文档库 最新最全的文档下载
当前位置:文档库 › 设备驱动层

设备驱动层

设备驱动层
设备驱动层

设备驱动层

驱动层一般由硬件抽象层(HAL)、板级支持包(BSP)和驱动程序组成,是嵌入式系统中不可或缺的重要部分。它的作用是为上层程序提供外部设备的操作接口,并且实现设备的驱动程序。上层程序可以不管操作的设备内部实现,只需要调用驱动的接口即可。

硬件抽象层(HAL)

硬件抽象层的层次结构

HAL层可细分为:common HAL(通用抽象层)、architecture HAL(体系结构抽象层)、variant HAL(变体抽象层)和platform HAL(平台抽象层)。

体系结构抽象层:eCos所支持的不同处理器系列具有不同的体系结构,如ARM系列、PowerPC系列、MIPS系列等,体系结构抽象层对CPU的基本结构进行抽象和定义,此外它还包括中断的交付处理、上下文切换、CPU启动以及该类处理器结构的指令系统等。变体抽象层指的是处理器在该处理器系列中所具有的特殊性,这些特殊性包括Cache、MMU、FPU等,eCos的变体抽象层就是对这些特殊性进行抽象和封装。

平台抽象层是对当前系统的硬件平台进行抽象,包括平台的启动、芯片选择和配置、定时设备、I/O寄存器访问以及中断寄存器等。

硬件抽象层的这三个子模块之间没有明显的界线。对于不同的目标平台,这种区分具有一定的模糊性。例如,MMU和Cache可能在某个平台上属于体系结构抽象层,而在另一个平台上则可能属于变体抽象层的范围;再比如,内存和中断控制器可能是一种片内设备而属于变体抽象层,也可能是片外设备而属于平台抽象层。

eCos的移植通过这三个子模块来完成,即平台抽象层的移植、变体抽象层的移植和体系结构抽象层的移植。对一个新的体系结构来说,其体系统结构抽象层的建立相对来说比较困难,需要编写新的体系结构抽象层。eCos支持大部分当前广泛使用的嵌入式CPU,已具有了支持各种体系结构的硬件抽象层。因此,eCos的移植很少需要进行体系结构抽象层的编写。

一般来说,进行eCos开发时,移植的主要工作在于变种抽象层和平台抽象层,这是由于eCos已实现了绝大多数流行嵌入式CPU的体系结构抽象层。其中,平台抽象层主要完成的工作包括:内存的布局、平台早期初始化、中断控制器以及简单串口驱动程序等

嵌入式系统通常包含三个部分:

嵌入式应用程序

嵌入式操作系统

硬件平台

应用程序运行在操作系统之上,利用操作系统提供的接口完成特定功能。操作系统一般是RTOS,完成应用的任务调度和控制等核心功能。硬件平台根据应用的不同,所具备的功能各不相同,而且所使用的硬件设备也不一样,因此具有复杂的多样性。

由于硬件平台的复杂多样,针对不同平台进行操作系统的移植是极为耗时的工作,因此经过不断发展,嵌入式系统的三层结构演化为四层结构,即在操作系统层和硬件平台之间,增加硬件抽象层(HAL)。

硬件抽象层本质上就是一组对硬件进行操作的API接口,是对硬件功能抽象的结果。硬件抽象层通过API为操作系统和应用程序提供服务。一般上HAL包含相关硬件的初始化、数据的输入输出操作、硬件设备的配置操作等功能。

有了硬件抽象层,操作系统和应用程序就不需要关心底层的硬件平台信息,内核与硬件相关的代码也不必因硬件的不同而修改,只要硬件抽象层能够提供必需的服务即可,从而屏蔽底层硬件,方便进行系统的移植。

HAL只是对硬件的一个抽象,对一组API进行定义,却不提供具体的实现。通常HAL 各种功能的实现是以BSP的形式来完成对具体硬件的操作的。

HAL设计的一些要素是:

与硬件的密切相关性

与操作系统的无关性

接口的功能包括硬件或者系统所需硬件支持的所有功能

接口简单明了

板级支持包(BSP)

板级支持包是介于系统硬件和操作系统的驱动程序之间的一层,是HAL的具体实现,所以有些人也称BSP层位HAL。

BSP主要实现对操作系统的支持,为上层驱动程序提供访问硬件设备寄存器所需的函数,使之能够更好的运行于硬件主板。

BSP的特点有:硬件相关性,BSP程序直接对硬件进行操作;操作系统相关性,不同操作系统的软件层次结构不同,硬件抽象层的接口定义不同,因此具体实现也不一样。BSP,一定要按照操作系统的接口定义来实现,因此,大多数的BSP编程过程都是在某一个成型的BSP模板上进行修改。

具体功能体现在两个方面:

1.系统启动时,完成对硬件的初始化,如对系统内存,寄存器以及设备的中断设置等。

2.为操作系统的通用设备驱动程序提供访问硬件的手段,亦即硬件相关的设备驱动。

设备驱动程序

设备驱动程序是指操作系统中的驱动程序,为上层软件提供设备的操作接口,必要的时使用BSP提供的函数来实现硬件设备操作。驱动程序的好坏直接影响系统的性能。BSP(board support package)板级支持包BSP(board support package)是板级支持包,是介于主板硬件和操作系统之间的一层,应该说是属于操作系统的一部分,主要目的是为了支持操作系统,为上层的驱动程序提供访问硬件设备寄存器的函数包,使之能够更好的运行于硬件主板。在嵌入式系统软件的组成中,就有BSP。BSP是相对于操作系统而言的,不同的操作系统对应于不同定义形式的BSP,例如VxWorks的BSP和Linux 的BSP相对于某一CPU来说尽管实现的功能一样,可是写法和接口定义是完全不同的,所以写BSP一定要按照该系统BSP的定义形式来写(BSP的编程过程大多数是在某一个成型的BSP模板上进行修改)。这样才能与上层OS保持正确的接口,良好的支持上层OS。

BSP主要功能为屏蔽硬件,提供操作系统及硬件驱动,具体功能包括:

1. 单板硬件初始化,主要是CPU的初始化,为整个软件系统提供底层硬件支持

2. 为操作系统提供设备驱动程序和系统中断服务程序

3. 定制操作系统的功能,为软件系统提供一个实时多任务的运行环境

4. 初始化操作系统,为操作系统的正常运行做好准备。

举例在VxWorks中的网卡驱动,首先在config.h中包含该网卡,然后将网卡含网卡的信息的参数放入数组END_TBL_ENTRY endDevTbl [] 中,系统通过函数muxDevLoad( )调用这个数组来安装网卡驱动。

而在Linux中的网卡驱动,是在space.c中声明该网络设备,再把网卡驱动的一些函数加到dev结构中,由函数ether_setup()来完成网卡驱动的安装。

纯粹的BSP所包含的内容一般说来是和系统有关的驱动和程序,如网络驱动和系统中网络协议有关,串口驱动和系统下载调试有关等等。离开这些驱动系统就不能正常工作。

用户也可以添加自己的程序到BSP中,但严格来说不应该算BSP.一般来说这种做法不建议。因为一旦操作系统能良好运行于最终的主板硬件后,BSP也就固定了,不需要做任何改动。而用户自己在BSP中的程序还会不断的升级更新,这样势必对BSP有不好的影响,对系统造成影响,同时由于BSP调试编译环境较差,也不利于程序的编译调试。

上层程序

Tools - Applications

--------------

I/O System

VxWorks Libraries

TCP/IP

Wind Kernel

BSP

--------------

SCSI Controllerr

Serial Controller

Clock Timer

Ethernet Controller

.. ..硬件BSP在嵌入式系统和Windows系统中的不同

其实运行与PC机上的windows或linux系统也是有BSP的。只是PC机均采用统一的X86体系架构,这样一定操作系统(windows,linux..)的BSP相对x86架构是单一确定的,不需要做任何修改就可以很容易支持OS在x86上正常运行,所以在PC机上谈论BSP 这个概念也没什么意义了。

