文档库 最新最全的文档下载
当前位置:文档库 › RNAseq(转录组)数据提交 NCBI 快速入门指南

RNAseq(转录组)数据提交 NCBI 快速入门指南

RNAseq数据提交NCBI快速入门指南

官网:https://www.wendangku.net/doc/7014306823.html,/

一上传前准备工作

1申请NCBI账号:

点击申请账号

登陆已申请的账号点击申请账号

用户名密码

邮箱

验证码

点击注册注意:新申请的账号需要登录邮箱验证后才能提交

2准备需要上传的原始数据:

注意事项:

(1)所有样本的原始数据需放在同一目录下

(2)原始数据为fastq格式的压缩文件。测序公司提供

(3)若为双端测序,需要提供双端的原始数据,即R1端和R2端

二提交SRA的主要步骤

1进入提交界面:

点击

选择SRA数据库

点击进入

开始提交

2填写提交者信息:

*号为必填项名姓

邮箱primary邮箱是申请账号的邮箱,系统自动匹配,可更改,secondary邮箱为可选项

学院

学校

邮编和国家

学校所在街道和城市

3填写释放日期信息:

是否创建新BioProject,选择Yes

是否创建新BioSsamples,选择Yes

数据立即释放

数据释放日期可自定义,最长可延迟4年释放

4填写Project信息:

老师研究项目的标题

老师研究项目的简短描述

是否提交过数据到NCBI,有还是没有都选择No 该界面中此模块往下都无需填写

5选择BioSample类型:

红色方框内的类型是转录组样品常用的样品类型

样本为细菌,真菌类型

样本为动物类型

样本为无脊椎动物类型

样本为人

6填写BioSample属性表:

样本为植物类型

样本为病毒类型

下载TSV格式,填好后点击“选择文件”上传表格,文件只支持tsv和txt格式上传。

此网址详细介绍每一列的信息如何填写

动物类型属性表(https://www.wendangku.net/doc/7014306823.html,anism.animal.1.0.tsv )

植物类型属性表(Plant.1.0.tsv

绿色为必填项

蓝色至少选择一项黄色可不填

微生物类型属性表(Microbe.1.0.tsv)

7填写SRA Metadata信息:

下载文件,填好后点击“选择文件”上传表格,此文件为excel格式。

注:所有黄色区域是需要下拉选择的,不需打字,其余区域需要手动填写

8开始上传原始数据:

网页版

网页版传输入口

双端数据都需要上传

Linux版

高速传输ascp入口,命令行支持doc和linux

使用说明

9提交前预览:

检查释放日期,提交后不能更改

检查67步上传的文件是否还需要更改

检查样本个数以及双端是否正确

提交,等待审核,大约1-2个工作日即可完成

10查看投稿所用SRA号:

等待提交

开始审核

审核完成

点击

基因中常见的名词解释

基因组拼接中常见的名词解释 Read:高通量测序平台产生的序列就称为reads。 Contig:拼接软件基于reads之间的overlap区,拼接获得的序列称为Contig (重叠群)。 Scaffold:基因组de novo测序,通过reads拼接获得Contigs后,往往还需要构建454 Paired-end库或Illumina Mate-pair库,以获得一定大小片段(如3Kb、6Kb、10Kb、20Kb)两端的序列。基于这些序列,可以确定一些Contig之间的顺序关系,这些先后顺序已知的Contigs组成Scaffold。 Contig N50:Reads拼接后会获得一些不同长度的Contigs。将所有的Contig 长度相加,能获得一个Contig总长度。然后将所有的Contigs按照从长到短进行排序,如获得Contig 1,Contig 2,Contig 3...………Contig 25。将Contig按照这个顺序依次相加,当相加的长度达到Contig总长度的一半时,最后一个加上的Contig长度即为Contig N50。举例:Contig 1+Contig 2+ Contig 3 +Contig 4=Contig总长度*1/2时,Contig 4的长度即为Contig N50。Contig N50可以作为基因组拼接的结果好坏的一个判断标准。 Scaffold N50:Scaffold N50与Contig N50的定义类似。Contigs拼接组装获得一些不同长度的Scaffolds。将所有的Scaffold长度相加,能获得一个Scaffold 总长度。然后将所有的Scaffolds按照从长到短进行排序,如获得Scaffold 1,Scaffold 2,Scaffold 3...………Scaffold 25。将Scaffold按照这个顺序依次相加,当相加的长度达到Scaffold总长度的一半时,最后一个加上的Scaffold长度即为Scaffold N50。举例:Scaffold 1+Scaffold 2+ Scaffold 3 +Scaffold 4 +Scaffold 5=Scaffold总长度*1/2时,Scaffold 5的长度即为Scaffold N50。Scaffold N50可以作为基因组拼接的结果好坏的一个判断标准。 测序深度和覆盖度: 测序深度是指测序得到的总碱基数与待测基因组大小的比值。假设一个基因大小为2M,测序深度为10X,那么获得的总数据量为20M。 覆盖度是指测序获得的序列占整个基因组的比例。由于基因组中的高GC、重复序列等复杂结构的存在,测序最终拼接组装获得的序列往往无法覆盖有所的区域,这部分没有获得的区域就称为Gap。例如一个细菌基因组测序,覆盖度是98%,那么还有2%的序列区域是没有通过测序获得的。

