文档库 最新最全的文档下载
当前位置:文档库 › Evaluation of Smart Grid and Civilian UAV Vulnerability to GPS Spoofing Attacks

Evaluation of Smart Grid and Civilian UAV Vulnerability to GPS Spoofing Attacks

Evaluation of Smart Grid and Civilian UAV Vulnerability to GPS Spoofing Attacks
Evaluation of Smart Grid and Civilian UAV Vulnerability to GPS Spoofing Attacks

Evaluation of Smart Grid and Civilian UA V Vulnerability to GPS Spoo?ng Attacks Daniel P.Shepard,Jahshan A.Bhatti,and Todd E.Humphreys

The University of Texas at Austin

Aaron A.Fansler

Northrop Grumman Information Systems

BIOGRAPHIES

Daniel P.Shepard is pursing a Ph.D.in the Depart-ment of Aerospace Engineering and Engineering Me-chanics at The University of Texas at Austin,where he also received his B.S.He currently works in the University of Texas at Austin Radionavigation Lab. His research interests are in GNSS security,estima-tion and?ltering,and guidance,navigation,and con-trol.

Jahshan A.Bhatti is pursuing a Ph.D.in the Depart-ment of Aerospace Engineering and Engineering Me-chanics at the University of Texas at Austin,where he also received his M.S.and B.S.He is a member of the UT Radionavigation Laboratory.His research interests are in the development of small satellites, software-de?ned radio applications,space weather, and GNSS security and integrity.

Todd E.Humphreys is an assistant professor in the department of Aerospace Engineering and Engineer-ing Mechanics at the University of Texas at Austin, and Director of the UT Radionavigation Laboratory. He received a B.S.and M.S.in Electrical and Com-puter Engineering from Utah State University and a Ph.D.in Aerospace Engineering from Cornell Univer-sity.He specializes in applying optimal estimation and signal processing techniques to problems in ra-dionavigation.His recent focus is on radionavigation robustness and security.

Aaron A.Fansler serves as cyber critical infras-tructure protection(CCIP)program manager for Northrop Grumman Information System.He ob-tained a Master’s degree from Capitol College in in-formation assurance and is currently working on a Ph.D.in information assurance.ABSTRACT

Test results are presented from over-the-air civil GPS spoo?ng tests from a non-negligible stand-o?dis-tance.These tests were performed at White Sands Missile Range(WSMR)against two systems depen-dent on civil GPS,a civilian unmanned aerial vehi-cle(UAV)and a GPS time-reference receiver used in “smart grid”measurement devices.The tests against the civil UAV demonstrated that the UAV could be hijacked by a GPS spoofer by altering the UAV’s per-ceived location.The tests against the time-reference receiver demonstrated the spoofer’s capability of pre-cisely controlling timing from a distance,which means a spoofer could manipulate measurements used for smart grid control without requiring physical access to the measurement devices.Implications of spoo?ng attacks against each of these systems are also given. Recommendations are presented for regulations re-garding GPS receivers used in critical infrastructure applications.These recommendations include creat-ing a certi?cation process by which receivers are de-clared spoof-resistant if they are able to detect or mit-igate spoo?ng attacks in a set of canned scenarios. The recommendations also call for a mandate that only spoof-resistant receivers be used in applications classi?ed by the Department of Homeland Security (DHS)as national critical infrastructure.

I.Introduction

The design of the Global Positioning System came together over Labor Day weekend in1973.A group of hard-working engineers,mostly Air Force o?cers, decided over that weekend that the GPS satellites would broadcast two di?erent types of signals,a pre-cise military signal and a so-called clear access or C/A signal.The military signal would later be encrypted to prevent unauthorized use and imitation.But the clear access signal,true to its name,would be freely

Copyright c 2012by Daniel P.Shepard, Jahshan A.Bhatti,Todd E.Humphreys,and Aaron A.Fansler Preprint of the2012ION GNSS Conference Nashville,TN,September19–21,

2012

accessible to all.Detailed and accurate speci?cations for the clear access signal were later distributed to encourage its use.

The early designers of the GPS system,for whose tireless e?orts we are all indebted,knew GPS was go-ing to be valuable for civilians across the globe,but they never could have imagined just how valuable. An intentional degradation of the C/A signals called selective availability was discontinued by presidential order in2000.Instantaneously,every GPS receiver across the globe went from errors the size of a foot-ball?eld to errors the size of a small room.It is hard to overstate the impact of this improvement in ac-curacy.Before selective availability was turned o?, there were no in-car navigation systems giving turn-by-turn directions,because back then civilian GPS could not tell you what block you were on,let alone what street.For geolocation,accuracy matters. Things have only improved over the last decade. With more ground stations,better algorithms,more open-access signals,and better receivers,civil GPS—the family of open-access signals to which all civilians have access—can now tell you not only what street you are on,but what part of the street.The accuracy, transparency,and low cost of civil GPS have enabled a?restorm of innovation.After2000,any engineer designing a system for which accurate timing or lo-cation was important found GPS to be an almost ir-resistible option.As a result,civil GPS receivers are built deeply into our national infrastructure:from our smartphones to our cars to the Internet to the power grid to our banking and?nance institutions. Some call GPS the invisible utility:it works silently, and for the most part perfectly reliably,in devices all around us of which we are scarcely aware. However,the same transparency and predictability that has made civil GPS signals so wildly popular has given rise to a signi?cant vulnerability.Transparency and predictability make the civil GPS signals easy to imitate or counterfeit.Civil GPS signals are like Monopoly money:they have a detailed structure but no built-in protection against forgery.The fact that civil GPS is so easy to counterfeit,or“spoof,”would not be of importance if GPS were not so popular and its use so widespread.However,this is not the case. In2001,the U.S.Department of Transportation(US-DOT)evaluated the transportation infrastructure’s GPS vulnerability and?rst raised concern over the

threat of GPS spoofers[1].The USDOT report noted the absence of any o?-the-shelf defense against this type of attack and recommended a study to charac-terize spoo?ng e?ects and observables.In2008,re-searchers demonstrated that an inexpensive portable software-de?ned GPS spoofer could be built from o?-the-shelf components,again highlighting the threat of spoo?ng[2].

GPS spoo?ng is the act of producing a falsi?ed ver-sion of the GPS signal with the goal of taking con-trol of a target GPS receiver’s position-velocity-time (PVT)solution.This is most e?ectively accomplished when the spoofer has knowledge of the GPS signal as seen by the target receiver so that the spoofer can pro-duce a matched,falsi?ed version of the signal.In the case of military signals,this type of attack is nearly impossible because the military signal is encrypted and therefore unpredictable to a would-be spoofer.

The civil GPS signal,on the other hand,is publicly-known and readily predictable.

In recent years,civil GPS spoo?ng has been recog-nized as a serious threat to many critical infrastruc-ture applications which rely heavily on the publicly-known civil GPS signal.A number of promising methods are currently being developed to defend against civil GPS spoo?ng attacks,but it will still take a number of years before these technologies ma-ture and are implemented on a wide scale.Currently, there is a complete absence of any o?-the-shelf de-fense against a GPS spoo?ng attack.

On invitation from the Department of Homeland Se-curity(DHS),unclassi?ed spoo?ng tests were per-formed against two di?erent systems dependent on civil GPS,a civilian unmanned aerial vehicle(UAV) and a GPS time-reference receiver used in“smart grid”measurement devices.These tests took place at White Sands Missile Range(WSMR)on June19, 2012during the DHS GYPSY test exercise.In these tests,the capability of a spoofer,developed by the University of Texas at Austin(UT)Radionavigation Lab,to alter the timing and positioning of GPS re-ceivers in these two applications was demonstrated over-the-air from a stand-o?distance of about620 m.

This report details the tests performed at WSMR during the DHS GYPSY test exercise and the spoofer used for the tests.A discussion of the e?ects of GPS spoo?ng attacks on the two tested systems is also

2

provided.Finally,recommendations for regulations on spoo?ng resistance are presented.

II.Background

A.Civil UA Vs

A.1Iran Drone Incident

In December2011,Iran captured a U.S.Central In-telligence Agency(CIA)surveillance drone with only minor damage to the undercarriage of the drone, likely due to a rough landing when captured.An Iranian engineer claimed in an interview that“Iran managed to jam the drone’s communication links to American operators”causing the drone to shift into an autopilot mode that relies solely on GPS to guide itself back to its home base in Afghanistan.With the drone in this state,the Iranian engineer claimed that “Iran spoofed the drone’s GPS system with false co-ordinates,fooling it into thinking it was close to home and landing into Iran’s clutches”[3].

Although the Iranian claims are highly questionable, this incident left many unanswered questions as to the security of GPS systems on unmanned aerial vehicles (UAVs).The CIA drone should have been guiding itself based on the encrypted military GPS signals, which would be incredibly di?cult to spoof.How-ever,some experts have conjectured that simultane-ous jamming of the military signals and spoo?ng of the civilian signals might have worked if the drone had been programmed to fall back on the civilian GPS signals in the event that the military signals were jammed.This raises the question:How di?-cult would it be to spoof a UAV guiding itself based on civilian GPS signals?

A.2FAA Modernization and Reform Act of2012

In February2012,the U.S.Congress passed the FAA Modernization and Reform Act of2012.According to the Library of Congress summary,this act“requires the Secretary[of Transportation]to develop a plan to accelerate safely the integration by September30, 2015,of civil unmanned aircraft systems(UASes,or drones)into the national airspace system[and]de-termine if certain drones may operate safely in the national airspace system before completion of the plan”[4].

Such civilian UAVs would be primarily guided by civil GPS,which has been shown to be readily spoofa-ble in the lab.This would create a signi?cant po-tential hazard in the national airspace if the prob-lem of civil GPS spoo?ng is not?xed.Thousands of civilian UAVs(operated by postal services,police departments,research institutions,and others)could populate the skies in only a few years while still be-ing vulnerable to remote hijacking via GPS spoo?ng.

The passing of the FAA Modernization Act further emphasizes the need to examine the vulnerability of UAVs to GPS spoo?ng.

B.Synchrophasors

As electric power grids continue to expand through-out the world and transmission lines are pushed to their operating limits,the dynamic operation of the power system has become more of a concern and more di?cult to accurately model.More e?ective real-time system control is now seen as key to preventing wide-scale cascading outages like the2003Northeast Black-out[5].For years,electric power control centers have estimated the state of the power system(the posi-tive sequence voltage and phase angle at each net-work node)from measurements of power?ows.But for improved accuracy in the so-called power system state estimates,it will be necessary to feed existing estimators with a richer measurement ensemble or to measure the grid state directly.