而对嵌入式系统来说情况则完全不同,目前市场上多种结构的嵌入式CPU(RISC)并存(PPC,ARM,MIPS....),为了性能的需要,外围设备也会有不同的选择和定义。一个嵌入式操作系统针对不同的CPU,会有不同的BSP,即使同一种CPU,由于外设的一点差别(如外部扩展DRAM的大小,类型改变),BSP相应的部分也不一样。

所以根据硬件设计编写和修改BSP,保证系统正常的运行是非常重要的。

BSP和PC机主板上的BIOS区别很大,BIOS主要是负责在电脑开启时检测、初始化系统设备(设置栈指针,中断分配,内存初始化..)、装入操作系统并调度操作系统向硬件发出的指令,它的Firmware代码是在芯片生产过程中固化的,一般来说用户是无法修改。其实是为下载运行操作系统做准备,把操作系统由硬盘加载到内存,并传递一些硬件接口设置给系统。在OS正常运行后,BIOS的作用基本上也就完成了,这就是为什么更改BIOS 一定要从新关机开机。

PC机BIOS的作用更象嵌入式系统中的Bootloader(最底层的引导软件,初始化主板的基本设置,为接收外部程序做硬件上的准备)。与Bootloader不同的是BIOS在装载OS系统的同时,还传递一些参数设置(中断端口定义,...),而Bootloader只是简单的装载系统。

BSP是和操作系统绑在一起运行在主板上的,尽管BSP的开始部分和BIOS所做的工作类似,可是大部分和BIOS不同,作用也完全不同。此外BSP还包含和系统有关的基本驱动(串口,网口...),此外程序员还可以编程修改BSP,在BSP中任意添加一些和系统无关的驱动或程序,甚至可以把上层开发而系统规划法的统统放到BSP中。

而BIOS程序是用户不能更改,编译编程的,只能对参数进行修改设置。更不会包含一些基本的硬件驱动。BSP开发处于整个嵌入式开发的前期,是后面系统上应用程序能够正常运行的保证。

大概步骤如下:

1.硬件主板研制,测试。

2.操作系统的选定,BSP编程。

3.上层应用程序的开发。

BSP部分在硬件和操作系统,上层应用程序之间。

BSP是一种根据上层接口描述的一种硬件的支持包,对于某些嵌入式操作系统来说,就是驱动,但对于纯软件来说,驱动一般描述为基于pc或者linux或工作站的驱动,上层接口是操作系统,对驱动这个“名词”理解不同,会得到不同的定义。。

一般来说前者接口简单(比如接口是一个结构体),而后者,理解其工作模型才是关键,如果都是针对于硬件做驱动,那么,配置寄存器就是相同点!

bsp可以理解成就是最简单的驱动代码,它属于OS或Firmware的一部分,在PC平台最小的BSP需完成的任务上就是初始化芯片组上中断控制器、内存控制器、PCI控制器与串口(作为调试接口,如果你没钱买那些昂贵的硬件仿真器),基本上有这些你就可以对系统板进行调试了,比如DEBUG各种设备驱动:VGA、USB、IDE、MAC、AC97等。

在OS上的driver一般都是可动态加载的,当然嵌入OS里头直接编进去也就行了,对于一个最小的可运行OS核心来说,BSP是必不可少的,但driver不是。

这里的BSP是Board Support Package的缩写,意为板载支持包。在这里我们可以把BSP与通用计算机领域中的BIOS(Basic Input and Output System)对比,以加深对BSP的认识。

首先来看看BIOS的功能。BIOS是硬件与软件之间的一个接口,它足固化到计算机存储器中的段程序,主要提供以下功能。

①自检及初始化计算机:主要负责计算机的启动,主要有加电白检(POST)、初始化和引导程序三个步骤,目的是为了完成检查计算机硬件、创建中断向量及中断向量表、设置寄存器、对外部设备进行初始化、引导操作系统等任务。

②程序服务处理及硬件中断处理:程序服务处理主要是指与输入输出设备相关的操作,比如读写硬盘、与打印机扫描仪的数据传输等。硬件中断处理就足处理硬件的一些需求。只有将下面两大功能处理好,计算机才能真正地“软”“硬”结合正常工作。

③程序服务请求:主要是为了调用中断处理来实现硬件的某些功能,并将这些功能以分组的方式分配以中断号,当需要某功能时,直接调用即可。

在嵌入式操作系统中,BSP以嵌入式操作系统“驱动程序”的身份出现,在系统启动之初,BSP所做的工作类似于BIOS,也是负责系统加电、初始化各种设备、装入操作系统等。但BSP与BIOS是不同的,尤其是在系统启动完成之后。二者主要有以下几个方面的区别。

①BSP是与操作系统相适应的,但BIOS却是和所在的主板相适应的,虽然BSP和BIOS 通常都由硬件制造商提供,但二者提供BSP或者BI0S的“初衷”不一样,前者是为了让自己的硬件支持某种嵌入式操作系统,而后者则是为了所有操作系统都能够正常在其生产的硬件上正常工作。

②开发人员可以对BSP做一定的修改,加入自己想加入的一些东西,像驱动程序。但BIOS 一般不能更改,开发人员只能对其进行升级或者更改配置的操作,相对来讲,嵌入式开发人员对于BSP的自主性更大。

③一个BSP对应一个硬件和一个嵌入式操作系统,即同一个处理器可能对应多个BSP,同一个嵌入式操作系统针对不同的处理器也需要不同的BSP。而一个BIOS是对应一个硬件和多个操作系统,也就是说只要硬件确定,其BIOS就确定,无论使用哪种通用操作系统。

④BSP里可以加入非系统必需的东西,比如一些驱动程序甚至一些应用程序,但通用计算机的主板生产商一般不会这样做。

对BSP和B10S的区别有了一定认识,我们再来看看BSP的特点:

①操作系统相关性;

②硬件相关性。

即上面所说的,嵌入式操作系统、BSP、硬件都是1:1:1的单独对应关系。

BSP主要做以下两方面的工作:

①系统初始化;

②硬件相关的设备驱动。

系统初始化的过程从底到顶可以分为三个过程分别是片级初始化、板级初始化、系统级初始化。

片级初始化主要是对处理器进行初始化,在这一工作阶段,主要是设置处理器的寄存器、调整处理器的核心工作模式和局部总线模式,目的是为了把处理器从默认的工作状态设置到嵌入式操作系统所要求的状态,是一个纯硬件的初始化过程。然后是板级初始化,板级初始化的一个任务是要初始化除处理器外的所有硬件设各,另外一个任务是要对其他所需软件的数据结构和参数进行设置,为随后的系统级初始化建立硬件和软件环境。板级初始

化是一个同时包含硬件和软件初始化的过程。紧接着是系统级初始化,这一过程主要是对操作系统进行一定的初始化,通过这一初始化,嵌入式操作系统的全部初始化工作完成,创建了应用程序的运行环境,把系统的控制权转交给应用程序的入口。

BSP的另一主要功能就是提供与硬件相关的设备驱动。上面提到一个板级初始化的过程,在这一过程中,BSP会把设备驱动程序与嵌入式操作系统中的通用设备驱动程序关联起来,当某个应用需要某个硬件设备时,通用设备驱动程序会调用硬件设备驱动程序,以达到操作硬件的目的。

1 BSP概述

BSP即Board Support Package,板级支持包。它来源于嵌入式操作系统与硬件无关的设计思想,操作系统被设计为运行在虚拟的硬件平台上。对于具体的硬件平台,与硬件相关的代码都被封装在BSP中,由BSP向上提供虚拟的硬件平台,BSP与操作系统通过定义好的接口进行交互。BSP是所有与硬件相关的代码体的集合。