有参考基因组的转录组生物信息分析

一、生物信息分析流程 获得原始测序序列(Sequenced Reads)后,在有相关物种参考序列或参考基因组的情况下,通过如下流程进行生物信息分析: 二、项目结果说明 1 原始序列数据 高通量测序(如illumina HiSeq TM2000/MiSeq等测序平台)测序得到的原始图像数据文件经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(reads)的序列信息以及其对应的测序质量信息。 FASTQ格式文件中每个read由四行描述,如下: @EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG GCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT + @@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF 其中第一行以“@”开头,随后为illumina 测序标识符(Sequence Identifiers)和描述文字(选择性部分);第二行是碱基序列;第三行以“+”开头,随后为illumina 测序标识符(选择性部分);第四行是对应序列的测序质量(Cock et al.)。 illumina 测序标识符详细信息如下:

第四行中每个字符对应的ASCII值减去33,即为对应第二行碱基的测序质量值。如果测序错误率用e表示,illumina HiSeq TM2000/MiSeq的碱基质量值用Q phred 表示,则有下列关系: 公式一:Q phred = -10log 10 (e) illumina Casava 1.8版本测序错误率与测序质量值简明对应关系如下: 2 测序数据质量评估 2.1 测序错误率分布检查 每个碱基测序错误率是通过测序Phred数值(Phred score, Q phred )通过公式1转化得到,而Phred 数值是在碱基识别(Base Calling)过程中通过一种预测碱基判别发生错误概率模型计算得到的,对应关系如下表所显示: illumina Casava 1.8版本碱基识别与Phred分值之间的简明对应关系 测序错误率与碱基质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。对于RNA-seq技术,测序错误率分布具有两个特点: (1)测序错误率会随着测序序列(Sequenced Reads)的长度的增加而升高,这是由于测序过程中化学试剂的消耗而导致的,并且为illumina高通量测序平台都具有的特征(Erlich and Mitra, 2008; Jiang et al.)。 (2)前6个碱基的位置也会发生较高的测序错误率,而这个长度也正好等于在RNA-seq 建库过程中反转录所需要的随机引物的长度。所以推测前6个碱基测序错误率较高的原因为随机引物和RNA模版的不完全结合(Jiang et al.)。测序错误率分布检查用于检测在测序长度范围内,有无异常的碱基位置存在高错误率,比如中间位置的碱基测序错误率显着高于其他位置。一般情况下,每个碱基位置的测序错误率都应该低于0.5%。 图2.1 测序错误率分布图

高通量测序常用名词解释

什么是高通量测序? 高通量测序技术(High-throughput sequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变, 一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。 什么是Sanger法测序(一代测序) Sanger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP 缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。 什么是基因组重测序(Genome Re-sequencing) 全基因组重测序是对基因组序列已知的个体进行基因组测序,并在个体或群体水平上进行差异性分析的方法。随着基因组测序成本的不断降低,人类疾病的致病突变研究由外显子区域扩大到全基因组范围。通过构建不同长度的插入片段文库和短序列、双末端测序相结合的策略进行高通量测序,实现在全基因组水平上检测疾病关联的常见、低频、甚至是罕见的突变位点,以及结构变异等,具有重大的科研和产业价值。 什么是de novo测序 de novo测序也称为从头测序:其不需要任何现有的序列资料就可以对某个物种进行测序,利用生物信息学分析手段对序列进行拼接,组装,从而获得该物种的基因组图谱。获得一个物种的全基因组序列是加快对此物种了解的重要捷径。随着新一代测序技术的飞速发展,基因组测序所需的成本和时间较传统技术都大大降低,大规模基因组测序渐入佳境,基因组学研究也迎来新的发展契机和革命性突破。利用新一代高通量、高效率测序技术以及强大的生物信息分析能力,可以高效、低成本地测定并分析所有生物的基因组序列。 什么是外显子测序(whole exon sequencing) 外显子组测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究已知基因的SNP、Indel等具有较大的优势,但无法研究基因组结构变异如染色体断裂重组等。 什么是mRNA测序(RNA-seq) 转录组学(transcriptomics)是在基因组学后新兴的一门学科,即研究特定细胞在某一功能状态下所能转录出来的所有RNA(包括mRNA和非编码RNA)的类型与拷贝数。Illumina 提供的mRNA测序技术可在整个mRNA领域进行各种相关研究和新的发现。mRNA测序不对引物或探针进行设计,可自由提供关于转录的客观和权威信息。研究人员仅需要一次试验即可快速生成完整的poly-A尾的RNA完整序列信息,并分析基因表达、cSNP、全新的转录、全新异构体、剪接位点、等位基因特异性表达和罕见转录等最全面的转录组信息。简单的样

