文档库 最新最全的文档下载
当前位置:文档库 › 桥梁抗震

桥梁抗震

桥梁抗震
桥梁抗震

1 地球也有像脉搏那样的连续不断的震动,叫做脉动。

2 地震按其成因可分为:火山地震陷落地震诱发地震构造地震。

3 地震的震级是衡量地震大小的等级,用符号M表示。

4 地震烈度是用来衡量地震破坏作用大小的一个指标,它表示某一地区的地面和各类建筑物遭受某一次地震影响的强弱程度。

5 基本烈度是指该地区今后一个时期内,在一般场地条件下可能遭遇到得最大地震烈度。

6 震级和震中烈度的关系是在环境条件基本相同的条件下,震级越大,震源深度越浅,则震中烈度越高。

7 地震波是当震源岩石发生断裂错动时,岩石所积聚的变形能突然释放,引起剧烈的震动,震动以弹性波的形式从震源向各个方向传播并释放能量。

8 地震波分为体波和面波体波分为横波和纵波面波分为瑞利波和乐浦波。

9 地震动也称为地面运动,是指由震源释放出来的地震波引起的地表附近土层的震动。

10 地震动重要的影响因素主要是地震动强度频谱特性和强震持续时间,简称地震动三要素。

11 地震分布是环太平洋地震带欧亚地震带。

12 地震灾害主要表现在直接灾害和次生灾害。

13 直接灾害是由地震的直接作用,如地震波引起的强烈震动地震断层的错动等所造成的灾难

14 直接灾害的主要表现在地表破坏(地裂缝滑动砂土液软土震陷)建筑物破坏生命线工程破坏。

15 次生灾难是由地震引发的火灾水灾有毒物质泄漏和疫病流行等灾难。

16 桥梁震害的原因有(1)所发生的地震强度超过了抗震设防标准,这是无法预料的。(2)桥梁场地对抗震不利,地震引起地基失效或地基变形。(3)桥梁结构设计,施工错误(4)桥梁结构本身抗震能力不足

17 桥梁震害分为地基失效引起的破坏和结构强烈震动引起的破坏

18 支座的震害的原因主要是支座设计没有充分考虑抗震的要求,连接与支挡等构造措施不足,以及某些支座形式和材料本身的缺陷。

19 支座的破坏形式主要表现为支座移位锚固螺栓拔出剪断活动支座脱落,以及支座本身构造上的破坏等。

20 桥墩的破坏形式主要有弯曲破坏和剪切破坏。

21 弯曲破坏的原因主要是约束箍筋配置不足纵向钢筋的搭接或焊接不牢等引起的墩柱的延性能力不足。

22 抗震设计的启示:(1)要重视桥梁结构的总体设计,选择较理想的抗震结构体系(2)要重视延性抗震,并且必须避免出现脆性破坏(3)要重视结构的局部构造设计,避免出项构造缺陷(4)要重视桥梁支承连接部位的抗震设计,同时开发有效的防止落梁装置(5)对复杂桥梁,应进行空间动力时程分析(6)要重视采用减隔震技术提高结构的抗震能力

23 抗震设防的原则一般应考虑的三方面因素(1)根据桥梁的重要性程度确定该结构的设计基准期(2)地震破坏后,桥梁结构功能丧失可能引起次生灾害的损失(3)建设单位所能承担抗震防灾的最大经济能力

24 地震超越概率是指一定场地在未来一定时间内遭遇到大于或等于给定地震的概率,常以年超越概率或设计基准期超越概率表示

25 地震安全性工作的主要内容包括:地震烈度复核设计地震动参数的确定地震小区划场区及周围地震地质稳定性评价场区地震灾害预测等

26 桥梁结构的自振周期和地震动卓越周期越接近,它的振型接受到地震力的影响越大;而结构的阻尼比越小,结构的地震响应也越大。分析和认识桥梁结构的自振周期振型和阻尼比这些动力特性的重要意义就在于此。

27 地震力计算方法主要有静力法动力反应谱法和动态时程分析法

28 单自由度体系在给定的地震作用下某个最大反应与体系自振周期的关系曲线

29 桥梁结构抗震设计的一般要求:(1)选择桥位时,应尽量避开地震危险地段,充分利用地震有利地段(2)避免或减轻在地震作用下因地基变形或地基失效造成的破坏(3)本着减轻震害和便于修复的原则,合理确定设计方案(4)提高结构与构件的强度和延性,避免脆性破坏(5)加强桥梁结构的整体性(6)在设计中提出保证施工质量的要求和措施

30 桥梁工程抗震设计的具体任务(1)正确选择能够有效地抵抗地震作用的结构形式(2)合理地分配结构的刚度质量和阻力等动力参数,以便最大限度地利用构件和材料的承载和变形能力(3)正确估计地震可能对结构造成的破坏,以便通过结构构造和其它抗震措施,使损失控制在限定的范围内

31 桥梁工程的抗震设计一般都要包括五大部分,抗震设防标准选定抗震概念设计地震反应分析抗震性能验算抗震构造设计

32 抗震概念设计是指根据地震灾害和工程经验等获得的基本设计原则和设计思想,正确地解决结构总体方案材料使用和细部构造,以达到合理抗震设计的目的。

33 从抗震的角度来看,理想的桥梁结构体系布置应是(1)从几何线性上看:是直桥,而且各墩高度相差不大。(2)从结构布局上看:上部结构是连续的,伸缩缝尽可能少:桥梁保持小跨径:在多个桥墩上布置弹性支座:各个桥墩的强度和刚度在各个方向都相同:基础是建造在坚硬的场地上。

34 桥梁结构的地震反应分析要解决三个关键问题:(1)确定合适的地震输入(2)建立结构系统的数学模型及振动方程:一般采用有限元方法将结构离散化,建立桥梁结构力学模型,然后确定各离散单元的力学特性,最终建立相应的地震振动方程:(3)选择合适的方法求解地震振动方程得到地反应。