一个成熟的商用操作系统,其被广泛应用的必要条件之一就是能够支持众多的硬件平台,并实现应用程序的硬件无关性。一般来说,这种无关性都是由操作系统实现的。

但对于嵌入式系统来说,它没有像PC机那样具有广泛使用的各种工业标准、统一的硬件结构。各种嵌入式系统各不同的应用需求就决定了它一般都选用各自定制的硬件环境,每种嵌入式系统从核心的处理器到外部芯片在硬件结构上都有很大的不同。这种诸多变化的硬件环境就决定了无法完全由操作系统来实现上层软件与底层硬件之间的无关性。

因此各种商用实时操作系统,都采用了分层设计的方法,它将系统中与硬件直接相关的一层软件独立出来,称之为Board Support Package,简称为BSP。顾名思义,BSP是针对某个特定的单板而设计的。如果没有单板支持软件包,则操作系统就不能在单板上运行。

并且它对于用户(指开发者)也是开放的,用户可以根据不同的硬件需求对其作改动或二次开发。BSP在嵌入式系统中的角色,很相似于在PC系统中的BIOS和驱动程序的地位。BSP的具体结构和组成根据不同的嵌入式操作系统而不同。BSP的开发要求设计人员具备软硬件方面的综合知识。

BSP软件与其他软件的最大区别在于BSP软件有一整套模板和格式,开发人员必须严格遵守,不允许任意发挥。在BSP软件中,绝大部分文件的文件名和所要完成的功能都是固定的。所以,BSP软件的开发一般来说都是在一个基本成型的BSP软件上进行修改,以适应不同单板的需求。针对某类CPU的硬件单板,嵌入式操作系统(如vxWorks)通常提供有其DEMO板的BSP, 这些程序位于指定的目录之下。也就是我们所说的最小系统BSP。一般来说,我们在硬件系统设计好之后,都会先找到一个与自己系统相近的DEMO板BSP (最起码是使用相同的CPU)。并以此为基础,开发自己单板的BSP。

BSP就是为软件操作系统正常运行提供最基本、最原始的硬件操作的软件模块,它和操作系统息息相关,但又不属于操作系统的一部分。BSP可以分为三大部分:

1:系统上电时的硬件初始化。

2:为操作系统访问硬件驱动程序提供支持。

3:集成的硬件相关和硬件无关的操作系统所需的软件模块。

?BSP的表现形式

BSP主要以两种形式来表现:

1:源代码(C代码、汇编代码)、系统编译连接依靠文件。

2:二进制的目标代码和目标代码库。

?BSP在软件系统中的位置

BSP在软件系统中的位置可以用下图来表示,BSP为操作系统和硬件设备的互操作建了一个桥梁,操作系统通过BSP来完成对指定硬件的配置和管理。

BSP向上层提供的接口有

λ与操作系统内核的接口(如报告DRAM大小、修改中断屏蔽级别等)

λ与操作系统的I/O系统的接口

λ与应用程序的接口

?CPU最小系统BSP的定义

广义上讲,单板中所有需要CPU控制的硬件的程序,都属于单板BSP,但是,为了调试方便和软件的模块化,我们通常就将与此单板最小系统相关的程序简称为BSP,而将其他程序称为驱动程序。

对于嵌入式系统来说,所谓最小系统就是一个包含:CPU, Bootrom, RAM,系统时钟,网口,串口的计算机运行环境。

这样,最小系统BSP就包含了CPU系统的初始化程序以及网口,串口,系统时钟等设备的驱动程序。

?BSP的主要功能

BSP的主要功能在于配置系统硬件使其工作于正常的状态,完成硬件与软件之间的数据交互,为OS及上层应用程序提供一个与硬件无关的软件平台。因此从执行角度来说,其可以分为两大部分:

1)目标板启动时的硬件初始化及多任务环境的初始化

2)目标板上控制各个硬件设备正常运行的设备驱动程序,由它来完成硬件与软件之间的信息交互

通常我们认为BSP是为OS服务的,但实际上,BSP软件包中的部分程序对OS也并不是必须的,从这个角度,又可以将BSP划分为两部分:

1)最小系统BSP,即我们通常所称的BSP

2) 设备驱动程序

虚拟声卡驱动程序VirtualAudioCable使用方法

一:安装软件 点击 选择是(Y) 选择I accept 选择Install 安装成功,点击“确定”按钮即完成安装。 二、软件的设置 点击桌面开始按钮所有程序---Virtual Audio Cable —Control panel 进入软件初始化 设置。 在Cables 中选择1(即首次设置一个虚拟通道),点击旁边的Set 按钮生成通道Cable1. 在参数设置区将Line 、Mic (可选可不选)、S/PDIF (可选可不选)三个选项后面的方框打钩,选中之后点击参数设置区内的设置按钮Set ,即完成了,对虚拟声卡通道1 的设置。 鼠标右键点击桌面右下角的喇叭------ 调整音频属性---- < 或者点击开始—控制面板--- 声音、 语音和音频设备--- 声音和音频设备>弹出: 选择语音 此时语音部分的设置为原系统默认的设备,保持不变。 选择音频: 改变声音播放、录音的选项内容:

如上图将声音播放、录音的默认设备全部改为Virtual Cable 1 。点击应用--- 确定即可。 三、打开录音机录音--- 录制电脑里播放出来的音频(不包含麦克风 里的声音) - 即“内录” 开始--- 所有程序—附件--- 娱乐--- 录音机 点击确定即可开始录音(注:此时可在电脑中打开相应的音频文件,开始录音) 此时音频波段显示有声音输入,但是电脑的耳机听不到正在播放的音频文件(属正常现象)。若想同时听到音频文件的内容点击桌面开始按钮所有程序---Virtual Audio Cable —Audio Repeater 。 修改为 点击Start 即可听到正在录制的音频文件。此时的录音即是通过虚拟声卡通道录制电脑里的声音的。 四、同时录电脑里播放的声音和麦克风收集的外部声音----- 即混录 <通过这种方法解决现有笔记本无“立体声混音”或“波形音”选项的问题> 在《三打开录音机录音--- 录制电脑里播放出来的音频(不包含麦克风里的声音)------------ 即“内录”》的同时,在打开一个irtual Audio Cable —Audio Repeater 窗口将其设置为: 即将外部麦克风收集的声音转移到虚拟声卡通道Cable1 中,同电脑里播放的声音一起被录音软件收录为音频文件。

platform设备驱动精讲,例程详细

总线设备驱动模型主要包含总线、设备、驱动三个部分,总线可以是一条真实存在的总线,例如USB、I2C等典型的设备。但是对于一些设备(内部的设备)可能没有现成的总线。Linux 2.6内核中引入了总线设备驱动模型。总线设备驱动模型与之前的三类驱动(字符、块设备、网络设备)没有必然的联系。设备只是搭载到了总线中。在linux内核中假设存在一条虚拟总线,称之为platform总线。platform总线相比与常规的总线模型其优势主要是platform总线是由内核实现的,而不用自己定义总线类型,总线设备来加载总线。platform 总线是内核已经实现好的。只需要添加相应的platform device和platform driver。具体的实现过程主要包括如下的过程: 两者的工作顺序是先定义platform_device -> 注册platform_device->,再定义platform_driver-> 注册platform_driver。 整体而言只需要完成两个步骤,也就是设备的实现和驱动的实现,每一个实现都包括相关结构体的定义和注册。 platform_device注册 需要注意的是platform_device 实质上是经过处理过的设备,在platform_device结构体中存在一个设备结构体,与之前的设备存在差别的是引入了设备资源。这些设备资源就能实现对设备寄存器,中断等资源的访问。平台设备的基本结构体如下: struct platform_device { /*设备名*/ const char * name; /*设备ID号*/ int id; /*结构体包含一个具体的device结构体*/ struct device dev; /*资源的数量*/ u32 num_resources; /*资源结构体,用来保存硬件的资源*/ struct resource * resource; /*平台设备的ID*/ struct platform_device_id *id_entry; }; 其中struct device 和struct resource 是重要的结构体。struct device 在总线设备驱动模型中已经提到了。这次讨论一下struct resource。 struct resource { /*资源的起始值,如果是地址,那么是物理地址,不是虚拟地址*/ resource_size_t start; /*资源的结束值,如果是地址,那么是物理地址,不是虚拟地址*/ resource_size_t end; /*资源名*/ const char *name; /*资源的标示,用来识别不同的资源*/ unsigned long flags; /*资源指针,可以构成链表*/ struct resource *parent, *sibling, *child; };

