文档库 最新最全的文档下载
当前位置:文档库 › 空气绕圆柱体流动压力分布测定

空气绕圆柱体流动压力分布测定

空气绕圆柱体流动压力分布测定
空气绕圆柱体流动压力分布测定

空气绕圆柱体流动压力分布测定

一 实验目的

学习固体表面压力的测量方法

结合流体力学,进一步了解平行无环流绕流圆柱体的特点

*(较高要求) 与教材给出的理论压力分布比较,了解实际物体所受的形状阻力的来源 二 实验原理

理想流体平行流绕流圆柱体作无环量流动时,圆柱表面速度分布

θ

θsin 20

0∞-==u u u (1)

圆柱表面任一点的压力p 根据Bernoulli 方程 g

u p g u p

22220∞∞+=+γγ (2) 引入无量纲压力系数 c p 来表征物体上任一点的压力分布

221

-=

u p p c p ρ (3)

实际流体具有粘性,Re 超过某数值,圆柱后产生涡流,出现尾涡区,破坏圆柱前后压

力的对称分布,造成压差阻力。

流动动压∞-p p 0

2

21∞

=u ρ

)(81.90∞-=h h (4)

式中h 0h ∞分别为来流总压与静压水头。 圆柱表面一点的压力p )(81.9∞∞-=-

h h p p (5)

对应的压力系数

∞∞∞--=

--=h h h h p p p p c p 00 (6) 实验中的空气发生比较低速的流动,可认为空气不可压,密度不变;又空气经过均流段后流经圆柱,可认为平行定常流。实验流动的雷诺数

ν

D u ∞=

Re

式中D 为圆柱外直径。

三 实验设备

实验系统仍利用箱式风洞,圆柱体置于实验段。圆柱表面有一测压孔,压力信号从与圆柱体相垂直的方向上引出,圆柱能够绕自深轴线转动。压力引出的位置由相对来流前驻点的

角度θ表示。从圆形刻度盘读数。圆柱体的上游来流截面架设皮托管,以测量来流总压(流速)。

四 实验步骤 1 安装皮托管

2 开启风机,测量来流总压p 0与静压p ∞之差p 0 - p ∞

3 转动圆柱体,每隔10o记录一次圆柱表面压力与来流静压之差p-p ∞

4 调节来流速度,测量不同Re 数时的压力分布

(说明:本装置仅可测试Re ≤5×105

的亚临界流动) 5 实验结束,停止风机

图1 实验装置示意

1 箱式风洞

2 实验段

3 圆柱体

4 测压孔

5 倾斜式微压计

6 皮托管

7 调节风门

五 数据记录与处理

室温t a 大气压强p a 空气运动粘度 m 2/s

圆柱直径m D=48×10-3

m 来流动压压头 来流静压压头 mmH 2O

a

a t p +=27346

.0ρ

h u ?ρ

81

.92?=

∞ ν

D u ∞=

Re

填入下面的表格,画出压力系数随角度变化的图线,如图2所示。

六 思考

1 如何固定皮托管的尖端对准来流?如何检查?

2 已知表面的压力分布,可以计算圆柱体单位长度受到的压差阻力(形状阻力)

?=π

θθ20

cos d pR F p

R 为圆柱半径。但该式不能直接应用,因为p=f(θ)很难用简单函数表达。通常用数值方法求,下式是否正确?

)105cos(36

2)

(81.9135

21i h h R F i i i p ++∑=+=π

3 测量来流动、静压和表面压差,想一想如何提高测量精度?

图2 平行流绕圆柱压力系数

1——理论压力系数

2——亚临界流动时的压力系数 3——超临界流动时的压力系数

绕圆柱体压力分布的测定一、实验目的

二、实验原理

1.理想流体平行绕流圆柱体作无环量流动

(1)圆柱体表面的速度分布规律:

圆柱体表面上任一点的压力p,

(2)无因次的压力系数c p

2.实际流体平行绕流圆柱体作无环量流动

(1)实际流体动压

(2)圆柱体表面任一点压力与来流压力之差

压力系数

三、实验设备

四、实验步骤

1.了解实验风洞。

2.安装皮托管。

3.开启风洞,测量来流的总压p 0与静压p ∞的差值(h 0-h ∞),mmH 2O 。

4.转动圆柱体,每间隔10°测量一次圆柱体表面压力p 与来流静压p ∞的差值,mmH 2O ,共计19次。

5.调整风洞的速度,重复3、4步骤,测得不同雷诺数下的另一组压力分布。

6.停机。 五、实验报告

1.记录以下数据,计算亚临界情况下的u ∞和Re,并用实测数据计算出的c p 值数列入表1。 室温t a = ℃ 大气压力p = mmHg

圆柱体直径D = m 空气运动粘度ν = m 2

/s 亚临界:h 0 - h ∞= mmH 2O

a a t p +=27346

.0ρkg/m 3

,)(81.920∞∞-?=h h u ρ

m/s ,νD u ∞=Re

表 1(Re= )

表 3(Re= )

*式中 0()/()p c h h h h ∞∞=--

2.根据实测数据画出表1曲线图,并对实验所得压力分布曲线进行分析。

六、思考题

在测量h 0,h ∞和h i (i =0—19)时,采用什么措施能够尽可能地提高测量精度?

