文档库 最新最全的文档下载
当前位置:文档库 › 威海LNG气化站工艺设计

威海LNG气化站工艺设计

威海LNG气化站工艺设计
威海LNG气化站工艺设计

威海液化天然气(LNG)气化站工艺设计介绍

摘要:本文简要介绍了威海市LNG气化站的工艺设计,主要设备选型及安全措施。关键词:液化天然气:工艺流程;设备:安全

1. 前言

威海市原计划采用龙口—烟台长输管道供应的渤海天然气作为城市燃气气源,但由于目前该管线的建设进度不能满足威海市原计划2005年供气的要求,这就需要选择一种合适的气源作为启动气源。随着国内天然气行业的发展,威海市天然气来源有着更为广泛的选择条件,特别是新疆广汇及广东深圳液化天然气项目的规划和实施,给威海市采用LNG作为天然气启动气源提供了原料来源。

与CNG相比,LNG是最佳的启动、培育和抢占市场的先期资源。LNG槽车运输方便,成本低廉;不受上游设施建设进度的制约;LNG供应系统安装方便、施工:期短,并能随着供气规模的逐步扩大而扩大,先期投资也较低。最后,当管道天然气到来时,LNG站可什为调峰和备用气源继续使用。因此,我院于2004年初对原可研报告进行修改、补充,将液化天然气(以下简称LNG)气化站作为提前启动气源。本工程一次设计,分期投产,一期工程供气4.0×104m3/d,二期工程供气8.6×104m3/d,用户为居民、商业及部分工业用户。2.气化站工艺介绍

2.1气质成分与理化参数

2.1. 1气质成分

目前,国内LNG气化站所采用的液态天然气大多是河南中原油田生产的,目前中原油田LNG 已经出现供不应求的局面,因此本工程拟采用新疆广汇生产的LNG作为主气源,同时在卸车方式等也考虑了使用其他气源的可能。

根据新疆广汇提供的LNG组分,确定本工程设计计算用天然气组分如下:

2.1.2理化参数

经过计算,新疆广汇LNG气源的理化参数见下表:

由上表可知,LNG气源的华白数为57.196MJ/Nm3,燃烧势为42.575;同时威海市将来也有采用渤海天然气的可能,而渤海天然气的华白数为48.88MJ/Nm3,燃烧势为45.18,尽管均符合《城市燃气分类》(GB/T13611-92)中12T类,但新疆广汇的LNG气源比渤海天然气气源华白数高出近17%,届时灶具如果不加以改造的话,必将导致将来用户灶具适应性差、燃烧不稳定。此外,本LNG站属于启动气源,将来即使烟台长输管道来气以后,它作为备用、调峰气源,届时,仍有供气的可能,因此,这两种气源如能互换是最经济的。在设计中为解决这个问题,在汽化斤的流程中增加了一套掺混空气系统,将LNG气源气(低3热值42.34MJ/Nm)与压缩空气进行高压比例式掺混,掺至可与渤海大然气(低热值35.11MJ /Nm3)互换,这样将来威海市不论是采用渤海天然气作为最终气源,还是将来事故情况下用LNG作为备用气源,用户处均能保证用气安全、稳定,还节省了大量改造灶具的费用。经过计算,新疆广汇气源与空气的掺混比例采用88:12即可达到要求,而且安全可靠。2. 2 工艺流程

目前。国内LNG气化站所采用的液态天然气运输方式通常有LNG槽车和罐式集装箱车两种。河南中原油田生产的LNG采用槽车运输方式,而新疆广汇生产的LNG则采用罐式集装箱车运输。

由LNG槽车或集装箱车运送来的液化天然气,在卸车台通过槽车白带的自增压系统(对于槽车运输方式)或通过卸车台的增压器(对于集装箱年运输方式)增压后送入LNG储罐储存,储罐内的LNG通过储罐区的自增压器增压到0.5~0.6Mpa后,进入空温式气化器。在空温式气化器中,LNG经过与空气换热,发生相变,出口天然气温度高于环境温度10℃以上,再通过缓冲罐缓冲,之后进入掺混装置,与压缩空气进行等压掺混,掺混后的天然气压力在0.4MPa左右,分为两路,一路调压、计量后送入市区老管网,以中一低压两级管网供气,出站压力为0.1MPa:另一路计量后直接以0.4MPa压力送入新建城市外环,以中压单级供气。进入管网前的天然气进行加臭,加臭剂采用四氢噻吩。冬季空浴式气化器出口气体温度达不到5℃时,使用水浴式NG加热器加热,使其出口天然气温度达到5℃~1O℃。气化站的工艺流程框图如下:

3. 主要设备选型

3. 1 LNG储罐

3.1.1储罐选型

LNG储罐按围护结构的隔热方式分类,大致有以下3种:

a)真中粉末隔热

隔热方式为夹层抽真空,填充粉末(珠光砂),常见于小型LNG储罐。真空粉末绝热储罐由于其生产技术与液氧、液氮等储罐基本一样,因而目前国内生产厂家的制造技术也很成熟,由于其运行维护相对方便、灵活,目前使用较多。国内LNG气化站常用的大多为50m3和100m3圆筒型双金属真空粉末LNG储罐。目前最大可做到200m3,但由于体积较大,运输比较困难,一般较少采用。真空粉末隔热储罐也有制成球形的,但球型罐使用范围通常为为200~1500m3,且球形储罐现场安装难度大。

b)正压堆积隔热

采用绝热材料,夹层通氮气,绝热层通常较厚,广泛应用于大中型LNG储罐和储槽。通常为立式LNG子母式储罐。

c)高真空多层隔热。

采用高真空多层缠绕绝热,多用于槽车。

本工程采用国内LNG气化站常用的圆筒形双金属真空粉末LNG储罐。考虑到立式罐节省占地,且立式罐LNG静压头大,对自增压器工作有利,因此采用立式双金属真空粉末LNG储罐。

3.1.2储罐台数

储罐台数的选择应综合考虑气源点的个数、气源检修时间、运输周期、用户用气波动情况等困素,本工程LNG来源有可能采用河南中原油田或新疆广汇两个气源,运输周期最远的可达5天,但随着新疆广汇气源的配套工程建成,将在内地建设若干个转运站,这将进一步缩短运输周期,综合考虑以上情况,本工程储存天数定为计算月平均日的5天。经计算,一期选用100m3立式储罐4台,二期增加4台。其主要工艺参数如下:

工作压力:0.6MPa,

设计压力:0.77MPa,

工作温度:-162℃,

设计温度:-196℃,

单台水容积:105m3,

内罐直径3000mm,内罐材质:OCrl8Ni9,

外罐直径3500mm,外罐材质:16MnR,夹层填充珠光砂并抽真空。

3.2 空温式气化器

3.2.1气化能力

气化器的气化能力根据高峰小时用气量确定,并留有一定富裕量。设计上配置两组,互相切

换使用。本项目一期工程高峰小时流量3880m3/h,二期工程高峰小时流量8893m3/h。据此,一期选用6台2000m3/h空温式气化器,分为2组,每组3台,互相切换:二期增加4台,每组5台,互相切换。

3.2.2主要工艺参数

工作压力:0. 6MPa,

设计压力:1.0MPa,

工作温度:-162℃,

设计温度:-196℃,

立式,主体材质:铝翅片管(LF21),

气化能力:2000m3/h,

出口温度:低于环境温度10℃。

3.3 水浴式NG加热器

当环境温度较低,空温式气化器出口NG温度低于5℃时,在空温式气化器后串联水浴式NG 加热器,对气化后的天然气进行加热。

3.3.1 加热能力

加热器的加热能力同样根据高峰小时用气量确定,一期设置1台5000m3/h水浴式NG加热器,二期增加1台。

3.3. 2 主要工艺参数

工作压力:0.6MPa,

设计硬度力:0.8MPa,

进气温度;≮-30℃,

出气温度:5~10℃,

加热能力;5000m3/h,

加热用热水由站内自建的锅炉房供应。

3.4 BOG加热器

LNG储罐日蒸发率大约为0.15%,这部分蒸发了的气体(简称BOG)如果不及时排出,将造成储罐压力升高,为此设置了降压调节阀,可根据压力自动排出BOG。储罐蒸发的BOG 和槽车卸车的BOG,通过1台BOG加热器加热后进入BOG储罐储存,在冬季使用水浴式NG加热器时,BOG可作为热水锅炉的燃料,夏季可进入管网。

3. 5 EAG加热器

低温系统安全阀放空的全部是低温气体,在大约-107℃以下时,天然气的重度大于常温下的空气,排放不易扩散,会向下积聚。因此设置一台空温式放散气体加热器,放散气体先通过该加热器,经过与空气换热后的天然气比重会小于空气,高点放散后将容易扩散,从而不易形成爆炸性混合物。

3.6空压站设备

为保证天然气与空气进行高压比例式掺混,选用14. 16m3/min风冷式螺杆空气压缩机3台,2开1备,以及相应的无热再生空气干燥器、压缩空气除油器、除尘器以及橇装式静态混合器等设备。

4.安全设计

4.1危害分析

液化天然气是天然气储存和输送的一种有效的方法,在实际应州中,用户使用的是气化后的天然气,因此,在考虑LNG设备或工程的安全问题时,不仅要考虑天然气所具有的易燃易爆的危险性,还要考虑液态的低温特性和由此引发的安全问题。