虚拟设备驱动程序的设计与实现

虚拟设备驱动程序的设计与实现 由于Windows对系统底层操作采取了屏蔽的策略,因而对用户而言,系统变得 更为安全,但这却给众多的硬件或者系统软件开发人员带来了不小的困难,因为只要应用中涉及到底层的操作,开发人员就不得不深入到Windows的内核去编写属 于系统级的虚拟设备驱动程序。Win 98与Win 95设备驱动程序的机理不尽相同,Win 98不仅支持与Windows NT 5.0兼容的WDM(Win32 Driver Mode)模式驱动程序 ,而且还支持与Win 95兼容的虚拟设备驱动程序VxD(Virtual Device Driver)。下面介绍了基于Windows 9x平台的虚拟环境、虚拟设备驱动程序VxD的基本原理和 设计方法,并结合开发工具VToolsD给出了一个为可视电话音频卡配套的虚拟设备 驱动程序VxD的设计实例。 1.Windows 9x的虚拟环境 Windows 9x作为一个完整的32位多任务操作系统,它不像Window 3.x那样依 赖于MS-DOS,但为了保证软件的兼容性,Windows 9x除了支持Win16应用程序和 Win32应用程序之外,还得支持MS-DOS应用程序的运行。Windows 9x是通过虚拟机 VM(Virtual Machine)环境来确保其兼容和多任务特性的。 所谓Windows虚拟机(通常简称为Windows VM)就是指执行应用程序的虚拟环 境,它包括MS-DOS VM和System VM两种虚拟机环境。在每一个MS-DOS VM中都只运 行一个MS-DOS进程,而System VM能为所有的Windows应用程序和动态链接库DLL(Dynamic Link Libraries)提供运行环境。每个虚拟机都有独立的地址空间、寄存器状态、堆栈、局部描述符表、中断表状态和执行优先权。虽然Win16、Win32应用程序都运行在System VM环境下,但Win16应用程序共享同一地址空间, 而Win32应用程序却有自己独立的地址空间。 在编写应用程序时,编程人员经常忽略虚拟环境和实环境之间的差异,一般认为虚拟环境也就是实环境。但是,在编写虚拟设备驱动程序VxD时却不能这样做 ,因为VxD的工作是向应用程序代码提供一个与硬件接口的环境,为每一个客户虚 拟机管理虚设备的状态,透明地仲裁多个应用程序,同时对底层硬件进行访问。这就是所谓虚拟化的概念。 VxD在虚拟机管理器VMM(Virtual Machine Manager)的监控下运行,而VMM 实 际上是一个特殊的VxD。VMM执行与系统资源有关的工作,提供虚拟机环境(能产

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

编译hello设备驱动程序详细过程

编译hello world设备驱动程序详细过程 1、安装与你的开发板相同的内核版本的虚拟机,我的板子内核是2.6.8.1,虚拟机是2.6.9, 一般是虚拟机的内核只能比板子内核新,不能旧 #uanme –a [1](在任何目录下,输入此命令,查看虚拟机的内核版本,我的内核版本是2.6.9) 2、在虚拟机上设置共享目录,我的共享目录在linux下的/mnt/hgfs/share [2]share是自己命名的,我的物理机上,即Windows下的目录是G:/share, 3、在Windows下,把开发板的的交叉开发工具链[3],内核源码包[4],复制到物理机的共享目录下[5] 即Windows下的目录是G:/share, 4、#cp /mnt/hgfs/share/cross-3.3.2.tar.bz2 /usr/local/arm [6] 在Linux下,把交叉工具链,复制到/usr/local/arm目录下 5、#cd /usr/local/arm 6、#tar jxvf cross-3.3.2.tar.bz2 [7] 并在当前目录/usr/local/arm下解压它cross-2.95.3.tar.bz2和gec2410-linux-2.6.8.tar.bz2也是用同样的命令去解压 7、#export PATH=/usr/local/arm/3.3.2/bin:$PATH [8] 安装交叉工具链,在需要使用交叉编译时,只要在终端输入如下命令 #export PATH=/usr/local/arm/版本/bin:$PATH 即可,在需要更改不同版本的工具链时,重新启动一个终端,然后再一次输入上面的命令即可,使用哪个版本的交叉工具链,视你要编译的内核版本决定,编译2.4版本的内核,则用2.95.3版本的交叉工具链,而2.6版本内核的,则要用3.3.2版本的交叉工具链。 8、#cp gec2410-linux-2.6.8.tar.bz2 /root [9]把内核拷贝到/root目录下, 9、#cd /root 10、#tar gec2410-linux-2.6.8.tar.bz2 [10] 在/root解压开发板的内核源码压缩包gec2410-linux-2.6.8.tar.bz2,得到gec2410-linux-2.6.8.1文件夹 11、#cd /root/ gec2410-linux-2.6.8.1 12、#cp gec2410.cfg .config [11] gec2410.cfg文件是广嵌开发板提供的默认内核配置文件,在这里首先把内核配置成默认配置,然后在此基础上用make menuconfig进一步配置,但在这里,不进行进一步的配置,对于内核配置,还需要看更多的知识,在这里先存疑。 13、#make [12]在内核源代码的根目录gec2410-linux-2.6.8.1下用make命令编译内核,注意,先安装交叉工具链,再编译内核,因为这里编译的hello.ko驱动模块最终是下载到开发板上运行的,而不是在虚拟机的Linux系统运行的,如果是为了在虚拟机的Linux系统运行的,则不用安装交叉编译工具链arm-linux-gcc,而直接用gcc,用命令#arm-linux-gcc –v 可以查看当前已经安装的交叉编译工具链的版本。这里编译内核不是为了得到内核的映象文件zImage(虽然会得到内核的映象文件zImage),而是为了得到编译hello.o模块需要相关联,相依赖(depends on)的模块。 14、#cd /root 12、#mkdir hello [13]在/root目录下建立hello文件夹, 13、#cd hel 14 、#vi hello.c [12]编辑hello.c文件,内容是《Linux设备驱动程序》第三版22页的hello world程序。 15、#vi Makefile [13]在hello文件夹下编辑Makefile文件, 16、obj-m := module.o [14] 这是Makefile的内容,为obj-m := module.omodule.o视你编辑的.c文件而定,这里则要写成hello.o,写完后,保存退出。 17、cd /root/hello

设备驱动程序

驱动程序 驱动程序一般指的是设备驱动程序(Device Driver),是一种可以使计算机和设备通信的特殊程序。相当于硬件的接口,操作系统只有通过这个接口,才能控制硬件设备的工作,假如某设备的驱动程序未能正确安装,便不能正常工作。 因此,驱动程序被比作“硬件的灵魂”、“硬件的主宰”、和“硬件和系统之间的桥梁”等。 中文名 驱动程序 外文名 Device Driver 全称 设备驱动程序 性质 可使计算机和设备通信的特殊程序 目录 1定义 2作用 3界定 ?正式版 ?认证版 ?第三方 ?修改版 ?测试版 4驱动程序的开发 ?微软平台 ?Unix平台 5安装顺序 6inf文件 1定义 驱动程序(Device Driver)全称为“设备驱动程序”,是一种可以使计算机和设备通信的特殊程序,可以说相当于硬件的接口,操作系统只能通过这个接口,才能控制硬件设备的工作,假如某设备的驱动程序未能正确安装,便不能正常工作。 惠普显卡驱动安装 正因为这个原因,驱动程序在系统中的所占的地位十分重要,一般当操作系统安装完毕后,首要的便是安装硬件设备的驱动程序。不过,大多数情况下,我们并不需要安装所有硬件设备的驱动程序,例如硬盘、显示器、光驱等就不需要安装驱动程序,而显卡、声卡、扫描仪、摄像头、Modem等就需要安装驱动程序。另外,不同版本的操作系统对硬件设

