 上的标投影和矢投影 2 证明矢量场z y x a xy a xz a yz E ++=是无散的,也是无旋的。 3 若z y x f 23=,求f ?,求在)5,3,2(P 的f 2?。 5 假设0x 的区域为电介质,介电常数为03ε,如果空气中的电场强度z y x a a a E 5431++=(V/m ),求电介质中的电场强度。 7 同轴电缆内半径为a ,电压为0V ,外导体半径b 且接地,求导体间的电位分布,内导体的表面电荷密度,单位长度的电容。 10 在一个无源电介质中的电场强度x a z t C E )cos(βω-=V/m ,其中C 为场的幅度,ω为 角频率,β为常数。在什么条件下此场能够存在?其它的场量是什么? 11 已知无源电介质中的电场强度x a kz t E E )cos(-=ωV/m ,此处E 为峰值,k 为常数,求此区域内的磁场强度,功率流的方向,平均功率密度。 12 自由空间的电场表示式为x a z t E )cos(10βω+=V/m ,若时间周期为100ns ,求常数k , 磁场强度,功率流方向,平均功率密度,电场中的能量密度,磁场中的能量密度。 13 已知无源区的电场强度为y a kz t x C E )cos(sin -=ωαV/m ,用相量求磁场强度,场存在的必要条件,每单位面积的时间平均功率流。 14 若自由空间中均匀平面波的磁场强度为x a z t H )30000cos(100β+= A/m , 求相位常数,波长,传播速度,电场强度,单位面积时间平均功率流。 16 决定下面波的极化类型 m a y t a y t E m a e e a e e E m a e a e E z x y z j j x z j j z x j y x j /V )5.0s i n (4)5.0c o s (3/V 916/V 10010010041004300300 ---=-=+=-----ππ 17 电场强度为y x a z t a z t )sin(5)cos(12βωβω--- V/m 的均匀平面波以200M rad/s 在无耗媒质中(1,5.2==r r με)传播,求相应的磁场强度,相位常数,波长,本征阻抗,相

大学物理期末复习第八章电磁感应及电磁场

第八章 电磁感应与电磁场 §8-1电磁感应定律 一、电磁感应现象 电磁感应现象可通过两类实验来说明: 1.实验 1)磁场不变而线圈运动 2)磁场随时变化线圈不动 2.感应电动势 由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。 3.电动势的数学定义式 定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即 () ??=l K l d K :非静电力 ε (8-1) 说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为 表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正 极时,非静电力所做的功。 (2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:() ??=l K l d K :非静电力 ε (3)电动势是标量,和电势一样,将它规定一个方向,把从负极经 电源内部到正极的方向规定为电动势的方向。 二、电磁感应定律 1、定律表述

在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。数学表达式: 在SI 制中,1=k ,(S t V Wb :;:;:εΦ),有 dt d i Φ- =ε (8-2) 上式中“-”号说明方向。 2、i ε方向的确定 为确定i ε,首先在回路上取一个绕行方向。规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。在此基础上求出通过回路上所围面积的磁通量,根据dt d i Φ -=ε计算i ε。 三、楞次定律 此外,感应电动势的方向也可用楞次定律来判断。 楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。 说明:(1)实际上,法拉第电磁感应定律中的“-”号是楞次定律的数学表 述。 (2)楞次定律是能量守恒定律的反映。 例8-1:设有矩形回路放在匀强磁场中,如图所示,AB 边也可以左右滑动,设 以匀速度向右运动,求回路中感应电动势。 解:取回路顺时针绕行,l AB =,x AD =, 则通过线圈磁通量为 由法拉第电磁感应定律有: “-”说明:i ε与l 绕行方向相反,即逆时针方向。由楞次定律也能得知,i ε沿逆时针方向。 讨论:(1)如果回路为N 匝,则?=ΦN (?为单匝线圈磁通量) (2)设回路电阻为R (视为常数),感应电流 dt d R R I i i Φ-==1ε 在1t —2t 内通过回路任一横截面的电量为 可知q 与(12ΦΦ-)成正比,与时间间隔无关。 例8-1中,只有一个边切割磁力线,回路中电动势即为上述产生的电动势。

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场 () ()2 2 003 3 2 2 2 22IR IR B x R x R x μμ= ≈ >>+ 3 2 202x r IR BS πμφ= = v x r IR dt dx x r IR dt d 4 22042202332πμπμφ ε=--=-= 9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ? 的方向垂直于金属架 COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ? 与 MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ? 不随时间改变,框架内的感应电动势i ε. 解:12m B S B xy Φ=?=?,θtg x y ?=,vt x = 22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N 9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。 解:当线圈ABC 向右平移时,AB 和AC 边中会产 生动生电动势。当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02() I B a d μπ= + AC 中产生的动生电动势大小为: x r I R x v C D O x M θ B ? v ?

相关文档
相关文档 最新文档