Alternating current(AC)quantities have been ana-lyzed for over100years using a construct developed by Charles Proteus Steinmetz in1893,known as a “phasor”[6].In power systems,the phasor construct has commonly been used for analyzing AC quantities, assuming a constant frequency.A relatively new syn-chronization technique which allows referencing mea-sured current or voltage phasors to absolute time has been developed and is currently being implemented throughout the world.The measurements produced by this technique are known as“synchronized phasor measurements”or“synchrophasors.”Synchropha-sors provide a real-time snapshot of current and volt-age amplitudes and phases across a power system, and so can give a complete picture of the state of

a power system at any instant in time.This makes

synchrophasors useful for measurement,analysis,and control of the power grid.

A device used to measure synchrophasors is called 3

a phasor measurement unit(PMU).In a typical de-ployment,PMUs are integrated in protective relays and are sampled from widely dispersed locations in the power system network[7].In order to make ac-curate measurements of phase angles,PMUs must have a synchronized timing source accurate to better than26.5μs according to the IEEE C37.118Standard “Synchrophasors for Power Systems”[8].PMUs are synchronized with respect to the common time source of a GPS time-reference receiver to satisfy this accu-racy requirement.This raises two questions:

1.Can a civil GPS spoofer cause the time-reference receivers used to synchronize PMUs to violate the IEEE standard for synchrophasor measurements in a realistic scenario?

2.What e?ects could violating the standard have on control systems reliant on synchrophasor measure-ments?

III.Civil GPS Spoo?ng

The spoofer used for these tests was an improved ver-sion of the spoofer originally reported in Ref.[2].A picture of the civil GPS spoofer,developed by the UT Radionavigation Laboratory,is shown in Fig.1. It is the only spoofer reported in open literature to date that is capable of precisely aligning the spread-ing codes and navigation data of its counterfeit signals with those of the authentic GPS signals at the target receivers antenna.Such alignment capability allows the spoofer to carry out a sophisticated spoo?ng at-tack in which no obvious clues remain to suggest that an attack is underway.The spoofer is implemented on a portable software-de?ned radio platform with a digital signal processor(DSP)at its core.This plat-form comprises:

?A Radio Frequency(RF)front-end that down-mixes and digitizes GPS L1and L2frequencies.

?A DSP board that performs acquisition and track-ing of GPS L1C/A signals,calculates a navigation solution,predicts the L1C/A databits,and produces a consistent set of up to14spoofed GPS L1C/A signals with a user-controlled?ctitious implied navi-gation and timing solution.

?An RF back-end with a digital attenuator that con-verts the digital samples of the spoofed signals from the DSP to analog output at the GPS L1

frequency

Fig.1.The Civil GPS Spoofer.

with a user-controlled broadcast power.

?A single-board computer(SBC)that handles com-munication between the spoofer and a remote com-puter over the Internet.

A.Receiver/Spoofer Architecture

The spoofer was designed to operate in conjunc-tion with a software-de?ned GPS receiver.This de-sign aids the spoofer in producing counterfeit sig-nals which are initially precisely aligned with the au-thentic signals by leveraging the information obtained about the authentic signals through normal receiver operation.As can be seen from the block diagram of the spoofer in Fig.2,the spoofer control module uti-lizes the GPS observables(code phase,carrier phase, and Doppler frequency)and navigation solution out-put from the coupled receiver.These observables are modi?ed using a linearized measurement model and used to simulate n simulated or“spoofed”GPS signals whose suggested position-velocity-time(PVT) solution is o?set,by a user controlled amount,from the navigation solution of the coupled receiver.The spoofer also requires predicted navigation data from the coupled receiver or an external source,which al-lows the spoofer to produce GPS signals which are nearly indistinguishable from the authentic GPS sig-nals.Additional details on this architecture are pro-vided in Ref.[2]and[9].

4

Fig.2.A block diagram of the Spoofer.

B.Attack Strategy

The spoofer operates by ?rst acquiring and tracking GPS L1C/A signals to obtain a navigation solution.It then enters its “feedback”mode,in which it pro-duces a counterfeit,data-free feedback GPS signal that is summed with its own antenna input.The feedback signal is tracked by the spoofer and used to calibrate the delay between production of the digi-tized spoofed signal and output of the analog spoofed signal.This is necessary because the delay is non-deterministic on start-up of the receiver,although it stays constant thereafter.

After feedback calibration is complete and enough time has elapsed to build up a navigation data bit library,the spoofer is ready to begin an attack.Ini-tially,it produces signals that are aligned with the au-thentic signals at the location of the target antenna to within a few meters,but have low enough power that they remain far below the target receiver’s noise ?oor.The spoofer then raises the power of the spoofed sig-nals slightly above that of the authentic signals.At this point,the spoofer has taken control of the vic-tim receiver’s tracking loops and can slowly lead the spoofed signals away from the authentic signals,car-rying the receiver’s tracking loops with it.The tar-get receiver can be considered completely captured when either one of the following are true:(1)each spoofed signal has shifted by 2μs relative to the au-thentic signals,or (2)each spoofed signal is at least 10dB more powerful than the corresponding authen-tic signal.The latter option ensures that there is no signi?cant interaction between authentic and spoofed signals by simultaneously jamming and spoo?ng.

The UT spoofer and attack strategy have been tested against a wide variety of civil GPS receivers and have always been successful in commandeering the tar-get receiver.Several of the receivers that have been spoofed are highlighted in Ref.[10].C.Proximity Spoo?ng Attack

The spoo?ng tests performed in the past using the UT spoofer can all be considered to be proximity spoo?ng attacks.A proximity spoo?ng attack,as depicted in Fig.3,is a class of spoo?ng attacks where the spoofer is located within a few meters of the target receiver,so the distance between the spoofer and target receiver can be neglected.This attack scenario is described in detail in Ref.[2]and signi?cantly decreases the complexity of carrying out an attack.It should be noted that past tests have been performed through-cable or in an RF-shielded enclosure to avoid violating FCC regulations by broadcasting in the GPS band.D.Spoo?ng at a Distance

For an attack against a UAV,the only way the spoofer could be assured to be a negligible distance from the target receiver is if the spoofer were attached to the UAV.It is unlikely that this would be the case,so an attack against a UAV will not fall under the cate-gory of a proximity spoo?ng attack.For that matter,physical security of a receiver would often prevent proximity spoo?ng in most realistic scenarios.This requires the spoofer to consider the e?ects of spoo?ng from a non-negligible distance away if precise align-ment of the counterfeit and authentic signals is de-

5

Fig.3.A diagram of a proximity spoo?ng attack.

sired.In fact,?ne-grained control of a UAV via GPS spoo?ng is only possible with a meter-level accurate suggested position.Modi?cations were made to the UT spoofer to account for these e?ects so that meter-level accurate suggested position was achieved during the tests.

IV.UA V Spoo?ng Demonstration A.The UA V

The UAV spoo?ng tests targeted a UT-owned Hor-net Mini UAV supplied by Adaptive Flight,which is shown in Fig.4.The Hornet Mini is roughly ?ve feet long and weighs about 10pounds when fully loaded.The Mini’s sophisticated avionics package loosely couples an altimeter,a magnetometer,and a MEMS IMU package to a GPS receiver via an ex-tended Kalman ?lter.

The results of the spoo?ng tests with the Hornet Mini also apply to other similarly-designed UAVs;those whose navigation systems are centered on civil GPS.The UAVs designed in this way include those used in most non-US-military applications.It should be noted that no special alterations where made to the Hornet Mini for this test—it was in its “as sold”or “stock”con?guration.B.Setup

A schematic of the setup used for the spoo?ng tests against the civil UAV at WSMR appears in Fig.5.The spoofer was located on a hilltop with the receive antenna on the far side of the hilltop from the trans-mit antenna as shown in Fig.6.The UAV site

was

Fig.4.The Hornet Mini unmanned aerial vehicle (UAV),owned by the UT,used in the spoo?ng tests.

located in a sandy basin approximately 620m from the transmit antenna.C.Procedure

The UAV was commanded by its ground controller to hover approximately 40feet above ground level at the UAV site.After the initial ground control command was sent,the UAV maintained its hovering position automatically based on the navigation solution of its extended Kalman ?lter,which is based in part on GPS.At this point in the test procedure,the spoofed signals were not being broadcast:the UAV was only under the in?uence of the authentic GPS signals.The spoofer was then commanded to begin transmit-ting spoofed signals.To ensure seamless capture of the UAV’s GPS unit,the code phases of the spoofed signals were aligned to within meters of the authen-

6

Fig.5.A schematic of the UAV test setup.

tic signals at the location of the UAV’s GPS an-tenna.The spoofed signals overpowered their authen-tic counterparts and instantly captured the tracking loops within the UAV’s GPS receiver. Immediately after capture,the spoofer induced a false velocity and corresponding position change in the UAV’s GPS receiver,drawing the position reported by the UAV’s extended Kalman?lter away from the UAV’s commanded hover position.To compensate, the UAV’s?ight controller responded by moving in the opposite direction.A safety pilot was on hand to prevent the UAV from drifting out of control. This was necessary because by commandeering the UAV’s GPS receiver,the spoofer operator e?ectively breaks the UAV autopilot’s feedback control loop. The spoofer operator must now act as an operator-in-the-loop,which requires real-time,meter-level knowl-edge of the UAV’s true location.

D.Results

Between tests at WSMR and UT,the spoofer demon-strated short-term3-dimensional control of the UAV.

Thus,it is possible to hijack a civil UAV—in this case,

a fairly sophisticated one—by civil GPS spoo?ng.

Interestingly,the Hornet Mini relies only on its al-timeter for direct measurements of its vertical posi-tion;the GPS-measured vertical position is ignored.

This can be done with reasonable accuracy because of the Hornet Mini’s short?ight endurance(about20 minutes).However,the GPS vertical velocity does a?ect the extended Kalman?lter’s vertical coordi-nate estimate because the?lter propagates GPS ve-locity measurements through a UAV dynamics model to form an a priori vertical estimate that gets updated with the altimeter measurements.This dependence on GPS velocity allowed the spoofer operator to force the UAV vertically downward in dramatic fashion in the?nal three capture demonstrations.

E.Implications

These tests have demonstrated that civilian UAVs will be vulnerable to control by malefactors with a civil GPS spoofer looking to hijack or crash these UAVs unless their vulnerability to GPS spoo?ng is 7

Fig.6.Aerial view of the test site showing the spoofer location on a hilltop and the UAV site approximately0.62 kilometers away.

addressed.There are several reasons why someone may want to spoof a drone including fear over drones invading people’s privacy.This poses a signi?cant safety concern that could result in mid-air collisions with other aerial vehicles or buildings,not to mention loss of property.