备的支持也是不同的,一般情况下版本越高所支持的硬件设备也越多,例如笔者使用了Windows XP,装好系统后一个驱动程序也不用安装。 设备驱动程序用来将硬件本身的功能告诉操作系统,完成硬件设备电子信号与操作系统及软件的高级编程语言之间的互相翻译。当操作系统需要使用某个硬件时,比如:让声卡播放音乐,它会先发送相应指令到声卡驱动程序,声卡驱动程序接收到后,马上将其翻译成声卡才能听懂的电子信号命令,从而让声卡播放音乐。 所以简单的说,驱动程序提供了硬件到操作系统的一个接口以及协调二者之间的关系,而因为驱动程序有如此重要的作用,所以人们都称“驱动程序是硬件的灵魂”、“硬件的主宰”,同时驱动程序也被形象的称为“硬件和系统之间的桥梁”。 戴尔电脑驱动盘 驱动程序即添加到操作系统中的一小块代码,其中包含有关硬件设备的信息。有了此信息,计算机就可以与设备进行通信。驱动程序是硬件厂商根据操作系统编写的配置文件,可以说没有驱动程序,计算机中的硬件就无法工作。操作系统不同,硬件的驱动程序也不同,各个硬件厂商为了保证硬件的兼容性及增强硬件的功能会不断地升级驱动程序。如:Nvidia显卡芯片公司平均每个月会升级显卡驱动程序2-3次。驱动程序是硬件的一部分,当你安装新硬件时,驱动程序是一项不可或缺的重要元件。凡是安装一个原本不属于你电脑中的硬件设备时,系统就会要求你安装驱动程序,将新的硬件与电脑系统连接起来。驱动程序扮演沟通的角色,把硬件的功能告诉电脑系统,并且也将系统的指令传达给硬件,让它开始工作。 当你在安装新硬件时总会被要求放入“这种硬件的驱动程序”,很多人这时就开始头痛。不是找不到驱动程序的盘片,就是找不到文件的位置,或是根本不知道什么是驱动程序。比如安装打印机这类的硬件外设,并不是把连接线接上就算完成,如果你这时候开始使用,系统会告诉你,找不到驱动程序。怎么办呢参照说明书也未必就能顺利安装。其实在安装方面还是有一定的惯例与通则可寻的,这些都可以帮你做到无障碍安装。 在Windows系统中,需要安装主板、光驱、显卡、声卡等一套完整的驱动程序。如果你需要外接别的硬件设备,则还要安装相应的驱动程序,如:外接游戏硬件要安装手柄、方向盘、摇杆、跳舞毯等的驱动程序,外接打印机要安装打印机驱动程序,上网或接入局域网要安装网卡、Modem甚至ISDN、ADSL的驱动程序。说了这么多的驱动程序,你是否有一点头痛了。下面就介绍Windows系统中各种的不同硬件设备的驱动程序,希望能让你拨云见日。 在Windows 9x下,驱动程序按照其提供的硬件支持可以分为:声卡驱动程序、显卡驱动程序、鼠标驱动程序、主板驱动程序、网络设备驱动程序、打印机驱动程序、扫描仪驱动程序等等。为什么没有CPU、内存驱动程序呢因为CPU和内存无需驱动程序便可使用,不仅如此,绝大多数键盘、鼠标、硬盘、软驱、显示器和主板上的标准设备都可以用Windows 自带的标准驱动程序来驱动,当然其它特定功能除外。如果你需要在Windows系统中的DOS 模式下使用光驱,那么还需要在DOS模式下安装光驱驱动程序。多数显卡、声卡、网卡等内置扩展卡和打印机、扫描仪、外置Modem等外设都需要安装与设备型号相符的驱动程序,否则无法发挥其部分或全部功能。驱动程序一般可通过三种途径得到,一是购买的硬件附

虚拟设备驱动程序设计中的两个关键问题

虚拟设备驱动程序设计中的两个关键问题 在虚拟设备驱动程序(VxD)的设计中,两个尤为关键,且又令人困扰的问题是VxD 的虚拟化和VxD与应用程序间的通信机制。下面,对这两个问题作一详细的探讨。 一、VxD的虚拟化 由于Windows允许同时运行多个任务,所以出现多个进程试图同时访问同一物 理设备的情况时,如果多个应用程序通过同一个DLL驱动程序(注意和虚拟设备驱 动程序VxD的区别)访问设备,不需要对该设备虚拟化,驱动程序使之顺序访问;如果是多个Windows应用程序对相同设备同时访问,由于都运行于System VM(系统虚拟机),所以也不需要虚拟化,它们的访问将由一个驱动程序(Windows driver DLL)进行检测并使之串行化,而不是依靠VxD;如果多个VM试图访问同一 设备,由于DOS应用程序能够直接操纵硬件,所以必须对该设备进行虚拟化,一个 虚拟化设备的VxD负责可靠地检测多个VM试图访问同一设备的情况,并采取仲裁的 策略来解决这种冲突。这里可能有以下几种解决方案: 1、允许一个VM访问物理设备,同时忽略其它的VM。这是最简单的虚拟化 形式 。如VPD(Virtual Printer Device)。 2、允许一个VM访问物理设备,同时为其它的VM虚拟化设备。如VKD(Virtual Keyboard Device)分配给一个VM,并使之获得物理键盘的访问权(包括键盘中 断 在内),对其它的VM而言,VKD只向它们提供一个空的键盘缓冲区。 3、允许多个VM共享同一物理设备。尽管存在假象,但从VM的观点来看,这种 方法与独享访问一样。如VDD(Virtual Display Device),使每一个Windows环境 下的DOS VM认为是直接写入显存,其实只是被VDD映射到了一个窗口的缓冲区。 4、VxD独立访问物理设备的同时,允许一个VM访问虚拟设备,这是最复杂的 虚拟化形式。如VCD(Virtual Com Device),VCD缓冲区接收串行数据并通过映射中 断透明地传给相应的一个VM,VM在中断处理过程中读取串口数据寄存器,这些数 据的实质是VCD缓冲区已经接收的数据。 与物理设备一样,硬件中断很多时候也必须虚拟化,这种情况更为复杂。虚拟化中断实质上就是将硬件产生的中断映射到需要它的每一个VM(不管该VM是否 正在运行),替代VxD进行服务。在这里我们给出一个虚拟化中断的VxD实例的几 个重要回调过程,并采用最简单的仲裁策略来解决访问冲突(见程序1)。 typedef struct

字符设备驱动开发实验

字符设备驱动实验 实验步骤: 1、将设备驱动程序使用马克file文件编译 生成模块firstdev.ko 2、将模块加载到系统中insmod firstdev.ko 3、手动创建设备节点 mknod /dev/first c 122 0 4、使用gcc语句编译firsttest.c生成可执行 文件 5、运行可执行文件firsttest,返回驱动程序 中的打印输出语句。 查看设备号:cat /proc/devices 卸载驱动:rmmod firstdev 删除设备节点:rm /dev/first 显示printk语句,(打开一个新的终端)while true do sudo dmesg -c sleep 1 done

源码分析 设备驱动程序firstdev.c #include #include #include #include #include #include //#include static int first_dev_open(struct inode *inode, struct file *file) { //int i; printk("this is a test!\n"); return 0; }

static struct file_operations first_dev_fops ={ .owner = THIS_MODULE, .open = first_dev_open, }; static int __init first_dev_init(void) { int ret; ret = register_chrdev(122,"/dev/first",&first_dev_fo ps); printk("Hello Modules\n"); if(ret<0) { printk("can't register major number\n"); return ret; }