转录组学主要技术与应用研究

转录组学主要技术及其应用研究 姓名:梁迪 专业:微生物学 年级:2013 学号:3130179 二零一四年六月十五日

转录学主要技术及其应用研究 摘要:转录组(transcriptome)是特定组织或细胞在某一发育阶段或功能状态下转录出来的所有RNA的集合。转录组学研究能够从整体水平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理。目前,转录组学研究技术主要包括两种:基于杂交技术的微阵列技术(microarray)和基于测序技术的转录组测序技术,包括表达序列标签技术(Expression Sequence Tags Technology,EST)、基因表达系列分析技术(Serial analysis of gene expression,SAGE)、大规模平行测序技术(Massively parallel signature sequencing,MPSS)、以及RNA 测序技术(RNA sequencing,RNA-seq)。文章主要介绍了以上转录组学主要研究技术的原理、技术特点及其应用,并就这些技术面临的挑战和未来发展前景进行了讨论,为其今后的研究与应用提供参考。 关键词:转录组学;微阵列技术;转录组测序技术;应用 Study on the main technologies of transcriptomics and their application Abstract: The transcriptome is the complete set of transcripts for certain type of cells or tissues in a specific developmental stage or physiological condition. Transcriptome analysis can provide a comprehensive understanding of molecularmechanisms involved in specific biological processes and diseases from the information on gene structure and function. Currently, transcriptomics technology mainly includes microarry -based on hybridization technology and transcriptome sequencing-based on sequencing technology, involving Expression sequence tags technology, Serial analysis of gene expression, Massively parallel signature sequencing and RNA sequencing. The detailed principles, technical characteristics and applications of the main transcriptomics technologies are reviewed here, and the challenges and application potentials of these technologies in the future are also discussed. This will present the useful information for other researchers. Keywords: transcriptomics ; microarray ; transcriptome sequencing; application 随着后基因组时代的到来,转录组学、蛋白质组学、代谢组学等各种组学技术相继出现,其中转 录组学是率先发展起来以及应用最广泛的技术[1]。

高通量测序 名词解释

高通量测序基础知识汇总 一代测序技术:即传统的Sanger测序法,Sanger法是根据核苷酸在待定序列模板上的引物点开始,随机在某一个特定的碱基处终止,并且在每个碱基后面进行荧光标记,产生以A、T、C、G结束的四组不同长度的一系列核苷酸,每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH 基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,通过检测得到DNA碱基序列。 二代测序技术:next generation sequencing(NGS)又称为高通量测序技术,与传统测序相比,二代测序技术可以一次对几十万到几百万条核酸分子同时进行序列测定,从而使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(Deep sequencing)。NGS主要的平台有Roche(454 & 454+),Illumina(HiSeq 2000/2500、GA IIx、MiSeq),ABI SOLiD等。 基因:Gene,是遗传的物质基础,是DNA或RNA分子上具有遗传信息的特定核苷酸序列。基因通过复制把遗传信息传递给下一代,使后代出现与亲代相似的性状。 DNA:Deoxyribonucleic acid,脱氧核糖核酸,一个脱氧核苷酸分子由三部分组成:含氮碱基、脱氧核糖、磷酸。脱氧核糖核酸通过3',5'-磷酸二酯键按一定的顺序彼此相连构成长链,即DNA链,DNA链上特定的核苷酸序列包含有生物的遗传信息,是绝大部分生物遗传信息的载体。