35 地震动加速度时程的选择主要的三种方法(1)直接利用强震记录(2)采用人工地震加速度时程和规范标准化地震加速度时程

36 对于桥梁长度很大的桥梁,各支承点可能位于显著不同的场地土上,由此导致各支承处输入地震动的不同,在地震反应分析中就要考虑多支承不同激励,简称多点激振。

37 即使场地土情况变化不大,也可能因地震动沿桥纵轴向先后到达的时间差,引起各支承处输入地震时程的相位差,简称行波效应。

38 但在实际的结构动力分析中,一般都采用集中质量矩阵,即直接将整个单元的质量人为地集中在单元节点上,这样得到地质量矩阵为对角矩阵。

39 墩柱在地震作用下将会受到较大剪力和弯矩作用,一般由地震反应控制设计。因此,墩柱,以及保持上下部连接可靠的支座等连接构件,是桥梁抗震验算的主要部分。

40 抗震的主要验算:在桥梁结构的抗震验算中,不仅要验算墩柱的抗弯能力和抗剪强度,还要验算支座等连接构件能否有效工作。

41 桥梁结构的抗震构造设计一般包括两个方面,墩与梁的连接构造设计和墩柱的构造设计

42 在实际抗震设计中,世界各国普遍采用构造措施防止落梁震害,包括两个方面;(1)限制支承连接部位的支承面最小宽度(2)在相邻梁之间安装纵向约束装置

43 两种典型的纵向约束装置:拉杆式和挡块式

44 延性抗震理论不同于强度理论的是它是通过结构选定部位的塑性变形来抵抗地震作用的

45 材料构件或结构的延性定义为在初始强度没有明显退化情况下的非弹性变形能力

46 最常用的延性指标为:曲率延性系数和位移延性系数

47 对钢筋混凝土构件,塑性铰区截面的屈服曲率,一般指截面最外层受拉钢筋初始屈服时的曲率或截面混凝土受压区最外层纤维初次达到峰值应变值时的曲率

48 延性对桥梁抗震的意义:(1)从变形的角度看,地震造成结构损坏的原因,在于它激起的变形超出了结构的弹性极限变形;同样,地震造成结构倒塌的原因,在于它激起的反复的弹塑性变形循环,超出了结构的滞回延性。因此,如果通过设计,使结构具有能够适应大地震激起的反复的弹塑性变形循环的滞回延性,则结构在遭遇设计预期的大地震时,尽管可能严重损坏,但结构抗震设防的最低目标——免于倒塌破坏,却始终能得到保证。这种思想即为延性抗震设计的基本思想。(2)从能量的观点看,结构延性抗震设计的基本原理,是将结构部分构件设计成具有较好的滞回延性,在预期的地震动作用下,通过延性构件发生的反复弹塑性变形循环耗散掉大量的地址输入能量,从而保证结构的抗震安全。

49 能力设计方法的基本原理为:在结构体系中的延性构件和能力保护构件之间建立强度安全等级差异,以确保结构不会发生脆性的破坏模式

50 采用能力设计方法进行延性抗震设计,一般分为以下三步进行:(1)选定结构中潜在塑性铰区地位置,把塑性铰区截面的抗弯强度尽可能设计得与需求的强度接近。(2)在含有塑性铰的构件中,诸如剪切破坏锚固失效和失稳等脆性破坏模式,依靠提供足够的强度安全数加以避免;(3)对于脆性构件或不希望出现塑性变形的构件,确保其强度安全等级高于包含塑性铰的构件。

51 所谓规则桥梁,是指实际结构的地震反应可以近似简化为单自由度系统进行分析的桥梁

52 从大量震害和试验结果的观察发现,立柱的实际抗弯承载能力要大于其设计承载能力,这种现象称立柱抗弯超强现象

53 能力保护构件的设计任务,就是要确保能力保护构件具有比延性构件适当高一些的强度安全系数

54 在箍筋约束混凝土桥墩中,横向箍筋有三个重要的作用:(1)提供斜截面的抗剪能力(2)约束核芯混凝土,大大提高混凝土的极限压应变,从而大大提高塑性铰区截面的转动能力(3)阻止纵向受压钢筋过早屈曲

55 钢筋混凝土墩柱的延性与以下因素有关:轴压比箍筋用量箍筋形状混凝土强度保护层厚度纵向钢筋截面形式

56 减震是利用特制减震构件或装置,使之在强震时率先进入塑性区,产生大阻尼,大量消耗进入结构体系的能量。隔震则是利用隔震体系,设法阻止地震能量进入主体结构。

57 结构对地震的反应有亮哥基本规律:(1)地震动的频率成分非常复杂,但地震能量一般集中在一个频率范围内(2)结构的阻尼越大,结构的地震反应越小,因为阻尼使振动系统能量耗散了

58 减隔震技术的工作机理有三条(1)采用柔性支承延长结构周期,减小结构地震反应(2)采用阻尼器式能量耗散元件,限制结构位移(3)保证结构在正常使用荷载作用下具有足够的刚度

59 桥梁减隔震系统应包含柔性支承阻尼装置和构造措施

60 减隔震技术的适用条件(1)桥梁上部结构为连续形式,下部结构刚度比较大,整个桥的基本周期比较短(2)桥梁下部结构高度变化不规则,刚度大均匀,引入减隔震装置可调节各桥墩刚度,因而可以避免刚度较大桥墩承担很大惯性力的情况(3)场地条件较好,预期地面运动具有较高的卓越频率,长周期范围所含能量较少等情况

61 减隔震装置的选择要注意以下一些要求:(1)在不同水准地震作用下,减隔震支座都应保持良好的竖向荷载支承能力(2)减隔震装置应具有较高的初始水平刚度,使得桥梁在风荷载制动力等作用下部发生过大的变形和有害的振动(3)当温度徐变等引起上部结构缓慢的伸缩变形时,减隔震支座产生的抗力应比较低(4)减隔震装置应具有较好的自复位能力,使震后桥梁上部结构能够基本恢复到原来位置