简单的虚拟字符设备驱动的实现

简单的虚拟字符设备驱动的实现 Linux業已成为嵌入式系统的主流,而各种Linux驱动程序的类型中,字符设备无疑是应用最广泛的。本文实现了一个简单的虚拟字符设备的驱动程序,用以演示Linux字符设备驱动的基本原理。在嵌入式Linux的教学中具有重要的作用。 标签:Linux 驱动程序字符设备虚拟嵌入式 Linux作为一种开放源代码的操作系统,在嵌入式系统领域业已成为主流,而为嵌入式Linux系统开发设备驱动程序,也成为一项重要的工作。Linux系统中的驱动程序主要分为三种:字符设备驱动程序、块设备驱动程序和网络驱动程序。其中字符设备是一类只能顺序读写,没有缓存的驱动程序,其实现方法相对简单,而应用则最为广泛。在嵌入式Linux的教学中,字符设备驱动程序也是一项重要内容。为了让学生能够理解字符设备驱动程序的原理,需要一个简单的字符设备驱动的例子,用以进行演示。 一、基本原理 把设备当作文件处理,是Linux系统的重要思想,即“一切皆文件”。在用户空间中,应用程序对字符设备的操作跟读写普通文件没有什么区别,也是通过open()、close()、read()、write()等函数实现的。操作系统将这些用户空间中的函数分别映射到内核空间中由驱动程序提供的对应接口。因此,内核空间中的驱动程序就需要通过对对应接口函数的实现来实现对用户空间中应用程序的支持。 file_opreations是字符设备驱动中最重要的结构,它包含了字符设备各种可能的接口函数。通常在嵌入式编程中,我们不需要全部实现,只需要实现我们实际用到的接口就可以了,这样可以有效降低程序的大小。该结构被定义在头文件“linux/fs.h”中,使用时只需声明该结构的一个变量并进行填充即可。 二、环境准备 为了进行嵌入式Linux的开发,必须首先安装Linux系统。这里采用最常用的Windows系统+VMWare虚拟机的形式,系统版本为RedHat Enterprise Linux 6.4,其自带的内核版本为2.6.32-358.el6.i686。该版本比之前沿用的RedHat9更新,同时也是一个被验证过的非常稳定的系统。 交叉编译器采用网上下载的Arm-Linux-gcc 4.5.1版本,同样兼顾到版本更新和稳定性之间的平衡关系。 各软件的安装过程本文不再赘述。

工业机器人的驱动方式

题目 1、工业串联机器人常用的驱动方式、传动系统、传感器类型 比较 2、智能移动机器人的驱动方式、传动系统、传感器类型 比较 3、现在机器人的控制系统、控制结构 概述 机器人问世已有几十年 但没有一个统一的意见。原因之一是机器人还在发 展 另一原因主要是因为机器人涉及到了人的概念 成为一个难以回答的哲学问 题。也许正是由于机器人定义的模糊 才给了人们充分的想象和创造空间。 美国机器人协会 RIA) 一种用于移动各种材料、零件、工具或专用装置的 通过程序动作来执行各种任务 并具有编程能力的多功能操作机。 美国家标准局 一种能够进行编程并在自动控制下完成某些操作和移动作业 任务或动作的机械装置。 1987年国际标准化组织(ISO)对工业机器人的定义 “工业机器人是一种具 有自动控制的操作和移动功能 能完成各种作业的可编程操作机。 日本工业标准局 一种机械装置 在自动控制下 能够完成某些操作或者动 作功能。 英国 貌似人的自动机 具有智力的和顺从于人的但不具有人格的机器。 中国 我国科学家对机器人的定义是 “机器人是一种自动化的机器 这种 机器具备一些与人或生物相似的智能能力 如感知能力、规划能力、动作能力和协同能力 是一种具有高度灵活性的自动化机器”。 尽管各国定义不同 但基本上指明了作为“机器人”所具有的二个共同点 (1) 是一种自动机械装置 可以在无人参与下 自动完成多种操作或动作功 能 即具有通用性。 (2)可以再编程 程序流程可变 即具有柔性(适应性 。 机器人是20世纪人类伟大的发明 比尔?盖茨预言 机器人即将重复PC机 崛起的道路 彻底改变这个时代的生活方式。 机器人学集中了机械工程、材料科学、电子技术、计算机技术、自动控制理 论及人工智能等多学科的最新研究成果 代表了机电一体化的最高成就 是当代 科学技术发展最活跃的领域之一。 概述 驱动方式 现代工业机器人的驱动方式主要有三种 气动驱动、液压驱动和电动驱动。 气动驱动 机器人气动驱动系统以压缩空气为动力源。气动驱动机器人具有气源方便 系统结构简单 动作快速灵活 不污染环境以及维护方便、价格便宜、适合在恶劣工况 高温、有毒、多粉尘 条件下工作等特点。常用于冲床上下料 小零件装配、食品包装及电子元件输送等作业中。由于气体可压缩 遇阻时具有容让性 因此也常用作机器人手爪的驱动源。 气动驱动系统的组成 1 气源 气动机器人可直接使用工厂压缩空气站的气源 或自行设置气源

《Linux设备驱动开发详解:基于最新的Linux 4.0内核》19. Linux电源管理系统架构和驱动

以下电子书来源于宋宝华《Linux设备驱动开发详解:基于最新的Linux 4.0内核》第19章《Linux电源管理系统架构和驱动》 本章导读 Linux在消费电子领域的应用已经铺天盖地,而对于消费电子产品而言,省电是一个重要的议题。 本章将介绍Linux设备树(Device Tree)的起源、结构和因为设备树而引起的驱动和BSP 变更。 19.1节阐述了Linux电源管理的总体架构。 19.2~19.8节分别论述了CPUFreq、CPUIdle、CPU热插拔以及底层的基础设施Regulator、OPP以及电源管理的调试工具PowerTop。 19.9节讲解了系统Suspend to RAM的过程以及设备驱动如何提供对Suspend to RAM的支持。 19.10节讲解了设备驱动的Runtime suspend。 本章是相对《Linux设备驱动开发详解(第2版)》全新的一章内容,也是Linux设备驱动工程师必备的知识体系。

第十九章Linux电源管理系统架构和驱动 1.Linux电源管理全局架构 Linux电源管理非常复杂,牵扯到系统级的待机、频率电压变换、系统空闲时的处理以及每个设备驱动对于系统待机的支持和每个设备的运行时电源管理,可以说和系统中的每个设备驱动都息息相关。 对于消费电子产品来说,电源管理相当重要。因此,这部分工作往往在开发周期中占据相当大的比重,图19.1呈现了Linux内核电源管理的整体架构。大体可以归纳为如下几类: 1.CPU在运行时根据系统负载进行动态电压和频率变换的CPUFreq 2.CPU在系统空闲时根据空闲的情况进行低功耗模式的CPUIdle 3.多核系统下CPU的热插拔支持 4.系统和设备对于延迟的特别需求而提出申请的PM QoS,它会作用于CPUIdle的具体 策略 5.设备驱动针对系统Suspend to RAM/Disk的一系列入口函数 6.SoC进入suspend状态、SDRAM自刷新的入口 7.设备的runtime(运行时)动态电源管理,根据使用情况动态开关设备 8.底层的时钟、稳压器、频率/电压表(OPP模块完成)支撑,各驱动子系统都可能用 到 图19.1 Linux电源管理系统架构 2.CPUFreq驱动 CPUFreq子系统位于drivers/cpufreq目录,负责进行运行过程中CPU频率和电压的动态