海拔与大气密度和温度间的换算关系

海拔与大气密度和温度 间的换算关系 The manuscript was revised on the evening of 2021

海拔高度与大气密度和温度间的换算关系 1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11 g/m3。 从表中可以看出,海拔高度每升高1000 m,相对大气压力大约降低12%,空气密度降低约10%,绝对湿度随海拔高度的升高而降低。 绝对湿度是指每单位容积的气体所含水分的重量,用mg/L或g/m3表示;相对湿度是指绝对湿度与该温度饱和状态水蒸气含量之比用百分数表达。 2、空气温度与海拔高度的关系 在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温度与海拔高度的关系: 从表中可以看出:空气温度在一般情况下,海拔高度每升高1000 m,最高温度会降低5℃,平均温度也会降低5 ℃。 大气密度(atmospheric density) 单位容积的大气质量。 空气密度在标准状况(0℃(273k),101KPa)下为·L-1。 空气的密度大小与气温等因素有关,我们一般采用的空气密度是指在0摄氏度、绝对标准指标下,密度为千克每立方米m3).

大气压力随海拔高度而变化,由经验公式 P=P0()(kPa)式中 h一海拔高度(km). 用上面公式,算出压力,然后根据密度= P *29/(8314*T),其中 P的单位是帕,T的单位是K,通常也就是+t 不同温度下干空气算公式: 空气密度 =(实际压力 /标准物理大气压) *(273/实际绝对温度),绝对温度= + 273通常情况下, 即 30摄氏度时,取 M3 -60摄氏度时,取 M3

空气密度表(含不同温度下含湿量)

空气温度干空气密度 饱和空气密 度 饱和空气 饱和空气含 湿量 饱和空气焓 水蒸气分压 力 t ρρb pq.b db ib ℃kg/m3 kg/m3 ×102Pa g/kg干空 气 kJ/kg干空 气 -20 1.396 1.395 1.02 0.63 -18.55 -19 1.394 1.393 1.13 0.7 -17.39 -18 1.385 1.384 1.25 0.77 -16.2 -17 1.379 1.378 1.37 0.85 -14.99 -16 1.374 1.373 1.5 0.93 -13.77 -15 1.368 1.367 1.65 1.01 -12.6 -14 1.363 1.362 1.81 1.11 -11.35 -13 1.358 1.357 1.98 1.22 -10.05 -12 1.353 1.352 2.17 1.34 -8.75 -11 1.348 1.347 2.37 1.46 -7.45 -10 1.342 1.341 2.59 1.6 -6.07 -9 1.337 1.336 2.83 1.75 -4.73 -8 1.332 1.331 3.09 1.91 -3.31 -7 1.327 1.325 3.36 2.08 -1.88 -6 1.322 1.32 3.67 2.27 -0.42 -5 1.317 1.315 4 2.47 1.09 -4 1.312 1.31 4.36 2.69 2.68 -3 1.308 1.306 4.75 2.94 4.31 -2 1.303 1.301 5.16 3.19 5.9 -1 1.298 1.295 5.61 3.47 7.62 0 1.293 1.29 6.09 3.78 9.42 1 1.288 1.285 6.56 4.07 11.14 2 1.284 1.281 7.04 4.37 12.89 3 1.279 1.275 7.57 4.7 14.74 4 1.27 5 1.271 8.11 5.03 16.58 5 1.27 1.26 6 8. 7 5.4 18.51 6 1.265 1.261 9.32 5.79 20.51 7 1.261 1.256 9.99 6.21 22.61 8 1.256 1.251 10.7 6.65 24.7 9 1.252 1.247 11.46 7.13 26.92 10 1.248 1.242 12.25 7.63 29.18 11 1.243 1.237 13.09 8.15 31.52 12 1.239 1.232 13.99 8.75 34.08 13 1.235 1.228 14.94 9.35 36.59 14 1.23 1.223 15.95 9.97 39.19 15 1.226 1.218 17.01 10.6 41.78 16 1.222 1.214 18.13 11.4 44.8

管道流量计算汇总

请教:已知管道直径D,管道压力P,能否求管道中流体的流速和流量?怎么求 已知管道直径D,管道压力P,还不能求管道中流体的流速和流量。你设想管道末端有一阀门,并关闭的管有压力P,可管流量为零。管流量不是由管压力决定,而是由管沿途压力下降坡度决定的。所以一定要说明管道的长度和管道两端的压力差是多少才能求管道的流速和流量。 对于有压管流,计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=0.001736/d^5.3 或用s=10.3n2/d^5.33计算,或查有关表格; 2、确定管道两端的作用水头差H=P/(ρg),),H 以m为单位;P为管道两端的压强差(不是某一断面的压强),P以Pa为单位; 3、计算流量Q:Q = (H/sL)^(1/2) 4、流速V=4Q/(3.1416d^2) 式中:Q――流量,以m^3/s为单位;H――管道起端与末端的水头差,以m^为单位;L――管道起端至末端的长度,以m为单位。 管道中流量与压力的关系 管道中流速、流量与压力的关系 流速:V=C√(RJ)=C√[PR/(ρgL)] 流量:Q=CA√(RJ)=√[P/(ρgSL)] 式中:C――管道的谢才系数;L――管道长度;P――管道两端的压力差;R――管道的水力半径;ρ――液体密度;g――重力加速度;S――管道的摩阻。 管道的径和压力流量的关系 似呼题目表达的意思是:压力损失与管道径、流量之间的关系,如果是这个问题,则正确的答案应该是:压力损失与流量的平方成正比,与径5.33方成反比,即流量越大压力损失越大,管径越大压力损失越小,其定量关系可用下式表示: 压力损失(水头损失)公式(阻力平方区) h=10.3*n^2 * L* Q^2/d^5.33 上式严格说是水头损失公式,水头损失乘以流体重度后才是压力损失。式中n――管壁粗糙度;L――管长;Q――流量;d――管径 在已知水管:管道压力0.3Mp、管道长度330、管道口径200、怎么算出流速与每小时流量? 管道压力0.3Mp、如把阀门关了,水流速与流量均为零。(应提允许压力降) 管道长度330、管道口径200、缺小单位,管道长度330米?管道径200为毫米?其中有无阀门与弯头,包括其形状与形式。 水管道是钢是铸铁等其他材料,其壁光滑程度不一样。 所以无法计算。 如果是工程上大概数,则工程中水平均流速大约在0.5--1米/秒左右,则每小时的流量为:0.2×0.2×0.785×1(米/秒,设定值)×3600=113(立方/小时) 管道每米的压力降可按下式计算:

管道压力损失

除尘系统中的管道压力损失计算 管道的压力损失就是含尘空气在管道中流动的压力损失.它等于管道沿程(摩擦)压力损失和局部损失之和 ,在实际计算中以最长沿程一条管道进行计算,其计算结果作为风机造型的参考依据. 一:管道的沿程压力损失 1. a △P m =△P m λR S P -----湿周,既管道的周长(m ) 左管道系统计算中,一般先计算出单位长度的摩擦损失,通常也称比摩阻(Pa/m ): △P m =λ 比摩阻力可通过查阅图表14-1得出,我公司的管道主要应用于除尘系统中,考虑到含尘空气中粉尘沉降的问题,除尘管道内的风速选择为25~28m/s. 4R S 1 2 V 2e

根据计算图标得出的以下数据: 局部阻力引起的能量损失,称之为局部压力损失或局部损失。 局部损失可按下列公式计算: △P J =δ △P J ----局部压力损失(Pa ) δ------局部阻力系数 2 V 2e

局部阻力系数δ可根据不同管道组件:如进出风口、弯头、三通等的不同尺寸比例,在相关资料中可查得,然后再根据上式计算出局部损失的大小。 例如:整体压制900圆弯头:当r/D=1.5时 δ=0.15 当r/D=2.0时 δ=0.13 当r/D=2.5时 δ=0.12 0总之,△P 为数。 F---Pq---风机全压(Pa ) Q---风机风量(m 3/s ) η----风机效率(一般为0.8~0.86) K---安全系统(1.0~1.2) 上式所得结果即为风机数电机功率,实际使用功率为:

Fs= Fs/F 即为风机的实际使用负载率 Pq*Q 1000* η

标准状态下的气体密度表

标准状态下的气体密度表 标准状态下的气体密度表 注:标准状态为温度0℃,压力0.1013MPa。 液化气的性质 中国石油新闻中心[ 2007-05-14 15:09 ] 由于LPG有这种性质,故能用低温、大容量、常压储存,丙烷和丁烷可分别储存。运输时可以用低温海上运输,也可以常温处理后带压运输。 密度 LPG的气态密度是空气的1.5~2倍,易在大气中自然扩散,并向低洼区流动,聚积在不通风的低洼地点。LPG液态的密度约为水的密度的一半。在15℃时,液态丙烷的密度为0.507kg/L,气态丙烷在标准状态下的密度为1.90kg/m3;液态丁烷的密度为0.583kg/L,气态丁烷在标准状态下的密度为2.45kg/m3。LPG在G3:G4=5:5时,液态LPG的密度为0.545kg/L;,气态LPG 在标准状态下的密度为2.175kg/m3。 饱和蒸气压 LPG在平衡状态时的饱和蒸气压随温度的升高而增大。丙烷和丁烷的饱和蒸气压与温度的关系见表4-1。 表4-1 丙烷和丁烷的饱和蒸气压与温度的关系表

膨胀性 LPG液态时膨胀性较强,体积膨胀系数比汽油、煤油和水的大,约为水的16倍。所以,国家规定LPG储罐、火车槽车、汽车槽车、气瓶的充装量必须小于85%,严禁超装。 值和导热系数 LPG的热值一般用低热值计算,在25℃,101 325Pa (1大气压)下表4-2 LPG热值表 表4-2 LPG热值表 LPG的导热系数与温度有关。气态的导热系数随温度的升高而增大,而液态的志热系数随温度的升高而减少,见表4-3。 表4-3 丙烷、丁烷的导热系数表 5.比热容 LPG的比热容随温度的上升而增加。比热容有比定压(恒压)热容和比定容(恒容)热容2种。LPG的蒸发潜热随温度上升而减少,见表4-4 表4-4 丙烷、丁烷在不同温度下的比定压热容和蒸发潜热