NCBI分子数据库介绍

NCBI分子数据库介绍 信息来源:中国生命科学论坛更新时间:2003-10-12 2:33:00 核酸序列(nucleotides) ·Entrez核酸- 用accession number,作者姓名,物种,基因/蛋白名字,以及很多其它的文本术语来搜索核酸序列记录(在GenBank + PDB中)。更多的关于Entrez的信息见下。如果要检索大量数据,也可使用Batch Entrez (批量Entrez)。 ·RefSeq - NCBI数据库的参考序列。校正的,非冗余集合,包括基因组DNA contigs,已知基因的mRNAs和蛋白,在将来,整个的染色体。Accession numbers用NT_xxxxxx, NM_xxxxxx, NP_xxxxxx, 和NC_xxxxxx的形式来表示。 ·dbEST - 表达序列标签数据库,短的、单次(测序)阅读的cDNA序列。也包括来自于差异显示和RACE实验的cDNA序列。 ·dbGSS -基因组调查序列的数据库,短的、单次(测序)阅读的cDNA序列,exon trap获得的序列,cosmid/BAC/YAC 末端,及其他。 ·dbSTS -序列标签位点的数据库,短的在基因组上可以被唯一操作的序列,用于产生作图位点。 ·dbSNP - 单核苷酸多态性数据库,包括SNPs,小范围的插入/缺失,多态重复单元,和微卫星变异。 完整的基因组 ·参见Genome 和Maps 部分,包括各种物种资源,人,小鼠,大鼠,酵母,线虫,疟原虫,细菌,病毒,viroids,质粒。 ·UniGene - 被整理成簇的EST和全长mRNA 序列,每一个代表一种特定已知的或假设的人类基因,有定位图和表达信息以及同其它资源的交叉参考。序列数据可以以cluster 形式在Unigene 网页下载,完整的数据可以从FTP站点repository/UniGene 目录下下载。 1.奶牛UniGene 2.人类UniGene 3.小鼠UniGene 4.大鼠UniGene 5.斑马鱼UniGene ·BLAST - 将你的序列同核酸库中的的序列比较,检索相似的序列。(更详细的信息见下面Tools/Sequence 相似搜索部分) 蛋白序列(proteins) · Entrez蛋白-用accession number,作者姓名,物种,基因/蛋白名字,以及很多其它的文本术语来搜索蛋白序列记录(在GenPept + Swiss-Prot + PIR + RPF + PDB中)。更多的关于Entrez的信息见下。如果要检索大量数据,也可使用Batch Entrez(批量Entrez)。

(完整版)测序常用名词解释整理

高通量测序领域常用名词解释大全 什么是高通量测序? 高通量测序技术(High-throughput sequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变, 一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。 什么是Sanger法测序(一代测序) Sanger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。

什么是基因组重测序(Genome Re-sequencing) 全基因组重测序是对基因组序列已知的个体进行基因组测序,并在个体或群体水平上进行差异性分析的方法。随着基因组测序成本的不断降低,人类疾病的致病突变研究由外显子区域扩大到全基因组范围。通过构建不同长度的插入片段文库和短序列、双末端测序相结合的策略进行高通量测序,实现在全基因组水平上检测疾病关联的常见、低频、甚至是罕见的突变位点,以及结构变异等,具有重大的科研和产业价值。 什么是de novo测序 de novo测序也称为从头测序:其不需要任何现有的序列资料就可以对某个物种进行测序,利用生物信息学分析手段对序列进行拼接,组装,从而获得该物种的基因组图谱。获得一个物种的全基因组序列是加快对此物种了解的重要捷径。随着新一代测序技术的飞速发展,基因组测序所需的成本和时间较传统技术都大大降低,大规模基因组测序渐入佳境,基因组学研究也迎来新的发展契机和革命性突破。利用新一代高通量、高效率测序技术以及强大的生物信息分析能力,可以高效、低成本地测定并分析所有生物的基因组序列。