桥梁抗震构造措施

桥梁抗震构造措施 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

桥梁抗震的构造要求有哪些 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 ??? 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 ??? 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 ??? 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 ??? 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 ??? 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 ??? 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 ??? 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 ??? 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 ??? 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接 强度,对双曲拱桥应加强肋波间的连接。 ??? 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 ??? 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 ??? 13.拱桥宜尽量减轻拱上建筑的重量。 ??? 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以 及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的

桥梁抗震计算书讲解

工程编号:SZ2012-38 海口市海口湾灯塔酒店景观桥工程 桥梁抗震计算书 设计人: 校核人: 审核人: 海口市市政工程设计研究院 HAIKOU MUNICIPAL ENGINEERING DESIGN & RESEARCH INSTITUTE 2012年09月

目录 1工程概况 ........................................................................................................... - 1 -2地质状况 ........................................................................................................... - 1 -3技术标准 ........................................................................................................... - 2 -4计算资料 ........................................................................................................... - 2 -5作用效应组合 ................................................................................................... - 3 -6设防水准及性能目标 ....................................................................................... - 3 -7地震输入 ........................................................................................................... - 4 -8动力特性分析 ................................................................................................... - 5 - 8.1 动力分析模型 (5) 8.2 动力特性 (6) 9地震反应分析及结果 ....................................................................................... - 6 - 9.1 反应谱分析 (6) 9.1.1E1水准结构地震反应 ........................................................................................ - 6 - 9.1.2E2水准结构地震反应 ........................................................................................ - 7 -10地震响应验算................................................................................................ - 8 - 10.1 墩身延性验算 (10) 10.2 桩基延性验算 (10) 10.3 支座位移验算 (11) 11结论.............................................................................................................. - 11 - 12抗震构造措施.............................................................................................. - 11 - 12.1 墩柱构造措施 (12) 12.2 结点构造措施 (12)

桥梁抗风与抗震

桥梁抗风与抗震 1.桥梁抗震 1.1桥梁的震害及破坏机理 调查与分析桥梁的震害及其破坏机理是建立正确的抗震设计方法,采取有效抗震措施的科学依据。 国内外学者对桥梁震害的调查研究结果表明,桥梁震害主要表现为: (1)上部结构的破坏:桥梁上部结构本身遭受震害而被毁坏的情形不多,一般都是由于桥梁结构的其他部位的毁坏而引起的。如落梁,一种是由于弹性设计理论采用毛截面刚度,这样就会低估横向地震作用和位移。导致活动节点处所设置的支座长度明显不足以及相邻梁体之间因横向距离不足而引起的相互冲击,造成落梁及相邻结构的撞击破坏;另外一种是由于地基土的作用造成大的地震位移,这种桥梁震害主要发生在建在软土或者可能液化的地基土上的桥梁上。软土通常会使结构的振动反应放大,使得落梁的可能性增加。 (2)支座连接部位的破坏:这中破坏比较常见,由于连接部位的破坏会引起力传递方式的变化,从而对结构其他部位的抗震产生影响,进一步加重震害。这种破坏是抗震设计中最关注的问题之一。 (3)下部结构和基础的破坏:下部结构和基础的严重破坏是引起桥梁倒塌,并在震后难以修复使用的主要原因。除了地基毁坏的情况,桥梁墩台和基础的震害是由于受到较大的水平地震力,瞬时反复振动在相对薄弱的截面产生破坏而引起的,从大量震害实例来看,比较高柔的桥墩多为弯曲破坏,矮粗的桥墩多为剪切型破坏,介于两者之间的为混合型。地基破坏主要表现为砂土液化,地基失效,基础沉降和不均匀沉降破坏及由于其上承载力和稳定性不够,导致地面产生大变形,地层发生水平滑移,下沉,断裂。 (4)桥台沉陷,当地震加速度作用时,由于桥台填土与桥台是不完全固结的,桥台填土的纵向土压力增大,桥梁与桥台之间的冲撞会产生相当大的被动土压力,造成桥台有向桥跨方向移动的趋势。由于桥面的支撑作用,桥台将发生以桥台顶端为支点的竖向旋转,导致基础破坏。如果桥台基础在液化土上,又将引起桥台垂直沉陷,最终导致桥梁破坏。 以上所介绍桥梁的几种破坏形式是相互影响的,不同的地质条件和不同的抗震措施所造成的破坏程度和类型往往是不同的。这就要求我们在桥梁设计中尤其是不规则桥梁和大跨度桥梁,必须从整体分析桥梁的抗震性能。 1.2抗震分析理论

桥梁专业设计技术规定 第八章 桥梁震动及抗震

8 桥梁振动及抗震 8.1结构抗震体系 8.1.1结构应具有合理的地震作用传力途径和明确的计算简图。结构除了具有必要的承载能力以外,还应具有良好的变形能力和耗能能力,以保证结构的延性性能。 8.1.2结构的质量和刚度应均匀分布,避免因质量和刚度突变而造成地震时结构各部分相对变形过大。对于质量和刚度变化较大的部位,应采取有效措施予以加强。 8.1.3结构基础应建造在坚硬的地基上,尽可能避开活断层及地质条件不好的地基。当结构必须建造在软土地基或可能液化的地基上时,应对地基进行处理。 8.1.4上部结构应尽量采取连续的形式。当上部结构与下部结构之间的支座允许上部结构平动时,必须保证支承面宽度并采取相应的限位措施,防止落梁的发生。 8.1.5确定墩柱的截面尺寸时应避免墩柱的轴压比(墩柱所承受的轴向压力与抗压极限承载力之比)过大,以保证墩柱截面的延性性能。 8.1.6对于多跨连续结构,各中墩柱的截面尺寸和高度应使各柱的纵桥向刚度和横桥向刚度基本相同。跨径相差较大时,应考虑上部结构质量对横桥向频率的影响。对于地面高差较大的地形,可通过下挖地面来调整墩柱的高度。 8.1.7对于大跨度桥梁,应结合桥位处的地质条件和地震动特性等具体情况,对各种结构体系进行分析研究,选择抗震性能较好的结构体系。 8.2地震反应计算 8.2.1工程设计项目应按《地震安全性评价管理条例》(国务院令第323号)及各地方相应管理办法,要求业主对相应区域进行地震危险性分析,