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

管路压力损失计算.doc

管路压力损失计算 管路是一种由管子、管件、阀门等连接而成的、用于输送流体或松散固体 物质的管状设备。 流体在管道内流动时,由于同管壁发生摩擦和流体本身的内部摩擦,会产 生压力损失。这种压力损失称为沿程阻力损失或摩擦阻力损失。 流体经过弯头、三通、变径管、阀门等构件时,流动状态会发生急剧改 变,即出现转向、加速、撞击、旋涡、变形等情况,这同样会造成压力损失。 这种压力损失称为局部损失。 如果管路不在同一水平面上,则管路爬高时,流体压强的一部分要用于克 服重力。这种压力损失称为位置损失。 管路出口流速大于进口时,流体的一部分压力能要转化为动能,这种压力 损失称为出口速度损失。 对于短管,局部损失和出口速度损失之和大于沿程阻力损失的 5%,计算时不能忽略。而对于长管,即长距离的输送管路,由于局部损失和出口速度损失所占的比例很小,一般可忽略不计。 管路的形态一般可分两类:简单管路和复杂管路。 复杂管路又可分为四种:( 1)串联管路;( 2)并联管路;( 3)枝状管路;( 4)环状管路。 2.1 简单管路的压力损失计算 简单管路是无分支的等直径管路。 简单管路的沿程阻力损失可用下式计算: P1 = (λγl/d )( V2/2g) 式中: V——管子内流体的平均流速;

λ——摩擦阻力系数; γ——气体重度; l——管子长度; g——重力加速度。 若将管件、阀门等都看作是具有一定长度( li)的管子,将局部损失折算成沿 程阻力损失,则可得局部损失的另一种计算形式: P2 = (λγΣ li/d)( V2/2g) 在忽略位置损失和出口速度损失的情况下,简单管路的总压力损失ΔP为:

水泵管道压力损失计算公式

水泵的管道压力损失计算,水泵管道压力损失计算公式 点击次数:7953 发布时间:2011-10-28 管道压力损失,管道压力损失计算公式 为了方便广大用户在水泵选型时确定管道压力损失博禹公司技术工程师特意在此发布管道压力损 失计算公式供大家选型参考。通过水泵性能曲线可以看出每台水泵在一定转速下,都有自己的性能曲线,性能曲线反映了水泵本身潜在的工作能力,这种潜在的工作能力,在泵站的实际运行中,就表现为在某一特定条件下的实际工作能力。水泵的工况点不仅取决于水泵本身所具有的性能,还取决于进、出水位与进、出水管道的管道系统性能。因此,工况点是由水泵和管路系统性能共同决定的。 水泵的管道系统,包括管路及其附件。由水力学知,管路水头损失包括管道沿程水头 损失与局部损失。 Σh=Σhf+Σhj=Σλι/d v2/2g+Σζv2/2g (3-1) 式中Σh—管道水头损失,m; Σhf--管道沿程水头损失,m; Σhj--管道局部水头损失,m; λ--沿程阻力系数; ζ--局部水头损失系数; ι--管道长度,m; d--管道直径,m; v --管道中水流的平均流速,m/s。 对于圆管v=4Q/πd2,则式(3-1)可写成下列形式

Σh=(Σλι/12.1d5+Σζ/12.1d4)Q2=(ΣS沿+ΣS局)Q2=SQ2 (3-2) 式中S沿--管道沿程阻力系数,S2/m5,当管材、管长和管径确定后,ΣS沿值为一常数;S局--管道局部阻力系数,S2/m5,当管径和局部水头损失类型确定后,ΣS局值为一常数; S--管路沿程和局部阻力系数之和,S2/m5。 由式(3-2)可以看出,管路的水头损失与流量的平方成正比,式(3-2)可用一条顶点在原点的二次抛物线表示,该曲线反映了管路水头损失与管路通过流量之间的规律,称为管路水头损失特性曲线。如图3-1所示。 在泵站设计和运行管理中,为了确定水泵装置的工况点,可利用管路水头损失特性曲线,并将它与水泵工作的外界条件联系起来。这样,单位重力液体通过管路系统时所需要的能 量H需为 H需=H st+v2出-v2进/2g+Σh (3-3) 式中H需--水泵装置的需要扬程,m; H st--水泵运行时的净扬程,m; v2出-v2进/2g --进、出水的流速水头差,m; Σh--管路水头损失,m。 若进、出水池的流速水头差较小可忽略不计,则式(3-3)可简化为 H需=H st+Σh=H st=SQ2 (3-4) 利用式(3-4)可以画出如图3-2所示的二次抛物线,该曲线上任意一点表示水泵输送某一流量并将其提升H st高度时,管道中每位重力的液体所消耗的能量。因此,称该曲线为水泵装置的需要扬程或管路系统特性曲线。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