Constructing from scratch a sophisticated GPS spoofer like the one developed by UT is not easy, nor is it within the capability of the average anony-mous hacker.It is orders of magnitude harder than developing a GNSS jammer.Nonetheless,the trend toward software-de?ned GNSS receivers for research and development,where receiver functionality is de-?ned entirely in software downstream of the A/D con-verter,has signi?cantly lowered the bar to develop-ing a spoofer in recent years.As a point of reference, we estimate that there are more than100researchers in universities around the world who are well-enough versed in software-de?ned GPS that they could de-velop a sophisticated spoofer from scratch with a year of dedicated e?ort.

More worrisome is the fact that one does not have to build a sophisticated spoofer like ours,capable of

aligning its signals precisely with authentic signals at the location of a chosen target,to spoof a civil GPS receiver.A low-cost o?-the-shelf GPS signal simula-tor would not permit the kind of seamless attack we carried out,but would be adequate to confuse and disrupt the navigation system of a commercial UAV.

V.GPS Time-Reference Receiver Spoo?ng Demonstration

A.Prior Tests

In December2011,the University of Texas at Austin and Northrop Grumman Information Systems per-formed laboratory spoo?ng tests against a GPS time-reference receiver supplying timing to a PMU.The minimum threshold for success in these spoo?ng tests was to show that a GPS spoofer could force a PMU to violate the IEEE C37.118Standard“Synchropha-sors for Power Systems”[8].The standard requires

a phase angle error of less than0.573?,which can be

equivalently and indistinguishably caused by a timing error of26.5μs.

8

Fig.7.A plot of the phase angle di?erence between the reference and spoofed PMUs.Normally the phase angle di?erence would be nearly zero in the absence of a spoo?ng attack.Point1marks the start of the test.Point2marks the point at which the spoofer has completely captured the target receiver.Point3marks the point at which the IEEE C37.118Standard has been broken.Point4marks the point at which the spoofer-induced velocity has reached its maximum value for the test.Point5marks the point at which the spoofed signal was removed.

In these tests,the phase angle of the spoofed PMU was monitored as well as the phase angle from a non-spoofed PMU in the same room.Figure7shows the measured phase angle di?erence between the refer-ence PMU,which was fed the true GPS signal,and the spoofed PMU throughout one entire test.This value would normally be less than a few degrees in the absence of spoo?ng,since the two PMUs are co-located.After the initial ten minute capture and carry-o?,which proceeds slowly to avoid detection, the spoofer accelerates its timing carry-o?and the reference and spoofed phase angles quickly diverge. Figures8through12show pictures of an oscillo-scope and the synchrophasor screen at di?erent times throughout the test.The oscilloscope shows two pulse-per-second(PPS)signals,with the upper yel-low pulse coming from a reference clock being fed true GPS and the lower blue pulse coming from the spoofed timing receiver.Both PPS signals are ini-tially aligned with each other,as seen in8.The syn-chrophasor screen displays the PMU phase angle data in real-time as phasors with the nominal60Hz op-erating frequency subtracted from the phase angle. The red and green phasors show the phase data from the reference and spoofed PMUs respectively.These

phasors are within a few degrees of each other at the beginning of the test,as seen in8.

At the time shown in Fig.10,the IEEE C37.118Stan-dard was broken.The spoofer was easily able to break this standard and go much further.The spoofer-induced phase angle error exceeded10o within15 minutes of the start of the test,as shown in Fig.11.

By the end of the test,the spoofer-induced phase an-gle error exceeded70o,as shown in Fig.7.

This test demonstrated that a proximity spoo?ng attack against a PMU can induce large,spoofer-controlled errors in the phase angle measured by the PMU in a relatively short period of time without causing any alarms in the system.A complete de-scription of these tests and their implications can be found in Ref.[11].

B.Setup

The setup for the WSMR time-reference receiver spoo?ng test was exactly the same as for the UAV spoo?ng tests,shown in Fig.5,on the spoofer end, and the target site was also at the same location, shown in Fig. 6.At the target site,there were two GPS time-reference receivers.The?rst time-reference receiver was representative of the ones used for PMU networks and served as the target of the spoo?ng attack.The other time-reference receiver was used as a time reference during the testing by un-plugging the GPS antenna before the spoo?ng attack began.This forced the receiver into its“holdover”

or GPS-denied mode.While in holdover mode,the time-reference receiver was able to ride through the spoo?ng attack using its highly stable ovenized crys-tal oscillator(OCXO)to maintain accurate timing.

C.Procedure

Before the spoo?ng attack began,the time alignment of the two time-reference receivers was observed on an oscilloscope using the IRIG-B output from the tar-get receiver and the PPS output from the reference receiver.The oscilloscope was set to trigger on the PPS output from the reference receiver.Once the two receivers agreed to within100ns,which is typi-cal for these two receivers,the reference receiver was unplugged from the antenna and allowed to transi-tion into holdover mode.Data was recorded from the oscilloscope to demonstrate this time alignment.

9

Fig.8.Pictures of the oscilloscope(left)and synchrophasor(right)screen at the start of the test,which is marked as point1in Fig.7.

Fig.9.Pictures of the oscilloscope(left)and synchrophasor(right)screen at about620seconds into the test,which is marked as point2in Fig.7.

Fig.10.Pictures of the oscilloscope(left)and synchrophasor(right)screen at about680seconds into the test,which is marked as point3in Fig.7.

10

Fig.11.Pictures of the oscilloscope (left)and synchrophasor (right)screen at about 870seconds into the test,which is marked as point 4in Fig.

7.

Fig.12.Pictures of the oscilloscope (left)and synchrophasor (right)screen at about 1370seconds into the test,which is marked as point 5in Fig.7.

At this point,the spoofer began transmitting spoofed signals that were initially nearly perfectly aligned with the authentic signals at the target site.The spoofed signals overpowered their authentic coun-terparts and instantly captured the tracking loops within the target receiver.The spoofer then began to drag the timing of the target receiver away from the truth until it reached 1μs of induced timing er-ror.This was chosen to demonstrate that the spoofer had precise control over the target receiver’s timing.Data was recorded from the oscilloscope to show that a 1μs induced timing error was achieved.

Finally,the spoofer was commanded to cease trans-mitting the spoofed signals.Once the target re-ceiver reacquired the authentic signals and corrected

its timing,data was recorded from the oscilloscope to demonstrate that the reference receiver did not drift signi?cantly in timing during the test.D.Results

Figure 13shows the data taken from the oscilloscope from before the spoo?ng attack began.This demon-strates that the two time reference receivers agree to within 100ns nominally.Figure 14shows the data taken from the oscilloscope from the end of the spoof-ing test,where the spoofed time-reference receiver has a spoofer-induced timing error of almost exactly 1μs.This shows that the spoofer was able to precisely con-trol the timing of the spoofed receiver during the test.

11

Fig.13.Time alignment of the reference PPS (top blue dashed line)and the spoofed IRIG-B time code (bottom red line)before the spoo?ng attack

began.Fig.14.Time alignment of the reference PPS (top blue dashed line)and the spoofed IRIG-B time code (bottom red line)at the end of the spoo?ng attack.

Figure 15shows the data taken from the oscilloscope from after the spoo?ng test,once the spoofed receiver reacquired the authentic signals and corrected its tim-ing.This demonstrates that the reference receiver did not drift signi?cantly in timing during the test,which means that any change in relative timing between the reference and spoofed receivers can be attributed to the e?ects of the spoofer.E.Implications

In a practical scenario,a malefactor may seek to sub-vert the control objectives of electric power

authori-Fig.15.Time alignment of the reference PPS (top blue dashed line)and the spoofed IRIG-B time code (bottom red line)after the spoo?ng attack ended.

ties by altering their perception of the current state of the power grid.The end goal of the malefactor may be to cause damage to power grid equipment or lo-cal blackouts.Between this demonstration of timing control from a distance and the prior tests described in detail in Ref.[11],it has been demonstrated that a sophisticated spoo?ng attack can alter the phase an-gle measurements of a PMU network without needing physical access to the devices themselves.The sim-plest synchrophasor-based control scheme relies solely on phase angle di?erences between two PMUs as an indicator of a fault condition.Thus,a malefactor could accomplish his goals by targeting important power grid nodes (i.e.areas with high power ?ow)with a GPS spoo?ng attack which alters the timing in a way that increases the phase angle di?erences between nodes in the area.This type of attack would likely be indistinguishable from an actual fault and cause corrective actions to be taken when none are necessary.

PMUs are not currently being used for control pur-poses in the U.S.,but the industry and government are pushing for more e?cient distribution of power which will require the accuracy and data rates that PMUs provide for state estimation of the power grid.However,other countries are already beginning to im-plement synchrophasor-based control schemes.One example of a currently operational synchrophasor-based control system is the Chicoasen-Angostura transmission link in Mexico [12].This transmission line links large hydroelectric generators in Angos-

12

tura to large loads in Chicoasen through two400-kV transmission lines and one115-kV transmission line. PMUs are stationed at each end of the transmission line and are setup to automatically trip the hydro-electric generators o?ine in the event that the phase angle di?erence between the two PMUs exceeds10o. This system was implemented to protect the gener-ators against fault conditions.If a spoofer were to attack this system in Mexico or a similar implemen-tation elsewhere,then the spoofer could easily cause an unnecessary generator trip in a matter of minutes. Beyond tripping a single generator,there is poten-tial for the e?ects of a spoo?ng attack to propagate through the grid and cause cascading faults across the grid.This was best demonstrated by the2003North-east Blackout,which originated with the tripping of a single transmission line[5].In a little more than an hour,this event cascaded into a large scale blackout that left50million people without power for four days and cost an estimated six billion dollars.Although fu-ture control systems are being designed to prevent an event from scaling to this magnitude,a single spoofer targeting the right node would likely still have wide reaching e?ects if a malefactor had knowledge of the power grid architecture.Additionally,a network of spoofers carrying out a coordinated spoo?ng attack against various nodes on the power grid could greatly increase the area of e?ect.

VI.Fixing the Problem of GPS Spoo?ng There is no quick,easy,and cheap?x for the civil GPS spoo?ng problem.Moreover,not even the most e?ec-tive GPS spoo?ng defenses are foolproof.In contrast to message authentication,such as is used to sign data transmitted across the Internet,the security of GPS signal authentication is much weaker and demands a probabilistic model.Nonetheless,there are many pos-sible remedies to the spoo?ng problem that,while not foolproof,would vastly improve civil GPS security. These defenses include placing cryptographic signa-tures in the navigation messages or spread-spectrum codes on either the wide-area augmentation system (WAAS)or GPS satellites,antenna-based defenses, and jamming detectors.A discussion of the advan-tages and disadvantages of some of these defences is given in Ref.[13].The ideal spoo?ng defense is one which:

1.would reliably detect a sophisticated spoo?ng at-

tack,such as the one conducted at WSMR,with a low probability of false alarm

2.could be implemented in the short term

3.would not signi?cantly increase the cost of a GPS-

based navigation system

4.would be applicable to a broad range of GPS de-

pendent systems

VII.Recommendations

It is the authors’recommendation that for non-recreational operation in the national airspace,civil UAVs exceeding18lbs be required to employ naviga-tion systems that are spoof-resistant.Additionally, the authors recommend that GPS-based timing or navigation systems having a non-trivial role in sys-tems designated by DHS as national critical infras-tructure be required to be spoof-resistant.