转录组测序技术的应用及发展综述

转录组测序技术的应用及发展综述 摘要:转录组测序(RNA-Seq)作为一种新的高效、快捷的转录组研究手段正在改变着人们对转录组的认识。RNA-Seq利用高通量测序技术对组织或细胞中所有RNA 反转录而成cDNA文库进行测序,通过统计相关读段(reads)数计算出不同RNA的表达量,发现新的转录本;如果有基因组参考序列,可以把转录本映射回基因组,确定转录本位置、剪切情况等更为全面的遗传信息,已广泛应用于生物学研究、医学研究、临床研究和药物研发等。文章主要比较近年来转录组研究的几种方法和几种RNA-Seq的研究平台,着重介绍RNA-Seq的原理、用途、步骤和生物信息学分析,并就RNA-Seq技术面临的挑战和未来发展前景进行了讨论及在相关领域的应用等内容,为今后该技术的研究与应用提供参考。 关键词: RNA-Seq;原理应用;方法;挑战;发展前景 Abstract:Transcriptome sequencing (RNA-Seq) is a kind of high efficiency, quick transcriptome research methods are changing our understanding of transcriptome. RNA-Seq to use high-throughput sequencing of tissues or cells of all RNA reverse transcription into cDNA library were sequenced, through statistical correlation read paragraph (reads) numbers were calculated from the expression of different RNA transcripts, find new; if the genome reference sequence, the transcripts mapped to genomic, determine the position of the transcription shear condition, more genetic information, has been widely used in biological research, medical research, clinical research and drug development. This paper compared several methods of platform transcriptome studies and several kinds of RNA-Seq in recent years, RNA-Seq focuses on the principle, purpose, steps and bioinformatics analysis, and discusses the RNA-Seq technology challenges and future development prospect and the application in related field and other content, provide the reference for the research and application of the technology future. Key word:RNA-Seq ;application; principle; method; challenge; development prospects

华大转录组测序内部培训资料

(内部资料,请勿外传) 动植物转录组 (Transcriptome ) 产品说明书 科技服务体系 动植物研究方向

版本信息: 2011年07月08日

目录 1产品概述 (1) 1.1 什么是转录组测序 (1) 1.2 转录组测序的产品功能 (1) 1.3 转录组测序产品优势 (1) 1.4 转录组测序产品发展史 (1) 1.5 项目执行时间 (3) 1.6 产品交付结果 (3) 2转录组测序研究方法 (4) 2.1 产品策略 (4) 2.2 样品准备 (5) 2.2.1 RNA样品要求 (5) 2.2.2 RNA样品送样标准 (6) 2.2.3 RNA提取的组织用量建议 (6) 2.3 样品运输要求 (7) 2.3.1 样品包装 (7) 2.3.2 样品标识 (8) 2.3.3 样品运输条件 (8) 2.4 文库的构建及测序 (9) 2.4.1 实验流程 (9) 2.4.2 测序及数据处理 (10) 2.5 转录组生物信息学分析 (10) 2.5.1 没有参考序列的转录组De novo (10) 2.5.2 有参考序列的转录组Re-sequencing (18) 2.5.3 参考文献 (24) 3成功案例 (25)

3.1 华大成功案例 (25) 3.2 相关文献解读 (26)

1产品概述 1.1什么是转录组测序? 转录组测序的研究对象为特定细胞在某一功能状态下所能转录出来的所有RNA的总和,包括mRNA和非编码RNA。转录组测序是指用新一代高通量测序技术对物种或者组织的转录本进行测序并得到相关的转录本信息。 1.2转录组测序的产品功能 1.获得物种或者组织的转录本信息; 2.得到转录本上基因的相关信息,如:基因结构,功能等; 3.发现新的基因; 4.基因结构优化; 5.发现可变剪切; 6.发现基因融合; 7.基因表达差异分析。 1.3转录组测序产品优势 覆盖度高:检测信号是数字信号,几乎覆盖所有转录本; 检测精度高:几十到数十万个拷贝精确计数; 分辨率高:可以检测到单碱基差异,基因家族中相似基因及可变剪切造成的不同转录本的表达; 完成速度快:整个项目周期只需要50个工作日时间; 成本低:基本上每个实验室可以承担相关研究经费。 1.4转录组测序产品发展史 转录组的研究手段大体包括:EST序列构建及研究,芯片研究,运用第二代测序技术研究等。EST是从一个随机选择的cDNA 克隆进行5’端和3’端单一次sanger测序获得的短的cDNA 部分序列,代表一个完整基因的一小部分,在