一个简单字符设备驱动实例

如何编写Linux设备驱动程序 Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel中的函数,有些常用的操作要自己来编写,而且调试也不方便。本文是在编写一块多媒体卡编制的驱动程序后的总结,获得了一些经验,愿与Linux fans共享,有不当之处,请予指正。 以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料. 这些资料有的已经过时,有的还有一些错误,我依据自己的试验结果进行了修正. 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1)对设备初始化和释放; 2)把数据从内核传送到硬件和从硬件读取数据; 3)读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4)检测和处理设备出现的错误。 在Linux操作系统下有两类主要的设备文件类型,一种是字符设备,另一种是块设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待. 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备。另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序. 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备

机械

1.材料许用强度 凡与食品物料及介质相接触的部分,要求材料对食品品质无影响,不污染食品;在物料介质的作用下不腐蚀破坏。 2.斗式提升机卸料极距 合力R作用方向的延长线总与驱动轮的垂直中心线相交于同一点B,这点叫做极点。极点至驱动轮中心距离称为极距L。极距L的实际意义在于它可以校核斗式提升机的卸料方式。反之,当决定了卸料方式后,可根据极距的大小来决定驱动轮转速n和驱动轮半径rb的范围,所以极距是决定斗式提升机转速n、驱动轮半径rb和料斗质量中心到旋转中心的半径r等参数的主要依据。 3.安全系数 定义:水工建筑物、结构或构件的抗破坏强度与设计荷载效应组合的比值,它是建筑物、结构或构件的安全储备的指标。 4.螺杆泵 旋转式泵依靠旋转运动的转子对液体作功的机械。 按螺杆个数分单螺杆泵、双螺杆泵与多螺杆泵。输送食品液料用单螺杆泵 结构:单螺杆泵内转子的径向断面为圆形(直径为d)的螺杆,按其几何中心0,以螺距t和偏心距e绕螺杆轴线01作螺旋运动。定子是螺距为2t的双线螺旋形孔,其径向断面形状是宽度为2e的矩形、外接两个直径也为d的半圆形所组成的长圆孔。 工作过程:定子孔的对称中心(即定子轴线)为02。由于转子和定子

孔的配合关系,沿轴向形成若干个封闭腔。为适应转子的偏心运动,驱动轴中空,它与螺杆的联接常用平行销联轴节或万向联轴节。螺杆多用不锈钢材料,定子衬套用橡胶材料。泵运动时,转子轴线01,以偏心量e为半径绕02作回转运动,封闭腔自吸入端形成,并以不变的容积向排出端运动,使封闭腔内的液体得到输送。 特点:单螺杆泵输送液体连续均匀、运动平稳、压力较高、自吸性能好、结构简单、零部件少。适于输送高粘度的食品液体。(1)螺杆、螺套 螺杆的材料为不锈钢,直径规格有29mm及40mm两类;偏心距为3~6mm,螺距为50~100mm;定子通常为双头螺旋橡皮衬套,内径比转子外径小1mm,橡皮衬套材料硬度为邵氏硬度65~75,耐磨性为700,永久伸长率为10%,抗拉强度为10.2~15.3N/cm2,拉断时相对延率为30%。 (2)性能 螺杆的尺寸一定时,改变转速调整流量,合理的转速为750~1500rpm。转速过高造成螺杆与螺套的过渡摩擦而发热,损坏橡皮螺套,过低则影响生产效率。 螺杆泵吸入压头可达84kPa,排出压力与螺杆长度有关,每个螺距可产生0.2Mpa的压力。 5.水力半径 过水断面积与湿周之比即为水力半径。表达式为:R=A/X 湿周为过水断面上水流所湿润的边界长度。

Windows 95下的虚拟设备驱动程序

Windows 95下的虚拟设备驱动程序 虚拟设备驱动程序(VxDs)在很大程度上支持了Windows 3.x和Windows 95。通 常,我们从两个级别的意义上来认识VxDs:从低级意义上来说,它们直接存取系统 的硬件;而从高级意义上来看,它们在最高优先级别上运行。 在Windows 95中,VxDs显得更加重要,Microsoft正是靠VxDs扩展了操作系统内 核的处理能力。Win 95中的VxDs可以处理涉及从文件系统到声卡以至网络系统的 各种事务。 可能您还未认识到:尽管VxDs本身是32位的,但它却诞生于16位的非线程、非 抢占性的操作系统。而现在人们期待甚至要求VxDs能运作于具有线程化、可抢占 性的操作系统,简单的变形是不能解决此问题的。 虚拟机假想 一台虚拟机(VM)只不过是人们的一个假想。而特别的,这个假想认为一个给定 的进程可对一台计算机的所有硬件设备进行独占性的存取,这些设备包括了内 存 、I/O口、中断和其它进程想要占用的部件。VxDs就是为了此假想产生的。 Windows 3.1中有两种虚拟机(VMs):DOS壳和Windows VM本身(后者称为" 系统 虚拟机"———所有的Windows应用程序运行于其中)。而虚拟机管理器(VMM),尽 管它本身不是一VM,但却充当着激活VMs和VxDs的主要管理员。例如,VMM要处理在 运行VMs时的抢占时间片工作。 另外,任何用来虚拟管理I/O设备的VxD都必须在VMM中登记。因此,如果一VxD 要占用一些特殊的I/O端口,就必须请求VMM挂起这个端口。这样,无论何时当一 Windows应用程序试图对此口进行存取操作时,VMM将把这个存取请求传给特定的 VxD。

通用机械设备

第一章起重机械 1.起重机械通常由卷绕装置、取物装置、制动装置、运行支承装置、驱动装置和金属构架等装置组成。 2.起重机的挠性件多采用钢丝绳的主要优点是:○1.可以向任意方向弯曲,适用于多分支的滑轮组,提高了起重能力;○2.可以多层卷绕。在起升高度很大时尤为重要;○ 3.钢丝绳承受骤加载荷和过载能力强,极少有骤然断裂现象;○ 4.钢丝绳强度高,弹性好,自重小,工作平稳,噪声小。 3.专用的取物装置有抓斗、夹钳和电磁吸盘、真空吸盘、吊环、料斗、盛桶、承重梁和集装箱吊具等。 5.电动葫芦使用最广泛的是CD型常速钢丝绳电动葫芦和MD型常慢速钢丝绳电动葫芦。CD型电动葫芦有一种起升速度8m/min MD型电动葫芦有常速(8m/min)和慢速(0.8m/min)两种起升速度 6.桥式起重机的起重小车由起升机构、小车运行机构和小车架三部分以及安全防护装置组 成。 7.桥式起重机起升机构的传动方式为闭式传动和开式传动两种 闭式传动的优点:润滑及防尘性能良好,齿轮寿命长,结构紧凑,加工结构复杂 缺点:适合传动比不大且起重重量小的场合。 开式传动的优点:有较大的传动比 缺点:润滑及防尘性差、齿轮磨损快、寿命短 第二章输送机械 1.散料向四周自由流动的性质叫做物料的流动性,用自然堆积角反映。 2.带式输送机的优点是它是用途最广泛的一种连续输送机械,它具有生产率高、运输距离远、自重小、工作可靠、操作简便、能源消耗小、结构简单便于维护、对地形的适应能力强,它既能输送各种散料,又能输送单件质量不太大的成件物品,有的甚至还能运送人员等主要特点。 它的缺点:输送带容易磨损,且输送带的价格较贵。