并根据地震危险性分析进行结构的地震反应计算。在桥梁建设中尽量避开具有危险性的活动地震断层。活动性地震断层附近桥梁的地震反应计算要特别注意地面位移对结构的影响。按“条例”不需进行地震安全性评价的一般性工程,应按照《中国地震动参数区划图》(GB18306-xx)规定的设防要求进行抗震设防。 8.2.2应根据工程的重要性等级、场地的地质条件和地震烈度、结构的自振特性等情况,按照规范用反应谱方法进行结构的地震反应计算。对于大跨度桥梁,还应进行时程反应分析,并考虑地震动的空间不均匀性。 8.2.3对于地震作用的计算,应按公路桥梁相关规范执行,城市桥梁应根据道路等级和桥梁的重要性,按表8.1进行重要性系数修正。 表8.1 城市桥梁重要性修正系数Ci 考虑地震引起的位移,避免结构因位移过大而导致非强度破坏。 8.2.5对大跨度桥梁进行地震反应计算时,由于高阶振型的影响较大,必须计算足够多的振型。 8.2.6采用减震措施设计时,应结合具体桥型进行动力时程分析。 8.3构件抗震设计和抗震构造措施 8.3.1 应搜集桥位处地震基本烈度、地质构造、地震活动情况、工程地质及水文地质条件,并根据地震基本烈度及桥梁重要性等级采取相应的

桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 Loma Prieta地震()、1994年美国Northridge地震(、1995年日本阪神地震()、1999年土耳其伊比米特地震()、1999年台湾集集地震()等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。 大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于

桥梁工程抗震设计的主要内容和方法

桥梁工程抗震设计的主要内容和方法 通过本学期所学的《土木工程地质》,我们初步了解到了桥梁工程。桥梁是交通生命线工程中的重要组成部分,震区桥梁的破坏不仅直接阻碍了及时救灾行动,使得次生灾害加重,导致生命财产以及间接经济损失巨大,而且给灾后的恢复与重建带来困难。在近30年的国内外大地震中,桥梁破坏均十分严重,桥梁震害及其带来的次生灾害均给桥梁抗震设计以深刻的启示。在以往地震中城市高架桥或公路上梁桥的墩柱的屈曲、开裂、混凝土剥落、压溃、剪断、钢筋裸露断裂等震害,桥梁防震越来越受到各国工程师的重视。所以结合所学现代刚桥等知识及搜集的资料,本文将大致讲述桥梁工程抗震设计的主要内容和方法。 首先我们了解下地震带给桥梁的具体破坏影响,这样才可以采取相应措施来防止。桥梁上部结构由于受到墩台、支座等的隔离作用,在地震中直接受惯性力作用而破坏的实例较少,由于下部结构破坏而导致上部结构破坏则是桥梁结构破坏的主要形式,下部结构常见的破坏形式有以下几种: 1)支承连接部件失败:固定支座强度不足、活动支座位移量不够、橡胶支座梁底与支座底发生滑动,在地震力作用下支座破坏,致使梁体发生位移导致落梁。 2)墩台支承宽度不满足防震要求,防落梁措施设计不合理,在地震力作用下,梁、墩台间出现较大相对位移,导致落梁现象的发生。 3)伸缩缝、挡块强度不足,在地震力作用下伸缩缝碰撞破坏挤压破坏、挡块剪切破坏,都起不到应有作用,导致落梁。 接下来将从两个方面讲述抗震设计。

抗震设计的主要内容 目前桥梁工程的设计主要配合静力设计进行,但贯穿整个桥梁设计的全过程。与静力设计一样,桥梁工程的抗震设计也是一项综合性的工作。桥梁抗震设计的任务,是选择合理的结构方式,并为结构提供较强的抗震能力。具体来说,有以下三个部分: 1 正确选择能够有效抵抗地震作用的结构形式; 2 合理的分配结构的刚度,质量和阻尼等动力参数,以便最大限度的利用构件和材料的承载和变形能力; 3 正确估计地震可能对结构造成的破坏,以便通过结构丶构造和其他抗震措施,使损失控制在限定的范围内。 一丶抗震设计流程 桥梁工程的设计一般都要包括五个部分,抗震设防标准选定,抗震概念设计,地震反应分析,抗震性能验算和抗震构造设计。 其中地震反应分析和抗震性能验算工作量最多,且最为复杂。如果采用三级设防的抗震设计思想,上面的两个部分就要做三个循环,即对于每一个设防标准,进行一次地震反应分析,并进行相应的抗震性能验算,直到结构的抗震性能满足要求。 二丶抗震概念设计 抗震概念设计是从概念上,特别是从结构总体上考虑抗震的工程决策;概念设计是指根据地震灾害和工程经验等获得的基本设计和设计思想,正确地解决结构总体方案丶材料使用和细部构造,以达到合理抗震设计的目的。 合理的抗震概念设计,要求设计出来的结构,在强度丶刚度和延性等指标上

桥梁抗震复习题定稿版

桥梁抗震复习题精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

复习题 1.地震动的三要素? 答:地震动强度(振幅、峰值),频谱特性,强震持续时间。 2. 什么是基本地震烈度基本地震烈度和E1地震E2地震是什么关系 答:基本地震烈度是指该地区今后一个时期内,在一般场地条件下可能遭遇到 的最大地震烈度,即《中国地震烈度区划图》规定的烈度。 3.地震按照成因、震源的深浅、震中距的远近等的分类;一些有关地震的术语含义。答:按照成因可分为:火山地震、陷落地震、构造地震、诱发地震 按照震源的深浅可分为:浅源地震、中源地震、深源地震 按照震中距的远近可分为:地方震、近震、远震 4. 地震波包含了哪几种波它们的传播特点是什么各种波的速度对比 分为体波和面波。 体波 纵波:在传播过程中,其介质质点的震动方向与波的前进方向一致。