Resistance to spoo?ng will be de?ned through a series of canned attack scenarios that can be recreated in a laboratory setting[14].A navigation system is de-clared spoof-resistant if,for each attack scenario,the system is either una?ected by or able to detect the spoo?ng attack.Spoo?ng detection combined with an appropriate GPS-denied mode for the UAV to fall back on will signi?cantly increase the di?culty of mounting a successful spoo?ng attack against a UAV.

Timing receivers could use a spoo?ng detection mech-anism to force themselves into a holdover mode that relies on its local oscillator,like the receiver used as

a reference in the timing tests,and send an alert that

a spoo?ng attack is occurring.

Finally,the authors recommend that a cryptographic authentication signature be developed and implemen-tated for one of the existing or forthcoming civil GPS signals.The signature should at minimum take the form of a digital signature interleaved into the navi-gation message stream of the WAAS signals.A bet-ter plan would be to interleave the signature into the CNAV or CNAV2GPS navigation message stream like the signature described in Ref.[15].The best plan for implementing a cryptographic authentica-tion signature would be to implement the signature as an spread-spectrum security code(SSSC)interleaved into the spreading code of the L1C data channel like the signature described in Ref.[16].Inclusion of a cryptographic signature would greatly aid manufac-13

turers in developing receivers that are spoof-resistant. VIII.Conclusions

Test results presented herein demonstrate that a GPS spoofer can alter a civil UAV’s perception of its lo-cation and a time-reference receiver’s perception of the current time from an appreciable distance away. The GPS receivers in both of these tests reported no alarms during the tests to indicate that they sus-pected their position-velocity-time(PVT)solution was anything other than nominal.

It was demonstrated that a civil UAV could be “steered”by a spoofer by moving its perceived loca-tion in the opposite direction of the desired motion. Coarse,short-term control of the UAV was demon-strated in all directions(east,north,and up)during the tests.Since the spoofer did not have real-time feedback of the UAV’s current position and veloc-ity,long-term control was unachievable during these tests.However,a medium-sized radar system could be used to provide this feedback,and a control loop could be designed within the spoofer to provide sta-ble control of the UAV.With the passage of the FAA Modernization Act of2012,civil UAVs could occupy the national airspace within the decade.If the issue of civil GPS spoo?ng is not?xed before then,then civil UAVs would pose a signi?cant safety concern in the national airspace that could result in mid-air col-lisions with other aerial vehicles or buildings,not to mention loss of property.

One critical infrastructure application that will soon use GPS time-reference receivers is the power grid. PMUs use time-reference receivers to time stamp their measurements,which allows power grid oper-ators to get a snapshot of the current state of the grid including phase angles.PMUs are a technology that will revolutionize power grid control and pave the way for more e?cient power distribution.However, it has been demonstrated in Ref.[11]that a spoo?ng attack can induce arbitrarily large errors in the PMU-measured phase angles by inducing timing errors in the time-reference receiver driving the PMU.This fact combined with the demonstrations of spoo?ng from a distance presented herein proves feasibility of a spoo?ng attack against a PMU in which the spoofer does not require close proximity to the PMU.Alter-ing of PMU-measured phase angles could cause power grid control systems to unnecessarily trip generators

or transmission lines.These e?ects would likely cause local area blackouts and have the potential for causing damage to power grid equipment.There also exists the potential for the e?ects to cascade into large scale blackouts similar to the2003Northeast Blackout.

There is no quick,easy,and cheap?x for the civil GPS spoo?ng problem.However,many promising tech-niques that,while not foolproof,would vastly improve civil GPS security have been and are being developed.

These defenses include placing cryptographic signa-tures in the navigation messages or spread-spectrum codes on either the WAAS or GPS satellites,antenna-based defenses,and jamming detectors.

It is the authors’recommendation that for non-recreational operation in the national airspace,civil UAVs exceeding18lbs be required to employ nav-igation systems that are spoof-resistant.Addition-ally,the authors recommend that GPS-based tim-ing or navigation systems having a non-trivial role in systems designated by DHS as national critical in-frastructure be required to be spoof-resistant.Re-sistance to spoo?ng will be de?ned through a series of standardized tests that require the receiver to de-tect or mitigate the spoo?ng attack.This combined with regulations concerning GPS-denied modes for systems reliant on GPS would greatly increase the di?culty of mounting a successful spoo?ng attack.

Finally,the authors recommend that a cryptographic authentication signature be developed and implemen-tated for one of the existing or forthcoming civil GPS signals.Inclusion of a cryptographic signature would greatly aid manufacturers in developing receivers that are spoof-resistant.

References

[1]Anon.,“Vulnerability assessment of the transportation in-

frastructure relying on the Global Positioning System,”

Tech.rep.,John A.Volpe National Transportation Sys-

tems Center,2001.

[2]Humphreys,T. E.,Ledvina, B.M.,Psiaki,M.L.,

O’Hanlon,B.W.,and Kintner,Jr.,P.M.,“Assessing the

spoo?ng threat:development of a portable GPS civilian

spoofer,”Proceedings of the ION GNSS Meeting,Institute

of Navigation,Savannah,GA,2008.

[3]Rawnsley, A.,“Iran’s Alleged Drone Hack:Tough,

but Possible,”Dec.2011,https://www.wendangku.net/doc/7714493384.html,/

dangerroom/2011/12/iran-drone-hack-gps/#.

[4]“Bill Summary&Status112th Congress(2011-2012)

H.R.658CRS Summary,”Feb.2012,http://thomas.loc.

gov/cgi-bin/bdquery/z?d112:HR00658:@@@D&summ2=m&.

[5]“Final Report on the August14,2003Blackout in the

United States and Canada:Causes and Recommenda-14

tions,”Tech.rep.,U.S.-Canada Power System Outage

Task Force,April2004.

[6]“Charles P.Steinmetz,”https://www.wendangku.net/doc/7714493384.html,/EBchecke-

d/topic/565056/Charles-Proteus-Steinmetz.

[7]Phadke,A.G.and Thorp,J.S.,editors,Synchronized Pha-

sor Measurements and Their Applications,Springer,New

York,2008.

[8]“IEEE Standard for Synchrophasors for Power Systems,”

2005,IEEE Std.C37.118Revision1344–1995.

[9]Humphreys,T.E.,Bhatti,J.,and Ledvina,B.,“The GPS

Assimilator:a Method for Upgrading Existing GPS User

Equipment to Improve Accuracy,Robustness,and Resis-

tance to Spoo?ng,”Proceedings of the ION GNSS Meeting,

Institute of Navigation,Portland,Oregon,2010.

[10]Shepard,D.and Humphreys,T.E.,“Characterization of

Receiver Response to a Spoo?ng Attack,”Proceedings of

the ION GNSS Meeting,Institute of Navigation,Portland,

Oregon,2011.

[11]Shepard,D.P.,Humphreys,T.E.,and Fansler,A.A.,

“Evaulation of the Vulnerability of Phasor Measurement

Units to GPS Spoo?ng,”International Journal of Critical

Infrastructure Protection,Dec.2012,to appear.

[12]Schweitzer,E.O.,Guzman,A.,Altuve,H.J.,and Tziou-

varas,D.A.,“Real-Time Synchrophasor Applications for

Wide-Area Protection,Control,and Monitoring,”Tech.

rep.,Schweitzer https://www.wendangku.net/doc/7714493384.html,boratories,2009.

[13]Humphreys,T. E.,“Statement on the vulnerability of

civil unmanned aerial vehicles and other systems to civil

GPS spoo?ng,”https://www.wendangku.net/doc/7714493384.html,/sites/

https://www.wendangku.net/doc/7714493384.html,/files/Testimony-Humphreys.pdf,

July2012.

[14]Humphreys,T. E.,Shepard, D.,Bhatti,J.,and Wes-

son,K.,“A Testbed for Developing and Evaluating GNSS

Signal Authentication Techniques,”2012,in prepara-

tion;available at https://www.wendangku.net/doc/7714493384.html,/

testbed.

[15]Wesson,K.,Rothlisberger,M.,and Humphreys,T.E.,

“Practical Cryptographic Civil GPS Signal Authentica-

tion,”NAVIGATION,Journal of the Institute of Navi-

gation,Vol.59,No.3,2012,pp.177–193.

[16]Scott,L.,“Anti-spoo?ng and authenticated signal archi-

tectures for civil navigation systems,”Proceedings of the

ION GNSS Meeting,Institute of Navigation,Portland,

Oregon,2003,pp.1542–1552.

15

中国发展智能电网优势很多

中国发展智能电网优势很多2009/12/31/09:19 “智能电网”——美国、欧盟等发达国家的国策。全球金融危机催生了“智能电网”,未发生金融危机时,虚拟经济的“繁荣”模糊了实体经济与能源资源和生态环境间存在的一系列尖锐矛盾,电力的变革显得既不重要,又不紧迫,也不可能。“智能电网”对发达国家经济复苏、重塑竞争力将起重要作用,但其意义绝非仅仅是应对当前全球金融危机的权宜之计。 国际智能电网背景 在世界“绿色产业革命”的大环境下,二十多年来,世界发达国家在政府主导下,提出了一系列有关电力发展的战略规划。先期重点在发电方面并取得了很多积极成果,如美国先后提出了CCT《清洁煤发展计划》、CCPI《清洁煤创新发展计划》、FUTUREGEN重大示范项目计划等等。2003年美国政府在《电网—2030》规划中首先较完整提出了智能电网的战略构思,“智能”是手段为其战略构思宗旨、目的服务,其后进行了大量的技术研究、工业示范、社会试点直至局部商业化运营,现己成为美国政府的重要国策。2005年欧盟将智能电网上升到国家战略地位开展研究。美国能源部关于智能电网定义表述为:智能电网是采用先进的传感技术、通信技术和控制技术来保证更为高效、经济和安全地发电、输电和供电的现代电网,它集成了从发电、输电和配电以及用电设备领域的大量有益于社会的创新技术和手段,以满足不断变化的未来社会需求。 智能电网战略宗旨、核心、技术管理措施的提出和实施标志着世界电力发展进入了一个新的历史阶段。美国的“统一智能电网”、欧盟的“超级智