转录组RNAseq术语解释

RNA-Seq名词解释 1.index 测序的标签,用于测定混合样本,通过每个样本添加的不同标签进行数据区分,鉴别测序样品。 2.碱基质量值 (Quality Score或Q-score)是碱基识别(Base Calling)出错的概率的整数映射。碱基质量值越高 表明碱基识别越可靠,碱基测错的可能性越小。 3.Q30 碱基质量值为Q30代表碱基的精确度在99.9%。 4.FPKM(Fragments Per Kilobase of transcript per Million fragments mapped) 每1百万个map上的reads中map到外显子的每1K个碱基上的fragment个数。计算公式为 公式中,cDNA Fragments 表示比对到某一转录本上的片段数目,即双端Reads数目;Mapped Reads(Millions)表示Mapped Reads总数, 以10为单位;Transcript Length(kb):转录本长度,以kb个碱基为单位。 5.FC(Fold Change) 即差异表达倍数。 6.FDR(False Discovery Rate) 即错误发现率,定义为在多重假设检验过程中,错误拒绝(拒绝真的原(零)假设)的个数占所有被拒绝 的原假设个数的比例的期望值。通过控制FDR来决定P值的阈值。 7.P值(P-value) 即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P<0.05 为显著,P<0.01为非常显著,其含义是样本间的差异由抽样误差所致的概率小于0.05或0.01。 8.可变剪接(Alternative splicing)

转录组测序RNA-seq技术转录组是某个物种或者特定细胞类型产生

转录组测序(RNA-seq)技术 转录组是某个物种或者特定细胞类型产生的所有转录本的集合。转录组研究能够从整体水平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理,已广泛应用于基础研究、临床诊断和药物研发等领域。基于Illumina高通量测序平台的转录组测序技术使能够在单核苷酸水平对任意物种的整体转录活动进行检测,在分析转录本的结构和表达水平的同时,还能发现未知转录本和稀有转录本,精确地识别可变剪切位点以及cSNP(编码序列单核苷酸多态性),提供最全面的转录组信息。相对于传统的芯片杂交平台,转录组测序无需预先针对已知序列设计探针,即可对任意物种的整体转录活动进行检测,提供更精确的数字化信号,更高的检测通量以及更广泛的检测范围,是目前深入研究转录组复杂性的强大工具。 技术优势: 数字化信号:直接测定每个转录本片段序列,单核苷酸分辨率的精确度,同时不存在传统微阵列杂交的荧光模拟信号带来的交叉反应和背景噪音问题。 高灵敏度:能够检测到细胞中少至几个拷贝的稀有转录本。 任意物种的全基因组分析:无需预先设计特异性探针,因此无需了解物种基因信息,能够直接对任何物种进行转录组分析。同时能够检测未知基因,发现新的转录本,并精确地识别可变剪切位点及cSNP,UTR区域。 更广的检测范围:高于6个数量级的动态检测范围,能够同时鉴定和定量稀有转录本和正常转录本。 应用领域:转录本结构研究(基因边界鉴定、可变剪切研究等),转录本变异研究(如基因融合、编码区SNP研究),非编码区域功能研究(Non-coding RNA研究、microRNA前体研究等),基因表达水平研究以及全新转录本发现。 图1 RNA-seq获得的数据能够进行全面的数据挖掘,既能够进行基因结构分析,鉴定UTR、可变剪切位点,也能够发现新的转录本及非编码RNA,比较样本间的表达水平差异

一步一步教你使用NCBI数据库资源

一步一步教你使用NCBI数据库资源 随着ncbi数据库各种资源的涌现,NCBI已经成为科研工作者必不可少的资料查找,数据分析的工具。那么NCBI 数据如何使用,新手入门一步一步教你认识和使用NCBI数据库。 一综合数据库 NCBI数据库集美国国立生物技术信息中心(National Center for Biotechnology Information),即我们所熟知的NCBI 是由美国国立卫生研究院(NIH)于1988年创办。创办NCBI 的初衷是为了给分子生物学家提供一个信息储存和处理的 系统。除了建有GenBank核酸序列数据库(该数据库的数据资源来自全球几大DNA数据库,其中包括日本DNA数据库DDBJ、欧洲分子生物学实验室数据库EMBL以及其它几个知名科研机构)之外,NCBI还可以提供众多功能强大的数据检索与分析工具。目前,NCBI提供的资源有Entrez、Entrez Programming Utilities、My NCBI、PubMed、PubMed Central、Entrez Gene、NCBI Taxonomy Browser、BLAST、BLAST Link (BLink)、Electronic PCR等共计36种功能,而且都可以在NCBI的主页https://www.wendangku.net/doc/7014306823.html,上找到相应链接,其中多