纵波的周期较短,振幅较小,波速较快,在地壳内的速度一般为200-1400m/s。 横波:在传播过程中,其介质质点的振动方向与波的前进方向垂直。 横波的周期较长,振幅较大,波速较慢,在地壳内的速度一般为100-800m/s。 面波 瑞利波:传播时,质点在与地面垂直的平面内沿波前进方向做椭圆反时针方向运动。 振幅大,在地表以竖向运动为主。 乐浦波:传播时,类似蛇形运动,质点在地平面内做与波前进方向相垂直的运动。 5. 地震动、地震波的概念。 地震动:也称地面运动,是指由震源释放出来的地震波引起的地表附近土层的震动。 地震波:当震源岩层发生断裂、错动时,岩层所积聚的变形能突然释放,引起剧烈的振动,振动以弹性波的形式从震源向各个方向传播并释放能量,这种 波就称为地震波。 6. 地震震级、地震烈度的概念,两者之间的区别与关联,地震震级和地震释放的能量之间 的关系。 地震震级:衡量一次地震大小的等级,用符号M表示。 比较通用的是里氏震级(用Ml表示),定义为:

桥梁抗震复习题

复习题 1.地震动的三要素? 答:地震动强度(振幅、峰值),频谱特性,强震持续时间。 2. 什么是基本地震烈度?基本地震烈度和E1地震E2地震是什么关系? 答:基本地震烈度是指该地区今后一个时期内,在一般场地条件下可能遭遇到的最大地震烈度,即《中国地震烈度区划图》规定的烈度。 3.地震按照成因、震源的深浅、震中距的远近等的分类;一些有关地震的术语含义。 答:按照成因可分为:火山地震、陷落地震、构造地震、诱发地震 按照震源的深浅可分为:浅源地震、中源地震、深源地震 按照震中距的远近可分为:地方震、近震、远震 4. 地震波包含了哪几种波?它们的传播特点是什么?各种波的速度对比? 分为体波和面波。 体波 纵波:在传播过程中,其介质质点的震动方向与波的前进方向一致。 纵波的周期较短,振幅较小,波速较快,在地壳内的速度一般为200-1400m/s。 横波:在传播过程中,其介质质点的振动方向与波的前进方向垂直。 横波的周期较长,振幅较大,波速较慢,在地壳内的速度一般为100-800m/s。 面波 瑞利波:传播时,质点在与地面垂直的平面内沿波前进方向做椭圆反时针方向运动。 振幅大,在地表以竖向运动为主。 乐浦波:传播时,类似蛇形运动,质点在地平面内做与波前进方向相垂直的运动。

5. 地震动、地震波的概念。 地震动:也称地面运动,是指由震源释放出来的地震波引起的地表附近土层的震动。 地震波:当震源岩层发生断裂、错动时,岩层所积聚的变形能突然释放,引起剧烈的振动,振动以弹性波的形式从震源向各个方向传播并释放能量,这种波 就称为地震波。 6. 地震震级、地震烈度的概念,两者之间的区别与关联,地震震级和地震释放的能量之间 的关系。 地震震级:衡量一次地震大小的等级,用符号M表示。 比较通用的是里氏震级(用Ml表示),定义为: 在离震中100Km处用伍德-安德生式标准地震仪所记录到的最大水平 动位移(以微米计)的常用对数值,即 Ml=lgA 地震烈度:用来衡量地震破坏作用大小的一个指标。 联系与区别:对于一次地震而言,震级只有一个,烈度则随着地点的变化而有若干个。一般来说,震中的烈度最高,离震中越远,地震影响越小,烈度 越低。 关系:Ml=1.5+0.58I0(震中烈度) 7.影响地震动特性的因素。 答:包括震源、传播介质与途径、局部场地条件这三类。 8.地震烈度是按什么标准进行区分的? 答:按地震烈度表的标准进行区分 主要依据是建筑物的破坏程度、地貌变化特征、地震时人的感觉、家具器物的反 应等。 9.地震造成的地表破坏有哪些现象? 答:地裂缝、滑坡、砂土液化软土震陷。

日本桥梁抗震设计规范

摘要:本文对世界主要的桥梁结构抗震设计规范基础部分的现状进行了概略的比较,着重介绍日本桥梁抗震设计规范中基础的设计方法,并指出了中国现行《公路工程抗震设计规范》基础部分中存在的一些不足。 关键词:桥梁基础抗震设计日本规范 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 loma prieta地震(m7.0)、1994年美国northridge地震(m6.7)、1995年日本阪神地震(m7.2)、1999年土耳其伊比米特地震(m7.4)、1999年台湾集集地震(m7.6)等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 中国现行《公路工程抗震设计规范》(jtj004-89)在80年代中期开始修订,于1989年正式发行。随着中国如年代经济起飞,交通事业迅猛发展,特别是高速公路兴建、跨越大江,大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的aashto规范、cal-tans规范、atc32美国应用技术协会建议规范,新西兰规范nz,欧洲规范ec8,日本规范japan)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于阪神地震的经验,地震后桥梁上部结构的修复和重建都比下部基础经济和省时、省力,因此桥梁基础的抗震能力的要求应比桥墩高。

桥梁抗震构造措施

桥梁抗震的构造要求有哪些? 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接强度,对双曲拱桥应加强肋波间的连接。 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 13.拱桥宜尽量减轻拱上建筑的重量。 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