能电网”都是一种形象性称呼,之所以得到世界认可,并不是因为它的称呼,而是因为它的战略构思内容符合当今能源变革的宗旨、目的并已局部证实能起到实效。 因国情和电力发展阶段不同,各国智能电网定义、内含、重点会有所区别,但其“安全、经济、高效、清洁、低碳”的变革宗旨、核心应是相同的,采用先进传感、通信、控制技术,数字化管理、智能化决策、互动化交易等技术管理措施特点是相同的,可以认为当今智能电网战略宗旨、核心、技术管理措施的提出和实施标志着世界电力发展进入了一个新的历史阶段。“智能电网”与传统电网都必须遵循电力的基本规律,都含有不受时间限制的相同基本理念,它们的核心、基本形态、关键技术有相同、更有不同之处。 欧美发达国家提出的智能电网战略重点在供用电侧,包括接纳可再生能源、需求侧的智能管理、双向互动等,和更大范围的高压联网,它符合欧美发达国家实际国情、电力发展阶段以及基础现状。 从中国具体国情看,在中国称为“智能电力系统”战略更为确切,只有发、输、供、用全方位的变革、创新、发展才能真正达到电力变革的宗旨、目的,这四方面变革、创新、发展是互相关联、互相促进,需要协调有序的推进,任何方面过度超前或滞后,都会严重影响中国电力发展进程。从广义电网概念,以高效、低碳为核心的电力变革、创新以及国际上容易认知角度看,可以称为智能电网战略,与以往称为电力发展规划相比,也更具有时代特征。 中国智能电网战略研究应包括发、输、供、用四个方面变革、创新、发展。与发达国家不同的国情和电力发展阶段要考虑在其中,如中国未来二、

我国智能电网的发展背景及方向

我国智能电网的发展背景及方向 文章首先分析了我国对智能电网越来越重视的原因,分析了智能电网未来的发展方向,将继续为加强环境效益、建设坚强电网、提升用户体验而不断发展,最后总结了在巨大的社会效益和经济效益推动下必将引发智能电网的热潮。 标签:智能电网;发展背景;发展方向;发展热潮 引言 智能电网(Smart Grid)具有可靠、优质、高效、兼容、互动等特点,是现代电网的发展方向。在我国,国家电网公司是智能电网的主要倡导者和承建单位,给智能电网的定义是:以特高压电网为骨干网架、各级电网协调发展的坚强电网为基础,利用先进的通信、信息和控制技术构建的以信息化、自动化、互动化为特征的统一坚强智能化电网。可见我国致力于建设的智能电网是首先考虑电力控制智能化,供送电的可靠性。 1 智能电网在我国的发展背景 智能电网体现出电力流、信息流和业务流高度融合的显著特点,其先进性和优势较传统电网非常明显。不过智能电网在我国发展还是比一些欧洲发达国家落后很多,发展空间极大。近年来我国对智能电网的建设越来越重视,归其原因有以下几点: 1.1 我国能源资源分布不均 我国各种能源资源在地域分布上都具有不同程度的不平衡性。各地区呈现明显的差异,我国东部沿海地区经济发达,科学技术先进,但能源相对短,严重制约着经济的发展;中西部地区则恰好相反,能源储量丰富,但经济、科技、教育等都比较落后。由于上述情况制约着能源短缺省市的进一步发展,能源富庶省市能源利用率不高等问题。由于资源的不均衡性,实施“西电东送”和“南北互供”的战略是必然选择。建立智能电网可以有效地利用电力优化调度,改善由于能源分布不均导致的部分地区电力紧张短缺的情况。 1.2 负荷快速增长 电力需求一般通过“负荷”这一指标来反映,负荷是指在电力系统中,所有的用电设备耗用的总功率。现在我国工业发展步伐加快,电力负荷增长迅猛,电网供电压力增大,出现电力波动、电压骤降、电力短缺等问题的可能性增大,然而越来越多的企业或居民对于电能供应的可靠性提出了越来越高的要求。由于电网的发展速度跟不上负荷的增长速度,导致导致负荷高峰期间出现拉、限电的现象,制约了经济发展的速度,引起电力用户的不满情绪。智能电网可以将全国电力组网,实时监控发电量供电量的需求变化,优化电力调度,尽可能实现无间断供电。

2011中国智能电网产业现状及未来发展战略剖析

?2011中国智能电网产业现状及未来发展战略剖析 ?【OFweek智能电网编译:Kinshale】与传统电网相比,智能电网在发电、输电、配电及用电四大环节中都具有明显的优势,智能电网成为世界各国集中投资的战略型产业。智能电网通过优化传统能源和新能源的供需和应用实现节能,通过特高压技术解决能源结构不匹配问题,通过高效率的配电技术提高整体电网的稳定性和效率,是应对能源危机的必由之路。中国发展智能电网可以参照高铁的发展战略,实现引进技术、实现自我研发、到成功的技术输出的三阶段转换。特别是各国技术标准还没有统一的情况下,中国将凭借规模经济准备自主技术标准的同时,积极参与全球标准的制定,扩大市场支配能力。 中国的智能电网产业 中国能源供给及能源消费结构的不平衡催生智能电网的发展 中国能源结构以煤炭资源为主,煤炭资源保有储量的76%分布在山西、内蒙古、陕西、新疆等北部和西部地区,而能源消费需求主要集中在经济较为发达的中东部地区,随着中国能源开发西移和北移的速度加快,大型煤炭能源基地与能源消费地之间的输送距离越来越远,能源输送的规模越来越大。要满足未来持续增长的电力需求,从根本上解决煤电运力紧张的问题,需要发展智能电网,实施电力的大规模、远距离、高效率输送。 2009至2020年国家电网总投资3.45万亿元,其中智能化投资3841亿元,占电网总投资的11.1%,未来10年将建成坚强智能电网2009至2010年为规划试点阶段,重点开展坚强智能电网发展规划工作,制定技术和管理标准,开展关键技术研发、设备研制及各环节的试点工作;2011至2015年为全面建设阶段,加快建设华北、华东、华中“三华”特高压同步电网,初步形成智能电网运行控制和互动服务体系,关键技术和装备实现重大突破和广泛应用;2016至2020年为引领提升阶段,全面建成统一的坚强智能电网,技术和装备全面达到国际先进水平。 中国国家电网公司目前正在推进“一特四大”的电网发展战略以特高压电网为基础,促进大煤电、大水电、大核电、大型可再生能源基地的集约化开发,在全国范围内实现资源优化配置。以大型能源基地为依托,建设由1000千伏交流和±800千伏直流构成的特高压电网,形成电力“高速公路”。同时,将以特高压电网为骨干网架、各级电网协调发展的坚强电网为基础,发展以信息化、数字化、自动化、互动化为特征的自主创新、国际领先的坚强智能电网。 智能电网产业的特点及作用

智能电网与智慧城市协调发展研究

智能电网与智慧城市协调发展研究 摘要:本文通过简述智慧城市建设的发展趋势和智能电网的发展方向,分析我国智慧城市和智能电网在建设过程中遇到的问题,研究在新时期条件下,智能电网与智慧城市建设的协调发展、高效经营及可持续发展的主要思路。 关键词:智能电网;智慧城市;协调发展 随着经济社会的不断发展,传统的城市化方式已经成为人类今后社会经济发展的瓶颈,其带来的资源紧缺、环境污染等一系列问题不仅严重制约城市自身发展,也已经威胁到人类社会的可持续发展。亟需改变传统的城市化方式,找到一种城市与人、与自然和谐发展的道路,智慧城市成为城市发展的必然选择。因此,探索智慧城市之外的和谐,发展建设智慧城市成为全人类需要共同面对和解决的重要问题。 一、智能电网是智慧城市的重要组成部分 智慧城市以人与自然和谐发展为基本理念,通过整合多种先进技术,促进城市各部分功能协同运作,使得管理更高效、服务更优质、环境更清洁、生活更舒适。智能电网是智慧城市建设的基础和重要组成部

分,在城市的能源基础设施、公共服务平台等方面提供了有力支撑,对智慧城市发展具有重要推动作用。近年来,通过智能小区、智能园区、电动汽车充换电设施、分布式电源并网等方面的智能电网建设工作,将电网建设与百姓生活有机的结合起来,实现“电力流、信息流、业务流”的高度一体化融合,构建能源信息循环与服务网络,提升城市能源管理水平,有效推进了智慧城市建设发展进程。 二、智能电网及特点 智能电网至今未有统一的定义,由其功能及特点可基本定义为:通过搭建高速和高集成性为特点的网络通信平台,以微机为载体,运用电力电子和智能控制决策等先进技术,结合现有输配电网,达成电网的实时监控和灾害预防,实现电网的信息化和智能化,最终发展为在信息上实时可靠、在成本上经济、在服务上高效优质的可持续发展的智能型电网。智能电网具有以下特点: (一)自感及自愈性(Self-inductance and self-healing) 智能电网在信息上具有实时性,通过采集系统内部实时动态信息,对动态信息进行风险评估,确定风险等级,计算故障发生概率及发生后引起的系统震荡。

我国智能电网发展现状

我国智能电网发展现状 我国智能电网发展现状 当前,资源环境问题已经成为世界各国共同关注的焦点,人类社会对环境保护、节能减排和可持续发展的呼声越来越高。近年来,欧美国家率先提出了”智能电网”并进行了相关研究,引起了世界各国电力工业界的广泛关注,智能电网也逐渐成为现代电网发展的新趋势和新潮流。根据我国宏观政策和用户对电能质量的实际需要,未来的电网必须能够提供更加安全、可靠、清洁、优质的电力供应。发展智能电网,有助于提高能源利用效率,减小环境污染,促进节能减排,实现可持续发展;同时能够保证供电的安全性与可靠性,降低输电网的电能损耗,减少用户的电费支出。可见,智能电网是我国国民经济和电力工业技术发展的必然结果。目前,虽然智能电网的建设尚处于初期研究和规划试点阶段,但其在未来必将给电力工业的变革带来巨大影响,因此对智能电网进行相关探讨尤为必要。本文将从智能电网的定义与特点、国内研究现状及发展前景等方面进行分析,为建设国际领先、中国特色的智能电网提出积极的建议。一、智能电网的定义与特点由于智能电网的研究利丌发尚处于起步阶段,各国国情及资源分布不同,发展的方向和侧重点也不尽相同,此尉际上对其还没有达成统一而明确的定义。根据门前的研究情况,智能电网就是为电网注入新技术,包括先进的通信技术、计算机技术、信息技术、自动控制技术和电力工程技术等,从而赋予电网某种人工智能,使其具有较强的应变能力,成为一个完全自动化的供电网络。智能电网有以下特点:(一)自愈。能够自动检测、分析故障,实现故障隔离和系统自我恢复。 (二)坚强。能够有效抵御自然灾害或人为的外力破坏,保证电网安全可靠运行。 (三)互动。用户将和电网进行自适应交互,成为电力系统的完整组成部分之一。 (四)优质。提供2l世纪所需要的优质电能,用户的电能质量将得到有效保证。(五)经济。实现资源合理配置,提高能源利用效率,减少电能损耗,降低投资成本和运行维护成本(六)兼容。可以容纳集中式发电、分布式发电等多种不同类型的电源,满足用户多样化的电力需求(七)协调。实现电力系统标准化、规范化、精细化管理,进一步促进电力市场化。二、国内智能电网的发展现状近年来.我国经济发展迅速,电力需求同益增强,在电网建设与改造上投入了大量资金,电网的