半是由BLAST功能发展而来的。 1 NCBI最新进展 1.1 PubMed搜索功能的增强 去年,NCBI对PubMed进行了几项改进工作,改动最大的是搜索界面和摘要浏览界面。其中,搜索界面中新增了“Advanced Search”选项(这实际上是对以往“Limits”和“Preview/Index”功能的整合),并且增加了一个新的窗口,用户可以在此窗口下通过“论文作者名”、“论文所属杂志名称”、“论文出版日期”等限定条件进行搜索。而且,“论文作者名”和“论文所属杂志名称”还设有文本框自动填充功能。现在,在PubMed数据库中进行文本搜索的同时还可以立即通过两个“内容传感器(content sensors)”进行分析。一个“内容传感器”是根据作者姓名、所属杂志名称或杂志名缩写、出版日期、卷号或刊号等信息进行分析,然后将符合条件的搜索结果排列到结果列表的顶端。另一个“内容传感器”是根据文章是否与用户给出的条件,例如是否与某种药物相关,在NCBI的新增数据库PubMed Clinical Q&A 中进行搜索,然后给出搜索结果。

测序常用名词解释

测序常用名词解释整理

作者: 日期:

高通量测序领域常用名词解释大全 物种基因组大小发表时间拟南芥(Arabidopsis ilialiaiiaj125Mb2000J1 sativa)400Mb2002.4 %^(Populus trichocaipa)480Mb2006.9葡萄(Vitis vinifera)490Mb2007.9小yL^^(Physcomtrella patens)480Mb2008J 番木瓜(Cnnd 口papa) -a)370Mb2008.4咼粱(Soj^ghutn bicolor)P 730Mb2009J 玉来侶%mays)2300Mb2009JI 黄瓜f a ?mi ber)350M2009.11 ^^^jlycine max)1100Mb2010,1 一穗短柄草(Brachypodiim distachyon)355Mb 2010.2 什么是高通量测序? 高通量测序技术(High-throughput seque ncing, HTS )是对传统San ger测序(称为一代测序技术)革命性的改变,一次对几十万到几百万条核酸分子进行序列测定,因此在有些文献中称其为下一代测序技术(next generation sequencing NGS )足见其划时代的改变,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(Deep sequencing。 什么是Sanger法测序(一代测序) San ger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或 非同位素标记进行检测。

最新生信名词解释

Small RNA:生物体内一类高度保守的重要的功能分子,其大小在18-30nt,包括microRNA、siRNA、snRNA、snoRNA和piRNA(piwi-interacting RNA)等,它的主要功能是诱导基因沉默,调控细胞生长、发育、基因转录和翻译等生物学过程。以miRNA为例介绍它们的功能:miRNA与RNA诱导沉默复合体(RNA induced silencing complex, RISC)结合,并将此复合体与其互补的mRNA序列结合,根据靶序列与miRNA的互补程度,从而导致靶序列降解或干扰靶序列蛋白质的翻译过程。 SD 区域:Segment duplication,串联重复是由序列相近的一些DNA 片段串联组成。串联重复在人类基因多样性的灵长类基因中发挥重要作用。 Genotype and phenotype:基因型与表型,基因型是指某一生物个体全部基因组合的总称;表型,又称性状,是基因型和环境共同作用的结果。 基因组:Genome,单倍体细胞核、细胞器(线粒体、叶绿体)或病毒粒子所含的全部DNA 分子或RNA分子。 全基因组de novo测序:又称从头测序,它不依赖于任何现有的序列资料,而直接对某个物种的基因组进行测序,然后利用生物信息学分析手段对序列进行拼接、组装,从而获得该物种的基因组序列图谱。 全基因组重测序:对已有参考序列(Reference Sequence)物种的不同个体进行基因组测序,并以此为基础进行个体或群体水平的遗传差异性分析。全基因组重测序能够发现大量的单核苷酸多态性位点(SNP)、拷贝数变异(Copy Number Variation,CNV)、插入缺失(InDel,Insertion/Deletion)、结构变异(Structure Variation,SV)等变异类型,以准确快速的方法将单个参考基因组信息上升为群体遗传特征。 转录组:Transcriptome,是指特定生长阶段某组织或细胞内所有转录产物的集合;狭义上指所有mRNA的集合。 转录组测序:对某组织在某一功能状态下所能转录出来的所有RNA进行测序,获得特定状态下的该物种的几乎所有转录本序列信息。通常转录组测序是指对mRNA进行测序获得相关序列的过程。其根据所研究物种是否有参考基因组序列分为转录组de novo测序(无参考基因组序列)和转录组重测序(有参考基因组序列)。 外显子组测序:是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究已知基因的SNP、InDel 等具有较大的优势。 目标区域测序:应用相关试剂盒对基因组上感兴趣的目标区域进行捕获富集后进行大规模测序,一般需要根据目标区域专门定制捕获芯片。 宏基因组:Metagenome,指特定生活环境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因。目前主要指环境样品中的细菌和真菌的基因组总和。 宏基因组16S rRNA测序:可以对特定环境下的细菌和古细菌群体的微生物种类和丰度进行有效的鉴定。对不同地点、不同条件下的多个样本16S rRNA的PCR产物平行测序,可以比较不同样本间的微生物组成及成分差异,进而阐明物种丰度、种群结果等生态学信息。 表观遗传学:Epigenetics,是指在基因组DNA序列没有改变的情况下,基因的表达调控和性状发生了可遗传的变化。表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic impriting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等。 全基因组甲基化测序:DNA 甲基化是指在DNA 甲基化转移酶的作用下,在基因组CpG 二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。DNA 甲基化已经成为表观遗传学和表观基因组学的重要研究内容。甲基化是基因表达的主要调控方式之一,研究染色体DNA甲基化情况是了解基因调控的重要手段。对已经有参考基因组的物种的基因组DNA用标准亚硫