管径和压力损失计算

管径和压力损失计算 一、管径计算 1、管径计算 蒸汽、热水、压缩空气、氮气、氧气、乙炔按下述三式计算: 按体积流量计算 按质量流量计算 按允许压降计算 式中—管道内径(mm); —在工作状态下的体积流量(m3/h); —在工作状态下的质量流量(t/h); —在工作状态下的流速(m/s); —在工作状态下的密度(kg/m3); —摩擦阻力系数; —允许比压降(Pa/m)。 压缩空气、氮气、氧气、乙炔等气体工作状态下的体积流量可由标准状态(0℃,绝对压力0.1013MPa)下的体积流量换算而得 式中—标准状态下气体体积流量(m3/h); —气体工作温度(℃); —气体绝对工作压力(MPa)。 二、管道压力损失计算 管道中介质流动产生的总压差包括直管段的摩擦阻力压降和管道附件的局部阻力压降,以及管内介质的静压差。 管内介质的总静压差:; 直管的摩擦阻力压降:; 管道附件的局部阻力压降:; 管内介质的静压差:。 式中Δp—管内介质的总静压差(Pa); Δpm—直管的摩擦阻力压降(Pa); Δpd—管道附件的局部阻力压降(Pa); Δpz—管内介质的静压差(Pa); ∑ξ—管件局部阻力系数之和; ∑Ld—管道局部阻力当量长度之和(m); H1—管段始点标高(m); H2—管段终点标高(m); 对液体,因其密度大,计算中应计入介质静压差。对蒸汽或气体,其静压差可以忽略不计。 三、允许比压降计算 对各种压力管路的计算公式为 式中—单位压力降(Pa/m); 、—起点、终点压力(MPa); —管道直管段总长度(m);

—管道局部阻力当量长度(m)。 在做近似估算时,对厂区管路可取=(0.1-0.15);对车间的蒸汽、压缩空气、热水管路,取=(0.3-0.5);对车间氧气管路去=(0.15-0.20) 看见公式,写上自己知道的公式吧。 管径计算公式。 d=18.8乘以(Q/u)的开平方,其中Q=Qz(273+t)/(293*P),其中,Qz为标准状态下的压力,P为绝对压力。 对于u的确定,p=0.3~0.6MPa时,u=10~20s; p=0.6~1MPa时,u=10~15s; p=1~2MPa时,u=8~12s; p=2~3MPa时,u=3~6s; p>3MPa时,u=0~3s

空气密度与压强关系表

空气密度表 绝对压力空气温度空气密度Mpa 摄氏度Kg/m3 0.1 25 1.1691 0.2 25 2.3381 0.3 25 3.5073 0.4 25 4.6764 0.5 25 5.8455 0.6 25 7.0146 0.7 25 8.1837 0.8 25 9.3528 0.9 25 10.522 1 25 25 11.691 1.1 25 1 2.860 1.2 25 14.029 1.3 25 15.198 1.4 25 16.367 1.5 25 17.537 1.6 25 18.706 1.7 25 19.875 1.8 25 21.044 1.9 25 2 2.213

2.0 25 2 3.382 2.1 25 2 4.551 2.2 25 2 5.720 2.3 25 2 6.889 2.4 25 28.058 2.5 25 29.228

饱和蒸汽密度表 绝对压力饱和蒸汽温度饱和蒸汽密度Mpa 摄氏度Kg/m3 0.1 99.7 0.5883 0.2 120.1 1.1288 0.3 133.4 1.6507 0.4 143.5 2.1628 0.5 151.8 2.6683 0.6 158.8 3.1692 0.7 164.9 3.6665 0.8 170.4 4.1616 0.9 174.3 4.6544 1.0 179.9 5.1451 1.1 184.1 5.6367 1.2 187.9 6.125 1.3 191.6 6.6143 1.4 195.0 7.1038 1.5 198.3 7.5928 1.6 201.4 8.082 1.7 204.3 8.5718

压力损失的计算

压力损失的计算 管道1:据Q=4284m3/h ,v=14.80m/s ,查阅《工业通风》孙一坚附表,我们选定管段直径D=320mm 局部压力损失:集气罩1:ξ=0.16,90°弯头R d =1.5,ξ=0.17, ξ=0.27+0.17+0.17+0.21=0.82 ∴?p 1局部=ξ× ρ×v2 =0.82×169.24=138.78p a 沿程压力损失: l 垂直 =4?0.8?0.2?0.537?0.233=2.23m, ∴l 总 =2.23+1+7=10.23m 查表可知:R m=15.43P a·m?1 ∴?p 1沿程=R m×l 总 =157.85P a ∴?p 1总 =157.85+138.78=296.63P a 管道2:局部压力损失:集气罩1: ξ=0.27,90°弯头R d =1.5,ξ=0.17,45°合流三通,F2 F1 =0.5,F3 F1 =0.5,L3 L2 = 1,ξ=0.88 ξ=0.27+0.17+0.88=1.32 ∴?p 2局部=ξ× ρ×v2 =1.32×169.24=223.40p a 沿程压力损失: l 垂直 =4?0.8?0.2?0.537?0.233=2.23m, ∴l 总 =2.23+1.41=3.64m ∴?p 2沿程=R m×l 总 =56.17P a ∴?p 2总 =157.85+138.78=279.5P a 管道3:总流量q v=5927.04m3/h,v=16.16m/s 局部压力损失:90°弯头R d =1.5,ξ=0.17 ∴ξ=0.17×3=0.51,除尘器压力损失为1100Pa ∴?p 3局部=ξ× ρ×v2 +1100=0.51×169.24=1186.31p a 沿程压力损失: l 总 =1.9+4.4+3.5+0.975=10.775m