智能电网的发展趋势

智能电网的发展趋势 摘要:随着电力系统运行环境的日趋复杂与电力体制改革的不断前进,传统电力网络亟待进一步提升,实现向智能电网的转变。智能电网为 电网的发展方向,它的内涵是由绩效目标、性能特征、关键技术与功 能实现等4个方面及其之间的关系综合体现的,它们分别规定了智能 电网的未来期望收益、应具备的特征性能力、为实现此能力而应当采用的关键性技术以及技术与具体业务需求的结合方式。通过对上述内容的详细阐述,描绘出未来智能电网的框架。 关键词:智能电网;自愈;分布式能源;电力市场 0引言 随着市场化改革的推进、数字经济的发展、气候变化的加剧、环境监管要求日趋严格与国家能源政策的最新调整,电力网络跟电力市场、用户之间的协调和交换越来越紧密、电能质量水平要求逐步提高、可再生能源等分布式发电资源数量不断增加,气候变化初露端倪,传统 网络已经难以支撑如此多的发展要求。为此人们提出了发展智能电网(SmartGrid)的设想,实现对传统电网基础上的升级换代。国外许多研究机构和企业正在积极推动智能电建设。例如知识电(IntelliGrid)、现代电网(ModernGrid)、网络智能(GridWise)与智能电网等,可是本 质内容基本相似。为了在智能电网领域寻求突破、加强联系与合作, 已形成了一个全球性联盟组织。 1智能电网概念 智能电网并非是一堆先进技术的展示,也不是一种着眼于局部的解 决方案。智能电网是以先进的计算机、电子设备和高级元器件等为基础,通过引入通信、自动控制和其他信息技术,从实现对电力网络的改造,达到电力网络更加经济、可靠、安全、环保这一根本目标。为了 理解智能电网,需要站在全局性的角度观察问题,综合考虑智能电网 的4个维度,即绩效目标、性能特征、技术支撑和功能实现。 2智能电网的绩效目标与性能特征

智能电网与人类社会发展

智能电网与人类社会发展 能源是人类赖以生存的物质基础,是现代经济社会发展的重要保障。在能源领域,新的科技革命的焦点,一是新能源的利用,二是将信息技术用于能源产业;随着市场化改革的推进、气候变化的加剧,环境监管日益严格,可再生能源等分布式发电源数量不断增加,智能电网的概念应运而生。智能电网以物理电网为基础,将先进的传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网。确保电力供应的安全性、可靠性和经济性,满足环保约束,保证电能质量,适应电力市场化发展。智能电网允许可再生能源顺利接入电网,提高电力系统的能源转换和传输效率,确保电网运行更可靠、更灵活、更经济,为用户提供更高的供电质量和更优质的服务。 一.智能电网的特征 从宏观上讲,智能电网与传统电网管理运行模式相比,它是一个完整的企业级信息框架和基础设施体系,可以实现对电力客户、资产及运营的持续监视,提高管理水平、工作效率、电网可靠性和服务水平。传统电网的电力资源没有被合理配置,造成能源和财富的损失。从微观上讲,与传统电网相比,智能电网进一步优化各级电网控制,构建结构扁平化、功能模块化、系统组态化的柔性体系结构,通过集中与分散相结合,灵活变换网络结构、智能重组系统结构、最佳配置系统效能、优化电网服务质量,实现与传统电网截然不同的电网构成理念和体系。 智能电网与传统电网相比具有如下几点特性:1.坚强。在电网发生大扰动和故障时,仍能保持对用户的供电能力,而不发生大面积停电事故;在自然灾害、极端气候条件下或外力破坏下仍能保证电网的安全运行;具有确保电力信息安全的能力。2自愈。具有实时、在线和连续的安全评估和分析能力,强大的预警和预防控制能力,以及自动故障诊断、故障隔离和系统自我恢复的能力。3兼容。支持可再生能源的有序、合理接入,适应分布式电源和微电网的接入,能够实现与用户的交互和高效互动,满足用户多样化的电力需求并提供对用户的增值服务。4经济。支持电力市场运营和电力交易的有效开展,实现资源的优化配置,降低电网损耗,提高能源利用效率。5集成。实现电网信息的高度集成和共享,采用统一的平台和模型,

数字城市、智能城市与智慧城市的区别与关系

数字城市、智能城市与智慧城市的区别与关系 导读: 国内城市规划界不停的在出现新名词,出现新概念,出现新思潮,发起新运动,各地都在编制各种各样的规划,或许你也听到过智慧城市、数字城市、智能城市、等等。 智慧城市与数字城市、智能城市的概念经常被混淆,其实三者之间是有区别的,智慧城市与数字城市、智能城市的区别也反映了人们对信息技术在城市发展中扮演角色和发挥作用认识的逐步深入。那么你了解多少呢?本文为你解惑: 一、定义 1、什么是智慧城市? 智慧城市是信息化应用取得良好效益的知识型城市。 智慧城市的优点在于通俗,易于宣传,缺点是无法准确定义,因为“智慧”是人们早已熟悉的词汇,自会以自己的理解想象智慧城市,“智慧城市”只能是公众视角,不是信息工程学的精确定义。 智慧城市是宏观概念,它反映了社会对未来城市的知识化、信息化、高效益的一种愿望,着眼于城市发展整体的总效果。信息化是智慧城市的重要内容,社会对智慧城市的期望并不局限于信息化,社会要求城市具有整体发展的智慧。 2、什么是智能城市? 智能城市是智能技术充分应用的城市。 智能技术也是信息技术,只是强调的重点不同。智能技术强调的是软件资源,强调自动处理系统的贡献,智能技术有望成为信息技术应用的新热点。(微信公众号:智慧城市圈子邱文斌 qwb_2014) 信息化普及与计算机的性价比密切相关,IT昂贵时代许多人围着一台计算机转,IT廉价时代一人一台计算机,在IT超廉价时代将会有许多计算机围着人服务,智能服务的特点是对事不对人,展现为自动化服务。 在一对一信息服务的时代,应用的中心是个人化的信息服务,主要是系统向人提供信息,供人使用,在多对一IT智能服务时代,信息系统是代替人自动处理事务,如智能电网、智能交通、智能环保都是自动化系统,系统经常在人无所察的情况下为居民提供服务。 程序是人处理事务方法的逻辑表述,这些程序在特定系统上运行形成了自动处理事务智能,理论上可以用居民日平均利用的程序条数反映城市的智能化程度,城市的智能化程度越高,居民的生活工作越方便也越有效率。

A国内外智能电网的发展现状与分析

智能电网的现状与发展趋势 付凤丽 (曲阜师范大学,山东省日照市276826) DEVLAPMENT AND ANALYSIS OF SMART GRID FU Fengli (Qufu Normal University,Rizhao 276826,Shandong Province,China) ABSTRACT:Deep analysis of the domestic smart grid,including the aspects of actuality,development an d its difi culties was put up.A contrast description on the smart grid development of the foreign countri es,such as American,Japan,Britain and Italy,was carried out.National policies and measures all indi cate that the smart grid will be built into a new development trend of the world network. KEY WORDS:sm art grid:actuality;network planning 摘要:从智能电网的现状、发展重难点及其发展的意义对国内的智能电网进行了深入的分析探讨,并对美国、日本、英国、意大利等国家的智能电网的发展进行对比描述。各国政策及措施均表明智能电网建设将成为世界电网发展的新趋势。 关键词:智能电网;现状;电网规划 1 引言 随着市场化改革推进,数字经济发展,气候变化加剧,环境监管要求日趋严格以及各国能源政策的调整,电网与电力市场、客户之间的关系越来越紧密。客户对电能质量的要求逐步提高,可再生能源等分散式发电资源数量不断增加,传统的电力网络已经难以满足这些发展要求。为此人们提出了智能电网的设想,以实现传统电网的升级换代。 智能电网就是把最新的信息化、通信、计算机控制技术和原有的输、配电基础设施高度结合,形成一个新型电网,实现电力系统的智能化。智能电网可以提高能源效率,减少对环境的影响,提高供电的安全性和可靠性,减少输电网的电能损耗。 智能电网是对电网未来发展的一种愿景,即以包括发电、输电、配电、储能和用电的电力系统为对象,应用数字信息技术和自动控制技术,实现从发电到用电所有环节信息的双向交流,系统地优化电力的生产、输送和使用。 智能电网的本质就是能源替代和兼容利用,它需要在创建开放的系统和建立共享的信息模式的基础上,整合系统中的数据,优化电网的运行和管理。它主要是通过终端传感器将用户之问、用户和电网公司之问形成即时连接的网络互动,从而实现数据读取的实时

智能电网支撑智慧城市发展

智能电网支撑智慧城市发展 王倩,李强,孙芊 (国网河南省电力公司电力科学研究院,河南郑州450052) 摘要:经济和社会快速发展加剧了城市化,由此产生的一系列问题使城市运行和管理遇到了瓶颈,城市的可持续发展迫切需要解决,由此"智慧城市"应运而生。智慧城市是利用新一代的技术,让城市中各个功能彼此协调运作,可以为城市中企业提供优质的发展空间,为市民提供更高的生活品质。本文介绍了智慧城市和智能电网的研究现状,通过分析了智慧城市和智能电网的关系,指出智能电网对智慧城市建设具有强大支撑作用,然后介绍了智能电网支撑智慧城市的相关技术,最后从五个方面阐述智能电网项目对智慧城市的支撑。 关键词:智慧城市智能电网支撑发展 中图分类号:TM727文献标识码:B文章编号:X(2013)04-005-04 Smart Grid Support Wisdom City Development Wang Qian,Li Qiang,Sun Qian (State Grid HAEPC Electric Power Research Institute,Zhengzhou450052,China) Abstract:The rapid development of economy and society aggravates urbanization,and the resulting problems bring a bottleneck to the city operation and management.The sustainable development of city is an urgent problem to solve,so the“wisdom city”came into being.Wisdom city uses a new generation of technology in order to make the various functions of the city work in coordination with each other.It can provide the best development space for enterprises and provide a higher quality of life for the people in the city.This paper introduces the current research situation of wisdom city and smart grid,and analyzes the relationship between wisdom city and smart grid.This article points out that the smart grid has a strong supporting role for the construction of a smart city,and explains the support from five respects at last. Key words:wisdom city;smart grid;support development 1引言 城市化是人类文明的象征,随着经济和社会的快速发展,城市正面临着大量新的挑战:人口膨胀过快、交通拥挤不堪、环境污染严重、资源消耗过度、安全隐患明显、社会治安不稳等。城市化所带来的这些影响需要采取一种可持续发展的方式来解决,“智慧城市”正是为城市发展中遇到的问题提供解决之道的选择。 智慧城市促使信息化向智慧化发展,促进经济转型、产业升级和城市提升,整合智慧基础设施,推进智慧应用系统的建设和运作,最终实现信息畅通、管理高效、环境优美、社会和谐、生活美好的城市生活。智慧城市的实现和运转离不开电网,智能电网是智慧城市的重要基础和客观需要,智能电网的应用促进清洁能源的开发利用,优化能源结构,推动相关领域创新,为城市提供更优质的服务,实现绿色低碳生活、推动智慧城市建设加速发展。 2国内外现状 2.1国外智慧城市与智能电网发展现状 美国Xcel Energy公司在2010年宣布其在科罗拉多州建设美国第一个全面集成智能化城市电网。爱荷华州的迪比克市自2010年开始,通过一系列新技术将城市所有资源都连接起来,完全实现数字化,可以侦测、分析和整合各种数据并智能化地作 河南电力 2013年第4期5