桥梁抗震体系

桥梁抗震体系 内容摘要:在桥梁设计中,现行的通常做法是仅对桥粱进行简单抗震设防,桥粱结构设计工程师应努力掌握更多的结构抗震知识,提高抗震设防意识。本文分析了桥梁的震害特征和原因,阐述了桥梁抗震设计的具体原则和方法。 关键词:抗震设计;桥梁;地基与基础 一.概述 我国是世界上地震活动最为强烈的国家之一,今年5月份的四川汶川大地震造成了令人触目惊心的损失,作为结构设计工程师,必须充分认识到自己的职责所在,尽可能得利用自己掌握的专业知识,合理提高结构物的抗震能力。尽量减少地震带来的灾害。 二.桥梁的震害及特征 对国内外震害的调查表明,在过去的地震中,有许多桥梁遭受了不同程度的破坏,其主要震害有以下几点。 1.桥台震害 桥台的震害主要表现为桥台与路基一起向河心滑移,导致桩柱式桥台的桩柱倾斜、折断和开裂:霞力式桥台胸墙开裂,台体移动、下沉和转动;桥头引道沉降,翼墙损坏、开裂,施工缝错工、开裂以及因与主梁相撞而损坏。桥台的滑移与倾斜会进一步使主梁受压破坏,甚至使主梁坍毁。 2.桥墩震害 桥墩震害主要表现为桥墩沉降、倾斜、移位,墩身开裂、剪断,受压缘混凝土崩溃。钢筋裸露屈曲,桥墩与基础连接处开裂、折断等。 3.支座震害 在地震力的作用下,由于支座设计没有充分考虑抗震的要求,构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等.并由此导致结构力f专递形式的变化,进而对结构的其他部位产生不利的影响。 4.梁的震害

桥梁最严重的震害现象是主梁坠落。落梁主要是由于桥台、桥墩倾斜、倒塌,支座破坏.梁体碰撞,相邻墩间发生过大相对位移等引起的。 5.地基与基础震害 地基与基础的严重破坏是导致桥梁倒塌。并在震后难以修复使用的蕈要原因。地基破坏主要是指因砂土液化、不均匀沉降及稳定性不够等因数导致的地层水平滑移、下沉、断裂。基础的破坏与地基的破坏紧密相关,地基破坏一般都会导致基础的破坏,主要表现为移位、倾斜、下沉、折断和屈曲失稳。 6.另外桥梁结构的震害还表现在:结构构。造及连接不当所造成的破坏、桥台台后填土位移过大造成的桥台沉降或斜度过大而造成墩台承受过大的扭矩引起的破坏。 三.桥梁的震害原因 国内外学者对桥梁震害的调查研究结果表明,现在桥梁的破坏大多沿顺桥向和横桥向发生,而顺桥向震害尤其严重,分析其破坏原因主要表现在以下几个方面: 1.地震位移造成的粱式桥梁上部活动节点处因盖梁宽度设置不足导致落梁或粱体相互碰撞引起的破坏。而对拱式结构则主要表现在拱上建筑和腹拱的破坏,拱圈在拱顶、拱脚产生的破损裂缝,甚至整个隆起变形。 2.地震位移的影响,进而放大了结构的振动反应,使落梁的可能性增大。当采用排架桩基础时,则使桩基的承载力降低,从而造成与地震反应无关的过大的竖向和横向位移,而简支粱桥对此尤为明显。另外,由于地基软弱,地震时当部分地基液化失效后引起了结构物的整体倾斜.下沉等严重变形,进而导致结构物的破坏,震害较重。 3.支座破坏,在地震力的作用下,由于支座设计没有克分考虑抗震要求。构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等,并由此导致结构力的传递形式的变化,进而对结构的其他部位产生不利的影响。 4.软弱的下部结构破坏。即由于桥梁下部结构不足以抵抗其自身的惯性力和支座传递的主梁的地震力,导致结构下部的开裂、变形和失效,甚至倾覆,并

桥梁抗震规范

桥梁抗震规范 当前主要国家桥梁抗展设计规范的基本思想和设计准则是:设计地展作用基本地震工程与工程振动上分为两个等级,都可归纳为功能设计地震和安全设计地震。虽然各规范使用的名词不同,但其思想是基本一致的。 功能设计地震具有较大的发生概率,安全设计地震具有很小的发生概率。在功能设计地震作用下,桥梁结构只允许发生十分轻微的破坏,不影响正常的交通,不经修复也可以继续使用;在安全设计地震的作用下,允许桥梁结构发生较大的破坏,但不允许发生整体破坏,如倒塌、落梁等欧洲规范对此规定得最为清楚、具体。比较起来,我国公路工程抗震设计规范仍在使用烈度概念,而几关于抗震设计的指导思想对于桥梁来说过于笼统。各国桥梁抗震设计规范中虽然设定了两个水准,但在具体的设计程序上绝大多数仍坚持以安全设计地震为准的单一水平设计手法,并认为第一设计水准的要求自动满足。这种情况可能发生变化,TC一32和日本即将出版的新的桥梁抗震设计规范都建议对两个设计地震动水准进行直接设计。这代表了桥梁结构抗震设计具体程序上的一个变动方向。 除了我国现行区划图外,其它主要地震国家均采用了地震动参数区划。采用烈度进行桥梁结构抗震设计无论是在概念上,还是在数值方面都存在很多问题闭,因此我国正在编制的第四代区划图已经使用了地震动参数区划。日本规范确定设计地震动的方法比较独特,设计地震动

的概率特征十分不明显。第一级设计地震虽有统计意义,但仍是确定性成分较多;第二级设计地震以确定性方法规定。第一类主要参考了1923年关东地震(大陆边缘地震)第二类主要参考了1995年阪神地震(都市直下型地震)I,这与日本地域狭小和地震类型相对比较清楚有关。我国城市桥梁抗震设计规范的建议 〔1)l抗震设防标准。这是桥梁结构抗震设计的最基本问题。过去的几十年的时间里,研究者和工程2期范立础等:桥梁抗震设计规范的现状与发展趋势师都提出分级抗震设防的原则:即小震不坏,中震发生有限的结构或非结构构件的破坏,大震发生严重的结构和非结构构件的破坏但不产生严重的人员伤亡。而在可能袭击工程场地最严重的地震作用下,结构不倒塌。这些基本的结构性能目标今天被大多数的设计规程所采用。但传统的作法是,只针对单一的地震作用水平进行结构的抗展设计。现在的问题是针对每一个目标都给出相应的具体设计程序,这样一来,就需要对目前实际上还是单一水准强度抗震设计原则进行修订,采用多水准、多设防目标和多阶段的抗震设计原则。(2)延性和位移设计。传统的桥梁抗震设计采用强度设计方法,即使考虑到延性和位移,也是通过强度指标间接地实现。现在人们越来越认识到了位移在桥梁结构抗震设计中的重要性,很多研究者和工程师建议在抗震设计中直接使用位移为设计参数,这样就将形成多参数抗震设计方法。在这方面,各种非弹性反应谱的研究和应用工作一直在进行。一些建筑结构抗震设计指南和准则已经引人了位移设计的概念和