管径选择与管道压力降计算(一)1~60

管径选择与管道压力降计算 第一部分管径选择 1.应用范围和说明 1.0.1本规定适用于化工生产装置中的工艺和公用物料管道,不包括储运系统的长距离输送管道、非牛顿型流体及固体粒子气流输送管道。 1.0.2对于给定的流量,管径的大小与管道系统的一次投资费(材料和安装)、操作费(动力消耗和维修)和折旧费等项有密切的关系,应根据这些费用作出经济比较,以选择适当的管径,此外还应考虑安全流速及其它条件的限制。本规定介绍推荐的方法和数据是以经验值,即采用预定流速或预定管道压力降值(设定压力降控制值)来选择管径,可用于工程设计中的估算。 1.0.3当按预定介质流速来确定管径时,采用下式以初选管径: d=18.81W0.5 u-0.5ρ-0.5(1.0.3—1) 或d=18.81V00.5 u-0.5(1.0.3—2) 式中 d——管道的内径,mm; W——管内介质的质量流量,kg/h; V0——管内介质的体积流量,m3/h; ρ——介质在工作条件下的密度,kg/m3; u——介质在管内的平均流速,m/s。 预定介质流速的推荐值见表2.0.1。 1.0.4当按每100m计算管长的压力降控制值(⊿Pf100)来选择管径时,采用下式以初定管径: d=18.16W0.38ρ-0.207 μ0.033⊿P f100–0.207(1.0.4—1) 或d=18.16V00.38ρ0.173 μ0.033⊿P f100–0.207(1.0.4—2) 式中 μ——介质的动力粘度,Pa·s; ⊿P f100——100m计算管长的压力降控制值,kPa。 推荐的⊿P f100值见表2.0.2。 1.0.5本规定除注明外,压力均为绝对压力。

大气压和海拔的换算参考资料

大气压力与海拔高度转换一个地方气压值经常有变化→ 其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成 正比关系任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m ,气压平均降低12.7hPa ,在高层则小于此数值。确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。1、静力学方程假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273 ) /P ( m/hPa ) 其中h 是气压高度差,t 是摄氏温标,P 是气压从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400 ( 1+t/273 )log( P1/P2) 式中P1 、P2分别是高度Z2 、Z1的气压值,t是摄氏温标从公式可以看出 ①气压随高度增加按指数规律递减②高度越高,气压减小得越慢这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。 大气密度与海拔高度和温度间的换算1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气 注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11 g/m3 。从表中可以看出,海拔高度每 升高 1 000 m,相对大气压力大约降低12%,空气密度降 低约10%,绝对湿度随海拔高度的升高而降低。 2、空气温度与海拔高度的关系 在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温

管道压损计算

管道压损计算: 1. 管道中压损: △p P =△f P +△t P +△e P △p P :管道总压降,KPa △f P :直管段压降,KPa △t P :局部压降,KPa △e P :标高变化压降,KPa 2. 雷诺数(气体在管道内的流动方程) νμρud ud R e == (ρ μ ν=) :e R 雷诺数; :ρ气体密度,Kg/m 3() :u 管道内气体的速度,m/s :d 管道直径,m :μ动力粘度,Pa.s :ν动力粘度,m 2/s 气体的粘度随温度的增高而增大(液体的粘度随温度的增高而减小),与压力几乎没有关系。空气的粘度μ壳用下式计算: 2 /36)273 273(*380380* 10*7580.1t t ++=-μ t :为气体温度 圆管内流动的下限雷诺数:2000Re =c 直管段压降△2 2 'pu d L P i f λ= 其中摩擦系数λ应根据流动状态按下面公司计算。 (1) 在工程计算时: 2000Re ≤时按流层计算; 沿程压损系数:Re 64= λ 金属管沿程压损系数:Re 75=λ 橡胶软管沿程压损系数:Re 80 =λ 2000Re >时按紊流进行计算:25 .0Re 3164 .0= λ

20,2n L P K Pa D υρ λξ???=+∑? ??? 3. 直管段压降△02 2 K u d L P f ρλ = 其中摩擦系数λ应根据流动状态按上面公式计算。:f P 直管段压降,KPa :λ摩擦系数 L :管道长度,m :d 管道直径,m :ρ气体密度,Kg/m 3,C 020时r=1.29 :u 管道内气体的速度,m/s :0K 阻力附件系数,0K =1.15~1.20 4、管道管径与壁厚关系 (1)风管的壁厚 管壁应有合理的厚度,太薄钢性差,受负压吸力易变形;太厚则浪费钢材不经 济。风管壁厚按下表取值: (2)当含有熟料及磨损性强的矿物粉尘,且流速>15m/s 时,风管壁厚适当加大。 (3)为防止大型风管的刚度变形,在其长度方向每隔2.5m 增加一道加固圈,加固圈 可用宽50~80,厚度为5~8mm 的扁钢制作。 (4)风管的法兰规格,螺栓孔径,数量等均应按表中给定尺寸确定。 5、管道阻力计算 (1) 阻力计算公式 风管系统阻力应为管道的摩擦阻力与局部阻力之和: λ——圆管摩擦阻力系数;见表 L ——风管长度,m ; D ——风管直径,m ; ξ——管件及变径点阻力系数,查工艺手册(下)14~18页; 风管壁厚度 表3 (3)

管道阻力损失计算(终审稿)

管道阻力损失计算公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 ? 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为:

(6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm;

D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力 B0=、温度t0=20℃、宽气密度ρ0=m3、运动粘度v0=×10-6m2/s、管壁粗糙度K=、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中 Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。 (2)空气温度和大气压力的修正 (6-1-6) 式中 Kt——温度修正系数。 KB——大气压力修正系数。 (6-1-7) 式中 t——实际的空气温度,℃。 (6-1-8) 式中 B——实际的大气压力,kPa。