智能电网的现状和和发展趋势

题目智能电网的现状和发展趋势 姓名卢乾坤学号2012416464 院系工学院 专业电气工程及其自动化 指导教师蔡彬职称教授 2014 年12 月12 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言(或绪论) (2) 一、中国智能电网的现状和发展趋势 (3) (一)中国智能电网产业研究的目的和背景 (3) 1.我国向智能电网发展的意义 (3) 2.我国开发智能电网的背景 (4) 中国智能电网技术的进展和趋势 (4) 二、国外智能电网的现状和发展趋 (4) (一)美国进行智能电网改造 (4) (二)欧盟智能电网的发展趋势 (5) (三)日本大力发展智能电网 (5) 致谢 (6) 参考文献 (7)

智能电网的现状和发展趋势 电气信息与自动化学生卢乾坤 指导老师蔡彬 摘要:从智能电网的概念和功能出发,简介我国发展智能电网的意义,发展智能电网的大背景和社会物质文化条件以及当前智能电网技术进展和趋势,要努力的方向;分别简单介绍美国、日本、欧盟对智能电网发展的重视,一系列政策的实施,以企业对智能电网的发展领域和方向以及相关科研单位对智能电网研究的方向和趋势。 关键词:智能电网、发展趋势、发展意义、技术 The Status Quo and Development Trend of the Smart Grid Student majoring in electrical information and automation LuQiankun Tutor CaiBin Abstract:Starting from the concept and function of the smart grid, the introduction, the significance of the smart grid development in China, the development of smart grid, the background and social material and cultural conditions as well as the current smart grid technology, progress and trends to direction; Simple introduction to the European Union to the attention of the smart grid development in Japan, a series of policy implementation, to enterprise and direction in the field of smart grid development, and related scientific research units of the smart grid research direction and trend Key words: smart power grids, development tendency, implication of development technique

智能电网特点浅析

智能电网特点浅析 摘要:智能电网,就是电网的智能化,也被称为“电网2.0”。它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好的使用目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。 关键词:智能电网技术电能 一.概论 针对电力系统在新世纪面临的分布式电源并网、电网利用系数低以及数字化技术的广泛应用等诸多挑战,北美和欧洲提出智能电网的概念,并展开了相关的研究工作。 智能电网,就是电网的智能化,也被称为“电网2.0”。它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好的使用目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。 与传统电网相比,智能电网将进一步优化各级电网控制,构建结构扁平化、功能模块化、系统组态化的柔性体系结构,通过集中于分散相结合的模式,灵活变换网络结构、智能重组系统构架、优化配置系统效能、提升电网服务质量,实现与传统电网截然不同的电网运营理念和体系。 智能电网将实现对电网全景信息(指完整、准确、具有精确时间断面、标准化的电力流信息和业务流信息等)的获取,以坚强、可靠的物理电网和信息交互平台为基础,整合各种实时生产和运营信息,通过加强对电网业务流的动态分析、诊断和优化,为电网运行和管理人员展示全面、完整和精细的电网运营状态图,同时能够提供相应的辅助决策支持、控制实施方案和应对预案。 智能电网的核心是实现对电网运行的快速响应,提高与分布式能源的兼容能力,从而提高整个系统的经济型、可靠性和安全性。 二.智能电网的主要特征 1 自愈 自愈是智能电网的一个突出特征,也是电网安全可靠运行的重要保证。它是指对于无论来自外部还是来自内部的对电网的损害,无需或仅需少量人为干预,实现电力网络中存在问

关于智能电网在智慧城市中的意义

关于智能电网在智慧城市中的意义 智慧城市是我国为开创新型城镇化道路而提出的一系列政策的集合。事实上,能源的供给与消费体系是城市最重要的构成之一,因此智慧城市的实现离不开能源系统的智能化。我国对于智慧城市的探索起于2012 年,主要以城市试点的方式进行智慧城市建设初步探索,至今住建部共支持了277 个智慧城市试点的建设(首批:90 个,第二批:103 个,第三批:84 个),规划重点项目共近2600 个,总投资超1.6 万亿元。国家智慧城市试点创建期为3~5 年,平均每个试点13~14 个重点项目,财政投入20%,贷款20%,企业自有资金33%,社会资金27%,大城市投资规模平均80 亿元~120 亿元,中等城市平均为30 亿元~50 亿元,小城镇则为5 亿元~30 亿元。 2014 年,智慧城市发展进入快速爆发期,顶层政策进一步完善。中共中央、国务院印发的《国家新型城镇化规划(2014-2020 年)》中,推进智慧城市建设一节明确提出利用信息技术促进城市经济社会发展深度融合,在开展试点示范一章中强调进一步推进智慧城市试点建设。同年8 月,发改委、工信部印发《关于智慧城市健康发展的指导意见》,提出了更为系统和全面的顶层规划;要求建设城市环境信息智能分析系统,对重点排污企业和污染源进行智能化远程监控,推进智能电网建设等,这为智慧能源在城市建设中的应用提供了政策机遇。 小编接下来重点想谈一下智能电网在智慧城市中的意义 智慧城市涉及到智能楼宇、智能家居、路网监控、智能电网、智能医院、城市生命线管理、食品药品管理、票证管理、家庭护理、个人健康与数字生活等诸多领域。其中,智能电网是未来智慧城市的大动脉,智能电网结合最

浅析智能电网的研究现状与发展趋势

浅析智能电网的研究现状与发展趋势 在我国不断发展的过程中,对于电力的需求在不断的加大,智能电网的建设和发展能在一定程度上满足社会的需求。同时,智能电网作为一项新兴的电力技术,将成为世界主流国家电力工业发展的趋势,也将为中国的经济建设提供更加稳定可靠的电力保障。 标签:智能电网;现状;发展趋势 智能电网这一概念最早是美国能源部的一个团队提出的。但随后美国能源部指出,目前的电网并不是“愚蠢的”,智能电网只是将电网中智能的部分扩大,从与消费者单纯的供需关系变为更加直接的与消费者进行交互,精确自动化的预测发电量并对电量进行分配。通过对不同动力来源的发电机组的发电量进行调配,提高新能源在电源结构中的比重,实现经济发展与环境保护齐头并进。 一、智能电网概述 智能电网是建立在集成的通信网络的基础上的主要通过利用传感器、测量技术以及自动控制技术实现电网的安全、可靠、高效运行。智能电网本身具有能耗少、安全性高、稳定性强、电力资源利用率高的优点。智能电网是电力技术进一步发展的产物,因而也称之为第二代电网。智能电网具有交互、协调、高效、安全、集成等特点,这几个特点中最为典型的就是集成性。集成性主要指的是智能电网融合了能量管理、配电管理、控制维护和远程监视等信息系统。智能电网实际上就是多种信息系统的集合。智能电网的高效性主要指的是它能够优化资产,实现资产的合理利用。智能电网通过引入先进的信息和监控技术,有效提高了资产利用效率,降低了维护成本,最终实现了资产的优化。智能电网的交互性主要指的是智能电网与用户设备之间可以实现有效沟通。在智能电网运行过程中通过与用户设备的有效交互,有助于电力用户发挥其积极作用,这对电力系统的正常运行也具有重要意义。 二、智能电网现状 (一)虚拟同步单机技术的发展 虚拟同步发电机技术是一种通过模拟同步发电机组的机电暂态特性,使采用变流器的电源具有同步发电机组的惯量、阻尼、一次调频、无功调压等并网运行外特性的技术。2017年12月27日,世界首个具备虚拟同步机功能的新能源电站在国家风光储输示范电站建成投运。这项技术自1997年提出以来,英国、美国、德国、荷兰等新能源领域先导都在努力攻关。最终,虚拟同步机大规模实际应用还是中国国家电网公司最先成功实现。虚拟同步机并不需要对电网进行大规模改造,不仅实用性很强,还经济实惠。通过虚拟同步电机技术的实用化,新能源发电并网的可控性得到了提高。