midas桥梁抗震分析与设计例题-new0810

桥梁抗震分析与设计 北京迈达斯技术有限公司 2007年8月

前言 为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震设防的性能要求,中华人民共和国建设部发布了新的《铁路工程抗震设计规范》,自2006年12月1日起实施。新规范规定了按“地震动峰值加速度”和“地震动反应谱特征周期”进行抗震设计的要求,明确了铁路构筑物应达到的抗震性能标准、设防目标及分析方法,增加了钢筋混凝土桥墩进行延性设计的要求及计算方法。 从1999年开始,中华人民共和国交通部也在积极制定新的《公路工程抗震设计规范》、《城市桥梁抗震设计规范》。从以上规范的征求意见稿中可以看出,新规范中桥梁抗震安全设置标准采用多级设防的思想,增加了延性设计和减隔震设计的相应规定,对于结构的计算模型、计算方法、以及计算结果的使用有更加具体的规定。 随着新规范的推出,工程师急迫需要具备桥梁抗震分析与设计的能力。Midas/Civil具备强大的桥梁抗震分析功能,包括振型分析、反应谱分析、时程分析、静力弹塑性分析以及动力弹塑性分析,可以很好地辅助工程师进行桥梁抗震设计。

目录 一桥梁抗震分析与设计注意事项 (1) 1. 动力分析模型刚度的模拟 (1) 2. 动力分析模型质量的模拟 (1) 3. 动力分析模型阻尼的模拟 (1) 4. 动力分析模型边界的模拟 (2) 5.特征值分析方法 (2) 6.反应谱的概念 (3) 7.反应谱荷载工况的定义 (4) 8.反应谱分析振型组合的方法 (4) 9.选取地震加速度时程曲线 (5) 10.时程分析的计算方法 (5) 二桥梁抗震分析与设计例题 (7) 1. 概要 (7) 2. 输入质量 (8) 3. 输入反应谱数据 (10) 4. 特征值分析 (12) 5. 查看振型分析与反应谱分析结果 (13) 6. 输入时程分析数据 (18) 7. 查看时程分析结果 (20) 8. 抗震设计 (22)

桥梁抗震论文

桥梁抗震的研究进展 摘要:路线是一种线状工程构造物,所经过的自然地理环境复杂多变,经常遭受自然灾害的破坏。其中地震对公路工程具有极大的破坏作用,常常造成严重的交通中断。国内外的地震灾害表明,交通网络在整个社会生命线抗震防灾系统中越来越重要。震区桥梁的损坏坍塌,不仅阻碍当时的救援工作,而且影响灾后的救援工作。所以对桥梁抗震应给予充分的重视。 关键词:桥梁抗震;历史;现状;展望;减震;动力响应分析;设计理论 近几年来,世界各地强震不断,汶川等地震给人民的生命财产带来巨大危害。地震使交通系统严重毁坏,地震造成的交通中断直接影响着救灾工作的进行,扩大了次生灾害损失,使生命财产遭受巨大损失。近30 多年来,地震灾害的沉痛教训不断地警示着世人,使人们对桥梁的抗震研究工作逐渐受到重视,桥梁抗震理论及技术水平日渐提高。简要叙述了桥梁抗震研究中概念、分析方法、设计方法、抗震设计规范、减震加固技术的历史概况和现状,并展望了今后桥梁抗震研究的发展趋势。 1 桥梁抗震研究的重要转折点 尽管在1926 年,就有了第一部涉及桥梁抗震设计条款的规范——《关于公路桥梁细则草案》 [1],与建筑结构的抗震研究相比,桥梁抗震研究相对滞后,但是在近30 多年来,每次惨痛的地震灾害发生后,桥梁抗震理论和技术水平都会迈上一个新的台阶。 1906 年4 月18 日San Francisco 发生7.9 级地震,这次地震是美国加州历史上破坏最严重的一次地震,对于地震工程来讲也是最有意义的地震之一,也是历史上第一次有桥梁震害记录的地震,但是,这次地震并未引起人们对桥梁抗震的关注。1971 年2 月9 日美国发生San Fernando 地震,震源深度12.8km,仅6.7 级就显示出生命线工程破坏的严重后果,由于桥梁抗震能力不足,地震造成5 座桥梁塌落,42 座桥梁损坏。在地震发生之前,美国一直套用建筑结构抗震设计规范,这次地震对美国桥梁抗震设计的发展是一个非常重要的转折点,十年后,也就是1981 年美国联邦公路局出版了《桥梁抗震设计指南》,经过不断的应用与修改,于1992 年纳入了美国《公路桥梁标准规范》,也就是常说的AASHTO 规范。在1971 年San Fernando 地震后,提出了生命线工程的概念,延性抗震设计也开始被各国重视[2]。美国Loma Prieta地震发生在1989年10月17日,太平洋夏令时间17 时04 分,震级为M7.0,此次地震的震源深度为16.5km。地震中高速公路880 号线双层的Cypress 高架桥在地震中倒塌,SanFrancisco-Okaland 海湾大桥发生落梁,震后用于修复桥梁的费用估计约为20 亿美元。美国学者Bertero 在总结这次地震后提出了基于性能的抗震设计理论,基于性能的抗震设计理论是抗震设计理论的一次重大变革。1994 年1 月17 日,当地时间凌晨 4 时31 分,美国加州发生Northridge 地震,震级为M6.7,震源深度为16km。这次地震是美国有史以来造成经济损失最为惨重的一次自然灾害,地震造成Los Angeles 市高速公路上多座桥梁严重破坏,交通运输网络被切断,也再一次警示人们交通网络中断的危害性。 1923 年9 月1 日在日本发生8.2 级的关东地震,震源深度10km。由于地震强度大,震源浅,再加上当时东京都地区经济发达、人口密度大等因素,地震造成巨大的经济损失,这次地震也使人们意识到桥梁抗震安全的重要性。关东地震的第二年,日本建立了最早的桥梁下部结构工程的抗震方法,1926 年日本制定并颁布了第一部与公路桥梁抗震设计有关的