气体密度与压力

空气密度与压力关系 绝对压力空气温度空气密度绝对压力空气温度空气密度Mpa摄氏度(℃)kg/m3Mpa摄氏度(℃)kg/m3 0.125 1.1691 1.42516.367 0.225 2.3381 1.52517.537 0.325 3.5073 1.62518.706 0.425 4.6764 1.72519.875 0.525 5.8455 1.82521.044 0.6257.0146 1.92522.213 0.7258.1837 2.02523.382 0.8259.3528 2.12524.551 0.92510.522 2.22525.72 1.02511.691 2.32526.889 1.1251 2.86 2.42528.058 1.22514.029 2.52529.228 1.32515.198 二氧化碳密度与压力关系 绝对压力温度CO2密度绝对压力温度CO2密度Mpa摄氏度(℃)kg/m3Mpa摄氏度(℃)kg/m3 0.125 1.775 1.02517.751 0.225 3.550 1.12519.527 0.325 5.325 1.22521.302 0.4257.101 1.32523.077 0.5258.876 1.42524.852 0.62510.651 1.52526.627 0.72512.426 1.62528.402 0.82514.201 1.72530.177 0.92515.976 1.82531.953 氮气密度与压力关系 绝对压力温度CO2密度绝对压力温度CO2密度Mpa摄氏度(℃)kg/m3Mpa摄氏度(℃)kg/m3 0.125 1.129 1.02511.294 0.225 2.259 1.12512.423 0.325 3.388 1.22513.553 0.425 4.518 1.32514.682 0.525 5.647 1.42515.811 0.625 6.776 1.52516.941 0.7257.906 1.62518.070 0.8259.035 1.72519.199 0.92510.164 1.82520.329

管道内压力损失的计算

管道内压力损失的计算 一、液体在直管中流动时的压力损失 液体在直管中流动时的压力损失是由液体流动时的摩擦引起的,称之为沿程压力损失,它主要取决于管路的长度、内径、液体的流速和粘度等。液体的流态不同,沿程压力损失也不同。液体在圆管中层流流动在液压传动中最为常见,因此,在设计液压系统时,常希望管道中的液流保持层流流动的状态。 1.层流时的压力损失 在液压传动中,液体的流动状态多数是层流流动,在这种状态下液体流经直管的压力损失可以通过理论计算求得。 圆管中的层流 (1)液体在流通截面上的速度分布规律。如图所示,液体在直径d 的圆管中作层流运动,圆管水平放置,在管内取一段与管轴线重合的小圆柱体,设其半径为r ,长度为l 。在这一小圆柱体上沿管轴方向的作用力有:左端压力p 1,右端压力p 2,圆柱面上的摩擦力为F f ,则 其受力平衡方程式为: 122()0 f p p r F π--= ( 由式(2-6)可知: 式中:μ 因为速度增量du 与半径增量dr 符号相反,则在式中加一负号。 Δp =p 1- p 2 Δp 、式(2-45)代入式(2-44),则得: 对式积分得: 当r =R 时,u =0,代入(2-47)式得: 则 22()4p u R r l μ?= - 由式可知管内流速u 沿半径方向按抛物线规律分布,最大流速在轴线上,其值为:

2max 4pR u l μ? = (1) (1)? 管路中的流量。图(b)所示抛物体体积,是液体单位时间内流过通流截面的体积即 流量。为计算其体积,可在半径为r 处取一层厚度为 的微小圆环面积,通过此环 形面积的流量为: 对式积分,即可得流量q : (2) (2)? 平均流速。设管内平均流速为 υ 对比可得平均流速与最大流速的关系: υ=max 2 u (4)沿程压力损失。层流状态时,液体流经直管的沿程压力损失可从式求得: 232lv p d μ?= 由式可看出,层流状态时,液体流经直管的压力损失与动力粘度、管长、流速成正比,与管径平方成反比。 在实际计算压力损失时,为了简化计算,得μ=υd ρ/Re ,并把 μ=υd ρ/Re 代入,且分子分母同乘以2g 得 : 2 64...Re 2l l v p g d g ρ?= 式中:λ为沿程阻力系数。它的理论值为λ=64/Re ,而实际由于各种因素的影响,对光滑金属管取λ=75/Re ,对橡胶管取λ=80/Re 。 2.紊流时的压力损失层流流动中各质点有沿轴向的规则运动。而无横向运动。紊流的重要特性之一是液体各质点不再是有规则的轴向运动,而是在运动过程中互相渗混和脉动。这种极不规则的运动,引起质点间的碰撞,并形成旋涡,使紊流能量损失比层流大得多。 由于紊流流动现象的复杂性,完全用理论方法加以研究至今,尚未获得令人满意的成果,故仍用实验的方法加以研究,再辅以理论解释,因而紊流状态下液体流动的压力损失仍用式来计算,式中的λ值不仅与雷诺数Re 有关,而且与管壁表面粗糙度Δ 有关,具体的 λ值见表2-5。 表2-5圆管紊流时的λ值 2.局部压力损失 局部压力损失是液体流经阀口、弯管、通流截面变化等所引起的压力损失。液流通过这些地方时,由于液流方向和速度均发生变化,形成旋涡,使液体的质点间相互撞击,从而产生较大的能量损耗。 突然扩大处的局部损失