NCBI_功能详细介绍[1]

GenBank Overview 基本信息 ?什么是GenBank?GenBank是一个有来自于70,000多种生物的核苷酸序列的数据库。每条纪录都有编码区(CDS)特征的注释,还包括氨基酸的翻译。GenBank属于一个序列数据库的国际合作组织,包括EMBL和DDBJ。 ?纪录样本- 关于GenBank的各个字段的详细描述,以及同Entrez搜索字段的交叉索引。 ?访问GenBank - 通过Entrez Nucleotides来查询。用accession number,作者姓名,物种,基因/蛋白名字,还有许多其他的文本术语来查询。关于Entrez更多的信息请看下文。用BLAST来在GenBank和其他数据库中进行序列相似搜索。用E-mail来访问Entrez和BLAST可以通过Query 和BLAST服务器。另外一种选择是可以用FTP下载整个的GenBank和更新数据。 ?增长统计- 参见公布通知的2.2.6(每个分类的统计),2.2.7(每个物种的统计),2.2.8(GenBank 增长)小节。 ?公布通知,最新- 最近和即将有的变化,GenBank的分类,数据增长统计,GenBank的引用。 ?公布通知,旧- 同上相同,是过去公布的统计。 ?遗传密码- 15个遗传密码的概要。用来确保GenBank中纪录的编码序列被正确的翻译。(向)GenBank提交(数据) ?关于提交序列数据,收到accession number,和对纪录作更新的一般信息。 ?BankIt - 用于一条或者少数条提交的基于WWW的提交工具软件。(请在提交前用VecScreen去除载体) ?Sequin - 提交软件程序,用于一条或者很多条的提交,长序列,完整基因组,alignments,人群/种系/突变研究的提交。可以独立使用,或者用基于TCP/IP的“network aware”模式,可以链接到其他NCBI的资源和软件比如Entrez和PowerBLAST。(请在提交前用VecScreen去除载体)?ESTs - 表达序列标签,短的、单次(测序)阅读的cDNA序列。也包括来自于差异显示和RACE 实验的cDNA序列。 ?GSSs - 基因组调查序列,短的、单次(测序)阅读的cDNA序列,exon trap获得的序列,cosmid/BAC/YAC末端,及其他。 ?HTGs - 来自于大规模测序中心的高通量基因组序列,未完成的(阶段0,1,2)和完成的(阶段3)序列。(注意:完成的人类的HTG序列可以同时在GenBank和Human Genome Sequencing页面上访问。) ?STSs - 序列标签位点。短的在基因组上可以被唯一操作的序列,用于产生作图位点。 ?注:SNPs - 人类的和其他物种的遗传变异数据可以提交到NCBI数据库的单核苷酸多态性库中(dbSNP)。 国际核苷酸序列数据库合作组织 ?GenBank,DDBJ,EMBL - 合作计划的概述,并链接到相应的主页。GenBank,DDBJ(DNA Data Bank of Japan),and EMBL (European Molecular Biology Laboratory)数据库共享的数据是每天都交换的,因此他们是相等的。数据纪录的格式和搜索方式可能会不一样,但是accession number,序列数据和注解都是一模一样的。即,你可以用accession number U12345在GenBank,DDBJ或EMBL中查找相应纪录,得到的结果是完全一样的序列数据,参考内容等等。 ?DDBJ/EMBJ/GenBank特性表—特性表格式和标准被合作数据库用在序列记录的注释上,使得数据共享成为可能,包括详细的描述生物特性和特性限定语的附录,以及IUPAC规定的核苷酸和氨基酸的代号。

相关文档