智能电网与传统电网的区别

1智能电网与传统电网的差异 传统电网是一个刚性系统,电源的接入与退出、电能量的传输等都缺乏弹性,致使电网没有动态柔性及可组性;垂直的多级控制机制反应迟缓,无法构建实时、可配置、可重组的系统;系统自愈、自恢复能力完全依赖于实体冗余;对客户的服务简单、信息单向;系统内部存在多个信息孤岛,缺乏信息共享。虽然局部的自动化程度在不断提高,但由于信息的不 完善和共享能力的薄弱,使得系统中多个自动化系统是割裂的、局部的、孤立的,不能构成一个实时的有机统一整体,所以整个电网的智能化程度较低[9210]。 与传统电网相比,人们设想中的智能电网将进一步拓展对电网全景信息(指完整的、正确的、具有精确时间断面的、标准化的电力流信息和业务流信息等)的获取能力,以坚强、可靠、通畅的实体电网架构和信息交互平台为基础,以服务生产全过程为需求,整合系统各种实时生产和运营信息,通过加强对电网业务流实时动态的分析、诊断和优化,为电网运 行和管理人员提供更为全面、完整和精细的电网运营状态图,并给出相应的辅助决策支持,以及控制实施方案和应对预案,最大程度地实现更为精细、准确、及时、绩优的电网运行和管理[9210]。 与传统电网相比,智能电网将进一步优化各级电网控制,构建结构扁平化、功能模块化、系统组态化的柔性体系架构,通过集中与分散相结合,灵活变换网络结构、智能重组系统架构、最佳配置系统效能、优化电网服务质量,实现与传统电网截然不同的电网构成理念和体系。 由于智能电网可及时获取完整的电网信息,因此可极大地优化电网全寿命周期管理的技术体系,承载电网企业社会责任,确保电网实现最优技术经济比、最佳可持续发展、最大经济效益、最优环境保护,从而优化社会能源配置,提高能源综合投资及利用效益。 2国内外智能电网建设背景不同 电力行业作为社会基础产业,是国家发展的命脉产业之一。电网建设与国家能源资源结构、产业布局、经济发展规划和相关政策密切相关,同时也与本国的能源资源条件、能源资源输入可能性以及国家能源战略安全等密切相关。 随着中国经济社会高速发展,电力需求日益增长,中国电力工业建设进入快速发展时期。一方面,电网建设规模日趋扩大,电网负荷变动剧烈,区域负荷不平衡;另一方面,电网架构依然薄弱,亟待坚固补强。中国能源资源分布、经济发展不均衡,必须提高电网输送能力,发展远距离、大跨距、大容量输电,加强统一协调和规划建设,形成统一调度运行的统 一或联合电网。 而国外发达国家的电力工业已步入成熟期,输电网架构变化很小,电网发展趋于平稳,电力需求趋于饱和,电力供应及冗余储备趋向平衡。出于体制和利益需求,他们最为关注的是停电时间最小化和市场效益最大化。因此,从国外对智能电网的研究现状来看,其侧重于建立一个高效、安全、环保、灵活应变的智能电力系统,更多地从市场、安全、电能质量、环境等方面出发,从用户端的角度来看待和研究智能电网,更多地强调信息与电网的结合及基于信息的业务重整。另外,国外尤其是欧、美国家所倡导的智能电网,更关注于分布式电源及客户端的接入、信息的获

智能电网发展及展望

智能电网发展及展望 摘要:智能电网就是电网的智能化(智电电力),也被称为“电网 2.0”,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。 近20年来,虽然信息、通信技术发生了翻天覆地的变化,但日渐老化的传统电网结构并没有跟上技术变革的步伐,用户对电力供应提出了越来越高的要求,国家安全、环保等各方面政策都对电网的建设和管理提出了更高的标准。建设智能电网已经箭在弦上。 关键词:智能电网发展概况智能电网计划未来展望 前言 2005年,一位名叫马克?坎贝尔的加拿大人发明了一种无线控制器,这种控制器与大楼的各个电器相连,让大楼里的电器互相协调,减少了大楼在用电高峰期的用电量。欧美各国对智能电网的研究开展较早,且已经形成强大的研究群体,由于各国的具体情况不同,其智能电网的建设动因和关注点也存在差异。 我国电力行业紧密跟踪欧美发达国家电网智能化的发展趋势,着力技术创新,研究与实践并举,在智能电网发展模式、理念和基础理论、技术体系以及智能设备等方面开展了大量卓有成效的研究和探索。2009年5月,在北京召开的“2009特高压输电技术国际会议”上,国家电网公司正式发布了“坚强智能电网”发展战略。2009年8月,国家电网公司启动了智能化规划编制、标准体系研究与制定、研究检测中心建设、重大专项研究和试点工程等一系列工作。在2010年3月召开的全国“两会”上,温家宝总理在《政府工作报告》中强调:“大力发展低碳经济,推广高效节能技术,积极发展新能源和可再生能源,加强智能电网建设”。这标志着智能电网建设已成为国家的基本发展战略。

智能电网对智慧城市的支撑作用研究 黄晓嘉

智能电网对智慧城市的支撑作用研究黄晓嘉 发表时间:2018-08-13T17:17:45.847Z 来源:《电力设备》2018年第12期作者:黄晓嘉 [导读] 摘要:智能电网对智慧城市建设具有强大的支撑潜力。阐述了智慧城市的内涵与特征,及其对智能电网的关键需求。 (惠州电力勘察设计院有限公司 516023) 摘要:智能电网对智慧城市建设具有强大的支撑潜力。阐述了智慧城市的内涵与特征,及其对智能电网的关键需求。通过梳理二者的关系认为智能电网是智慧城市的重要组成部分,以智能电网为基础构建智慧城市是智慧城市发展的重要途径。在智能电网建设中,需要深化应用信息通信类技术、分布式能源发电并网技术、绿色输变电工程技术、先进储能技术、主动配电网和微网技术、需求响应技术、电动汽车与电网互动技术、智能用电及用户用能行为分析技术、智能电网业务互动技术城市能源互联网等关键技术,使智能电网为智慧城市的发展提供强大的支撑。 关键词:智能电网;智慧城市;信息通信技术;分布式能源 智慧城市的建设是时代发展的必然需求,它的发展会使信息呈现出智能化的发展趋势,提升经济的发展水平,加快智能信息系统的建设与应用,有利于构建环境优美、管理高效、社会和谐的生活环境。智能电网是智慧城市的发展基础,因此,越来越多的专家学者,致力于研究智能电网对智慧城市的支撑作用,以此来促进二者的协调发展。 1.智慧城市的内涵和特征 目前全球还没有城市实现完整意义上的智慧城市,也并没有形成完全统一的智慧城市的概念和理论模型,各研究机构、组织和企业也从不同的视角出发,依据不同的技术背景、所处的经济发展阶段,提出了不同的智慧城市概念。国际电工委员会(IEC)在其智慧城市的白皮书中给出的智慧城市是:信息通信技术(ICT)与城市传统基础设施结合,使众多系统集成为一个新系统,用以实现解决环境污染问题、方便城市管理者更高效管理城市以及向市民提供高质的生活、交通及其他系统,满足市民进行经济、文化、社会性等一系列活动需求的目标。英国标准协会(BritishStandardInstitution,BSI)提出智慧城市是在城市层面通过捕捉整个城市的信息,并进行数据分析,达到对整个城市资源的实时监控。欧洲智慧城市理念以人为本,突出环境的可持续发展,实现经济的可持续增长,具有用户创新、开放创新、大众创新、协同创新的鲜明特点。智能电网最明显的特点,体现在以下几个方面:(1)网架结构稳定,具备强大的电力输送能力,可为城市的发展,提供安全稳定的电力资源。(2)它可以在减少运营成本的同时,使电网输送的效率以及运行的效率得到整体发展,有利于提高电网运行的经济效益与社会效益。(3)智能电网使用清洁的能源,加大对可再生资源的利用,能够有效降低城市的环境污染问题,提高资金的使用效率,保持生态平衡。(4)智能电网的应用,使客户与电网信息完全透明,有利于实现资源的共享。(5)智能电网的建成,改变了传统的电网运行方式,使其呈现出操作灵活的特点,实现双向互动服务的发展目标,提高电网运行的服务质量。 2.能源技术上的支撑 2.1为智慧城市保证电力供应 智能电网是一种利用先进技术,将传统变电站的应用管理系统转变为带有智能化色彩的管理模式。在智能电网的应用中,利用了控制技术、无线通讯技术和智能传感技术等一系列先进技术,实现对变电站输电设备运行情况的实时监控与检测,在自动化配电方面得到了广泛的推广以及实际应用。智能电网的成功建立,在一定程度上意味着城市电网将以平稳健康的姿态运行,智能电网可以对城市电网的各个环节设备的运行状况进行监控检测,在检测过程中及时的将检测数据生成信息代码传递给终端管理系统,相关工作人员可以根据这些信息进行分析整理,实时对城市电网在运行过程中潜在风险进行评估预测,并且有针对性的制定风险处理方案。智能电网的投入使用保证了城市电网的运行情况,对突发性电网状况加以控制,全面提高了城市电网的事故预警能力,为智慧型城市保证了稳定的电力供应。例如:北京市的智能电网建设,在市区内配电自动化服务范围上得到了进一步的扩展。城市电网的配电系统与配电设施上的完善,有效的缩短了整个城市电网供电所需的时间,与未完成智能电网建设时期相比,整个北京市的停电时间被缩短到了将近18分钟,为智慧城市的发展提供了可靠的电力供应。 2.2使用清洁能源,减少环境污染 智能电网在投入使用后,利用清洁的能源代替传统的电力资源,使城市能源消费体系中清洁能源的比重得到提高,促进城市的可持续发展。为了更好地利用清洁能源、降低环境污染,智能电网先后建成了预测光伏发电功率、风电发电功率以及特高压发电功率等项目,扩大清洁能源在城市电网中的应用效果,利用城市电网,将与城市距离较远的清洁能源传递到城市中。除此之外,有关部门还选择在配电网项目中加入分布式能源,确保能源的平衡发展,在日常生活中推广使用清洁能源。近年来,我国投入使用了大量的电动汽车,用电能为汽车提供动力,以此来替代传统的燃油方式,有效抑制了汽车尾气对大气环境的污染。 2.3为智慧城市提高能源利用率 智能电网的投入使用,对城市电网通信平台的进一步发展起到了推动效果。在整个智慧型城市的资源分布、整合方面,提高了能源的有效利用率。城市智能电网通信平台的建立,不仅仅只对城市电网提供优质服务,还为城市的其他行业提供了相应服务设施。例如:在人们的日常生活中,智能电网通信平台中的电力光纤可以为用户将互联网信号、电信网络信号和电视网络信号进行汇聚以及融合,避免了由三网信号造成的不必要的资源浪费,实现了三方的资源共享,促进了三者的协调发展。在城市电力行业中,智能电网的通信平台还可以将电能生产与电力传输过程中产生的信息数据资源进行汇总,实现了对电能的进一步转换与对用户消费过程中产生的数据信息的全面分析。 3.智能电网支撑智慧城市的关键技术 3.1信息通信技术 信息通信支撑技术是实现智能电网与智慧城市业务互动的底层基础设施,不仅包括目前已在智慧城市中越来越引起重视的4G通信、物联网、移动互联网、“互联网+”等社会公共信息通信技术,也包括电力大数据、电力光纤通信等电力行业特有的电力信息和通信技术。 3.2分布式能源发电并网技术 未来智慧城市对生态环境越来越重视,随着国家分布式能源政策的引导,分布式能源在城市中的渗透率将会逐步提高,是实现智慧城市绿色发展的关键。在建立统一、规范的相关技术标准和体系前提下,完善分布式能源并网技术,大力提高电力电子技术应用水平。在分布式能源渗透率逐步提高的情况下,不断提高相关的负荷预测、运行控制技术水平。根据各种电源的性质以及当地具体情况,科学选择集中接入中压配电网或者分散接入低压配电网等方式,做到因地制宜、灵活接入。开发适应分布式能源渗透率逐步提高的新型调度技术,克

相关文档
相关文档 最新文档