角及强磨琢性的物料更适用于输送炽热物品。 5.斗式提升机用于竖直方向内或在很大倾斜角时运送各种散料和碎块物料,是一种广泛应用的垂直输送设备。 6.悬浮气力输送系统按输送空气在管道中的压力状态主要分吸送式和压送式两种类型。 第三章泵 1.离心泵的工作原理:○1开泵前,吸入管和泵内必须充满液体。这时先通过漏斗4冲灌液体(称为灌泵),然后关闭漏斗下方的阀门开泵。 P91○2开泵后,叶轮旋转离心泵甩出液体蜗壳内进行能量的转换液体被压出叶轮中心形成真空在压力差的作用下流体被压入泵内 1.扬程H是单位质量液体具有的能量以液柱高度表示的值,也叫做水头。 2.汽蚀是液体汽化造成的对泵过流零件(液流经过泵时所接触到的零部件)的破坏现象。 3.它完成是由于泵叶轮吸入侧的压力过低所致。在汽蚀现象发生的同时,还伴随着发生振 动和噪声。并且由于气泡堵塞了泵叶轮的流道,使流量、扬程减少,效率下降。汽蚀现象对泵的正常运行是十分有害的。为此应设法减少吸入管路的损失,并合理确定泵的安装高度。P94 4.离心泵的特性曲线分为:扬程曲线(q—H)、功率曲线(q—Pa)、效率曲线(q—η)、 汽蚀特性曲线。 5.改变泵性能和特征曲线的方法:○1改变转速○2车削叶轮外径 6.离心泵的分类: △1按离心泵的用途可分为:○1清水泵○2杂质泵○3耐酸泵 △3按叶轮数目可分为:○1单级离心泵○2多级离心泵 △7按泵轴位置分为:○1立式泵○2卧式泵 7.单级泵轴向力的平衡主要有三种办法:开平衡孔;设置平衡管;采用双吸叶轮。 8.离心泵并联的目的是为了增加输出的流量。多级泵来满足对扬程的需求的。串联泵为了 提高扬程的一倍。 9.离心泵的调节的比较:1节流调节——可以增加能量损失的代价来换取调小流量的,经 济性较差。但节流可以在生产现场及时方便灵活地进行流量调节。 2变速调节——不能在泵工作状态时工作,只有停泵才可以操作。这种调节方法由于没有能量损失的代价而显得经济性好;P111 第四章风机 1. 离心通风机工作原理:离心通风机工作时,电动机带动叶轮旋转,使叶轮叶片间的气体

虚拟块设备驱动程序设计与分析

如果只是为了应付考试,这个文档就太啰嗦了,不用看,不过还是可以帮助记忆,考试只会考其中加粗字体的几个函数中的一个,至于是哪个我不能断定,因此要记的还是比较多的,要是能理解就更好了,结合课本和下面的解释应该能大体上弄明白这个虚拟块设备驱动的 实现过程,毕竟设备驱动是内核的一部分,光看下面的解释也是还是很头晕的,不过坚持看下去还是有收获的,我也差不多花了半天时间,不过,要是打算……的话就可以直接跳过了。 #define MAJOR_NR 70 //我们创造的虚拟块设备的主设备号 #define DEVICE_NAME “bdemo”//我们创造的虚拟块设备的名字,当设备加载成功后可用lsmod命令查看到该设备模块名 #define blkdemo_devs 2 //虚拟块设备的个数 #define blkdemo_rahead 2 //读取块设备时预读的扇区个数 #define blkdemo_size 4 //每个虚拟块设备的大小,单位为KB #define blkdemo_blksize 1024 //设备每个数据块的大小,即block,单位为字节 #define blkdemo_hardsect 512 //设备每个扇区的大小,单位为字节 struct blkdemo_device { // 这里定义了我们将要创造的虚拟块设备的数据结构 int size; // 用来记录真实块设备的容量,即下面data指针所指向数据存储区的大小 int use_cnt; // 用来记录正在使用该块设备的程序的个数 int hardsect; // 用来保存该块设备每个扇区的大小,单位为字节,即设备的使用计数 u8 *data; // 该指针所指向的内存区域就是该块设备真正用来存储数据的区域,在该设备还未被加载函数初始化时,该指针为// 空,即系统还没有为该设备分配内存区域。 }; static int blkdemo_sizes[blkdemo_devs]; //用来保存我们创建的所有虚拟块设备的大小,单位为KB static int blkdemo_blksizes[blkdemo_devs]; //用来保存我们创建的所有虚拟块设备中每个数据块的大小,单位为字节static int blkdemo_hardsects[blkdemo_devs];//用来保存我们创建的所有虚拟块设备中每个扇区的大小,单位为字节 //上面的这三个数组将会在我们加载这些设备时被注册到内核的数据结构中(即让内核中与之相关的一些指针指向它们,让内核能够读取我们所创建的设备的一些重要信息 //对于一个新的设备,内核肯定不知道他为何物,要想让内核识别我们自己创造的设备,则必须将该设备的一些信息、使用这个设备的方//法等告诉内核,由于内核早已编译成型,至于如何去告诉内核就早已模式化。内核中有几个指针数组(书本page81)专门用来完成上面的部分任务: // blk_size[]; // blksize_size[]; // hardsect_size[]; // read_ahead[]; //这几个数组都为每一个主设备号留有一个位置,对于2.4的内核,主设备号和次设备号均用8位二进制来表示(即短整型的高八位和//低八位),因此这几个数组都包含有256个元素,每个元素都是与主设备号对应的一个指针,如果主设备号所对应的设备不存在,则该//指针置为空(NULL),其实其中很多指针都为空,因为一般电脑上都没有那么多不同类型的块设备,当然,对于我们所创造的这个块设//备而言,它与系统中所存在的其他块设备的类型都不同,要为其确定一个主设备号,这个没什么硬性的规定,只要找一个没被使用的主//设备号就可以了,这个程序中使用的是70(前面的MOJOR_NR宏)。上面我们定义了保存有虚拟块设备信息的数组,现在只要将他们的//首地址赋给这几个数组中下标70(主设备号)所对应的指针元素即可。这一过程是在后面的加载函数中完成的。 static int blksize = blkdemo_blksize; struct blkdemo_device blkdemo_dev[blkdemo_devs];//这里才真正创建了我们虚拟块设备对应的结构体变量(一个全局数组),//每个元素为对应一个虚拟块设备 虚拟块设备的打开函数(open()): int blkdemo_open(struct inode *inode, strcut file *filp) { //设备文件对应的节点(inode)结构中包含有对应的设备号 int num; num = DEVICE_NR(inode->i_rdev);//用DEVICE_NR宏可求出该节点所对应设备的次设备号,所以num即为次设备号if (!blkdemo_dev[num].use_cnt) { //如果该设备的使用计数为0,则说该设备没有被任何程序使用,当虚拟块设备没有被//任何程序使用时,内核先前为该设备所分配的存储区很可能已经被释放掉了,甚至对于可移动设备而言,有可能该设备都被拔掉了(当//然,我们的虚拟块设备是不可能的),因此,在打开该设备时要进行严格的检查,不然会导致设备打开出错而造成系统崩溃。 check_disk_change(inode->i_rdev);//首先检查该块设备是否发生了变化,比如已经被移除了(该设备不可能,所以//此处没有用if来判断,只是形式的调用了一下该函数。 if (!blkdemo_dev[num].data)//然后判断该设备的数据存储区域是否已经被释放掉了 return –ENOMEM; //如果是,则返回,告知系统该设备无法打开,-ENOMEM是一个内核中定义的宏,它代表的意思是//“error,no memory”。 }//如果上述情况均未发生,一切正常,则打开设备,对于这个虚拟的块设备,其实没有什么好打开的,不过还是意思一下:blkdemo_dev[num].use_cnt++; //将设备的使用计数加1,表示又多了个程序使用该设备。 MOD_INC_USE_COUNT; //并且将内核所管理的模块使用计数也加1,好让内核也知道多了一个程序使用该虚拟设备模块。模块使//用计数是内核管理模块时要用的,只有当一个设备的模块使用计数为0时才能卸载该模块,这个值也可以通过lsmod命令查看到return(0);//返回0,表示设备已成功打开 } 虚拟块设备的释放函数(release()): int blkdemo_release(struct inode *inode, struct file *filp) {//释放并不代表将此设备从内核中移除了,他是对调用它的程序而言的,只表示这个程序不再使用该设备了int num;

相关文档