液化天然气的主要成分是甲烷,属易燃易爆气体,能与空气混合形成爆炸性混合物,其

爆炸下限较低(约为4.3%),少量泄漏一旦遇到明火就易引起爆炸:同时液态天然气又有低温的特性,如果发生LNG溢出或泄漏,在-107℃以下时,气体密度比空气大,容易向下积聚,溢出的LNG蒸发速度非常快,并会迅速冷却周围空气中的水蒸汽,形成大量的白色蒸汽云,并四处扩散,如果遇到火源将引起火灾,造成严重后果,低温还会导致灼伤、冻伤、体温降低等;另外,LNG系统在常温下安装,在低温条件下运行,前后温差很大(~180c0):因此,在设计中都必须采取必要的措施。

4.2安全考虑

对于液化天然气的生产、储运和气化供气的各个环节,主要考虑的安全问题就是如何防止天然气泄漏,与空气形成可燃的混合气体,消除引发爆炸、燃烧的基本条件以及LNG设备的防火及消防要求;防止LNG设备超压,引起超压排放;由于LNG的低温特性,对材料和设备制作方面的相关要求:LNG系统安装与运行温差大带来的相关要求:及进行LNG操作时,操作人员的防护等。

4.2.1有关规范

由于目前国内尚无针对液化天然气的专门规范,而《石油化工企业设计防火规范》(GB50160—92,99年版)中液化烃的定义中包含有液化天然气,因此在消防方面主要执行的是《石油化工企业设计防火规范》(GB50160—92)中的相关条款,同时也部分借鉴了美国标准NFPA 59A《液化天然气(LNG)生产、储存和装运标准》:在气化后的常温天然气部分则主要执行的是《城镇燃气设计规范》(GB50028-93,2002年版)。最近国家有关部门对《城镇燃气设计规范》进行修改,拟增加液化天然气一个章节,我们期待这个规范能够尽快执行。

4. 2.2设计措施

a)紧急关闭系统(ESD)

每台LNG储罐的底部进液管和出液管均装设了气动紧急切断阀,在紧急情况下,可在卸车台、储罐区或控制室就近切断。紧急切断系统可控制LNG的连续释放产生的危害。

b)可燃气体检测仪

在卸车台、储罐区及气化区等天然气有可能发生泄漏的地方,均设置了可燃气体检测仪,当检测出的环境中可燃气体含量超标(达到爆炸下限的20%)时发出警报,工作人员可根据具体情况选择处理。

c)低温检测仪

在储罐底部等有可能发生LNG泄漏并有可能对设备基础造成损害的地方,设置低温检测仪,在检测到异常低温时报警。

d)控制系统

LNG储罐液位设高、低液位报警,当储罐在空温式气化器进液管道上设置气动紧急切断阀,与出口温度联锁.当气化器结霜过多或发生故障时,导致出口温度低于正常值时,报警并联锁切断。此外,还设有一些温度、压力检测项目,以实现安全控制。

e)安全泄放系统

LNG的体积膨胀系数很高,通常可达600倍,在密闭情况下,LNG受热膨胀,引起管道内压急剧升高会导致管道发生破裂,因此,在液相管道两道阀门之间加设安全阀。此外,LNG 储罐也设有安全阀,一旦罐内压力超高,安全阀起跳,可将超压气体排出,保护储罐。

f)消防

在LNG储罐区设置了排液沟和积液池,安装移动式泡沫灭火装置,设置了2×1500m3的消防水池,厂区设置环状消防给水管网,安装地上消火栓若干,储罐区设置1米高的挡液堤,并安装消防水炮及消防喷淋装置,此外储罐匡和气化巨还分别设置干粉灭火装置着干。

g)火灾报警

卸车台、储罐区、气化区均设置了火灾报警系统,可根据现场感烟探头探测到的情况报

警或人为手动报警。

h)阀门、管道及管件

站区工艺管道大体上分为两种。介质温度大于-20℃的管道选用碳钢无缝钢管,材质为20#钢:介质温度小于-20℃的管道选用不锈钢无缝钢管,材质为0Crl8Ni9。

LNG管件采用与LNG输送管道相同(或相匹配)技术要求的管件,如法兰采用不锈钢材质的0Crl8Ni9,密封垫片采用不锈钢金属缠绕垫片。

根据目前国内LNG站运行的情况,关键阀门选用日本进口低温阀门,其余阀门一律选用国产专用低温阀门。

LNG系统在常温条件下安装,在低温条件下运行,两者温差很大(~180c0),由此而来的膨胀及收缩应力,设计时要据此考虑必要的柔性,以便最大应力在允许范围内。

5. 结束语

本工程气化站一期工程投资估算大约为2720万元,其中建筑工程费728万元,安装工程费182万元,设备购置费914万元。

LNG以其运输灵活、储存效率高、运行成本低(空温式气化几乎不消耗能源)等优点得到越来越多的用户青睐,我国LNG气化站目前主要分布在山东、河南、安徽等地,随着我国LNG基地的规划实施,在目前管道供天然气无法幅盖的城镇,采用LNG气化站作为主气源、过渡气源、补充或调峰气源有广阔的发展前景。

相关文档