桥梁抗震分析方法研究

桥梁抗震分析方法研究 摘要:桥梁的抗震设计是各国土木工程师现在都非常重视的问题,进行抗震分析是抗震设计的前提。介绍了静力法、线弹性反应谱法、时程分析法、Push-over法、虚拟激励法,并对这几种分析方法的优缺点作了初步的分析。着重介绍了随机振动虚拟激励的基本原理和特点.最后提出了有待进一步研究的几个问题。 关键词:桥梁抗震;静力法;弹性反应谱法;时程分析法;虚拟激励法 1 静力法 早期结构抗震计算采用的是静力理论,1900年日本大房森吉提出静力法的概念,它假设结构物各个部分与地震动具有相同的振动。此时,结构物上只作用着地面运动加速度乘以结构物质量所产生的惯性力。即忽略地面运动特性与结构的动力特性因素,简单地把结构在地震时的动力反应看作

是静止的地震惯性力(作为地震荷载)作用下结构的内力分析。1915年,佐野提出震度法,即根据静力法的概念提出以结构的10%的重量作为水平地震荷载,于1923年关东大地震后的次年建立了最早的桥梁下部结构工程的抗震分析方法。从动力学的角度分析,把地震加速度看作是结构破坏的单一因素有极大的局限性,因为它忽略了结构的动力特性这一重要因素。只有当结构物的基本固有周期比地面卓越周期小很多时,结构物在地震振动时才可能几乎不产生变形而被当作刚体,静力法才能成立。由于其理论上的局限性,现在已较少使用,但因为它概念简单,计算公式简明扼要,在桥台和挡土结构等质量较大的刚性结构的抗震计算中仍常常用到。 2 弹性反应谱法 应用反应谱法进行抗震设计,最关心的是地震力的最大值。对于单质点体系最大地震力的计算式为:

P=m|δ¨g+y¨|max=kHβW 式中:KH——水平地震系数; β——动力放大系数; W——体系的总重量; 水平地震系数的取值根据抗震设防的烈度水准选用。对于一特定的地震波其加速度反应谱是不规则的,而且一个反应谱总相应于一定的体系阻尼比,实际上我们所使用的规范反应谱,是在输入大量的地震加速度记录后所绘制的很多反应谱曲线经过处理后得到的平均反应谱,平均反应谱在《公路工程抗震设计规范》(004-89)即是动力放大系数β。所以,结构的地震反应,是以卓越周期为主要成分的 地震波激励下的结构的强迫振动。由此即反映出具有不同特征周期的不同场地土对应的反应谱,《公路工程抗震设计规范》(004-89)根据场地土的分类分别规定了5%阻尼比的不同的反应谱曲线。对于多质点体系,其振动方程可用下式表

《公路桥梁抗震设计规范JTG T 2231-01—2020》解读

《公路桥梁抗震设计规范JTG/T 2231-01—2020》解读 近日,交通运输部发布了《公路桥梁抗震设计规范》(JTG/T 2231-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年9月1日起施行。原《公路桥梁抗震设计细则》(JTG/T B02-01—2008,以下简称原《细则》)同时废止。为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下: 一、修订背景 原《细则》自2008年实施以来,在公路桥梁抗震设计方面发挥了重要的规范和指导作用。近年来,我国公路桥梁建设技术发展迅速,桥梁抗震设计技术也取得了重要进展,积累了大量设计经验和成熟的研究成果。原《细则》已不能全面反映我国目前公路桥梁抗震设计的技术水平,为适应公路桥梁建设技术和抗震设计技术的发展,交通运输部组织完成了《规范》的修订工作。 二、《规范》的定位 《规范》适用于单跨跨径不超过150m的圬工或混凝土拱桥、下部结构为混凝土结构的梁桥的抗震设计。斜拉桥、悬索桥、单跨跨径超过150m的梁桥和拱桥的抗震设计,除满足本规范要求外,还应进行专项研究。《规范》既考虑了当前我国桥梁抗震设计的技术需求及国内外桥梁抗震设计技术的新进展,也重点考虑了与《公路桥涵通用设计规范》《公路工程抗震规范》《钢筋混凝土及预应力混凝土桥涵设计规范》《中国地震动参数区划图》等相关标准的衔接。《规范》的体系更为完善、适用性和可操作性更强,对进一步提升我国公路桥梁抗震设计水平具有指导作用。 三、特点及主要修订内容 《规范》保持两水准设防、两阶段设计,抗震设防标准(地震作用重现期)和性能目标与原《细则》一致。根据现行《中国地震动参数区划图》(GB18306-2015)的规定将计算地震作用常数调整为2.5,对抗震设计提出了更高的要求。E1地震作用下,采用弹性抗震设计,要求墩、梁、基础等桥梁主体结构保持弹性状态,主要验算结构和构件的强度以及支座的抗震能力;E2地震作用下,对采用延性抗震设计的桥梁,主要验算结构变形(位移)和能力保护构件的强度以及支座的抗震能力,对采用减隔震设计的桥梁,主要验算结构强度以及减隔震装置的能力。 《规范》主要吸收了近年来国内外在桥梁抗震概念设计、延性抗震设计、减隔震设计以及构造措施等方面的成熟研究成果,修订和完善了相关设计规定和计算方法,增强了《规范》体系的完整性以及设计和计算方法的适用性和可操作性。 具体来讲,《规范》的主要修订内容包括: (一)在基本要求方面:增加了桥梁结构抗震体系的内容,明确了B类和C类梁桥可采用的抗震体系包括延性抗震体系和减隔震体系两类。细化了抗震概念设计的内容,增加了梁式桥一联内桥墩的刚度比要求和多联梁式桥相邻联的基本周期比要求。

相关文档