管道压力损失计算Word版

管道压力损失计算 管道总阻力损失hw=∑hf+∑hj, hw—管道的总阻力损失(Pa); ∑hf—管路中各管段的沿程阻力损失之和(Pa); ∑hj—管路中各处局部阻力损失之和(Pa)。 hf=RL、 hf—管段的沿程损失(Pa); R—每米管长的沿程阻力损失,又称比摩阻(Pa/m); L—管段长度(m), R的值可在水力计算表中查得。 也可以用下式计算, hf=[λ×(L/d)×γ ×(v^2)]÷(2×g), L—管段长度(m); d—管径(m); λ—沿程阻力因数; γ—介质重度(N/m2); v—断面平均流速(m/s); g—重力加速度(m/s2)。 管段中各处局部阻力损失 hj=[ζ×γ ×(v^2)]÷(2×g), hj—管段中各处局部阻力损失(Pa); ζ—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。 (引自《简明管道工手册》.P.56—57) 管道压力损失怎么计算 其实就是计算管道阻力损失之总和。 管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。2、沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定 总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。它的计算复杂、分类繁多,误差也大。如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。 管道主要损失分为沿程损失和局部损失。Δh=ΣλL/d*(v2/2g)+Σξv2/2g。其中的λ和ξ都是系数,这个是需要在手册上查询的。L-------管路长度。d-------管道内径。v-------有效断面上的平均流速,一般v=Q/s,其中Q是流量,S是管道的内截面积。希望你能看懂 液体压力计算公式是什么

09 管道阻力降的计算

管道阻力降 计算 王勇

2011年12月18日第2页 概述一 主要内容 管径选择的一般要求二 如何确定管径三 管道阻力降计算四 常见管道压降元件典型压降 五

1.概述 石油化工装置主要是由设备、管道、仪表构成的一个系统。管道系统的主要作用是流体输送,控制着设备的 输入与输及操作条件,管道系统设计是工艺设计的一项 重要内容。而管道阻力降计算则是管道系统设计的一项 最基本的工作。 一般的管道可根据物料平衡表中的物料流量、推荐流速或允许压力降来选用管径(所选管径应符合材料标准)。但对某些水力计算有特殊要求的管道,则应进行 详细的水力学计算。 如下部位的管道协调通常就需要进行详细水力学计算:?塔及反应器的入口管道; ?泵的吸入管道; ?往高位输送或长距离输送的液体管道; 2011年12月18日第3页

?要求流量均匀分配的管道; ?液封管道(须校核液封足否会被冲掉或吸入); ?提升管道; ?两相流管道; ?压缩机吸入或排出管道; ?塔的回流管道; ?安全阀的入口和出口管道(控制安全阀人口管道的压降不超过其定压的3%,出口管道须校核安全阀的背压对安全阀定压的影响); ?热虹吸再沸器工艺物料的进出口管道; ?有调节阀的管道(确定合适的调节阀压降)等。 2011年12月18日第4页

2011年12月18日 第5页 2.管径选择的一般要求 管道尺寸的确定,应在充分分析实际情况的基础上进行,对于给定的流量,管径的大小与管道系统的一次投资费(材料和安装)、操作费(动力消耗和维修)和折旧费等有密切的关系。应根据这些费用作出经济比较,并使管道系统的总压力降控制在给定的工作压力范围内,以选择适当的管径,此外还应考虑安全流速及其它条件的限制。在选定管道系统管径时,应考虑以下几个原则。 2.1 流量的考虑 管道系统的设计应满足工艺对管道系统的要求,其流通能力应按正常生产条件下介质的最大流量考虑。其最大摩擦压力降应不超过工艺允许值,其流速应位于根据介质的特性所确定的安全流速的范围内。

常用的空气密度表(-20~100度).pdf

空气密度表 空气 干空气密度饱和空气密饱和空气(水蒸饱和空气含 饱和空气焓 温度度气分压力)湿量 ℃kg/m3 kg/m3 x102Pa g/kg 干空kJ/kg 干空气气 -20 1.396 1.395 1.02 0.63 -18.55 -19 1.394 1.393 1.13 0.7 -17.39 -18 1.385 1.384 1.25 0.77 -16.2 -17 1.379 1.378 1.37 0.85 -14.99 -16 1.374 1.373 1.5 0.93 -13.77 -15 1.368 1.367 1.65 1.01 -12.6 -14 1.363 1.362 1.81 1.11 -11.35 -13 1.358 1.357 1.98 1.22 -10.05 -12 1.353 1.352 2.17 1.34 -8.75 -11 1.348 1.347 2.37 1.46 -7.45 -10 1.342 1.341 2.59 1.6 -6.07 -9 1.337 1.336 2.83 1.75 -4.73 -8 1.332 1.331 3.09 1.91 -3.31 -7 1.327 1.325 3.36 2.08 -1.88 -6 1.322 1.32 3.67 2.27 -0.42 -5 1.317 1.315 4 2.47 1.09 -4 1.312 1.31 4.36 2.69 2.68 -3 1.308 1.306 4.75 2.94 4.31 -2 1.303 1.301 5.16 3.19 5.9 -1 1.298 1.295 5.61 3.47 7.62 0 1.293 1.29 6.09 3.78 9.42 1 1.288 1.285 6.56 4.07 11.14 2 1.284 1.281 7.04 4.37 12.89 3 1.279 1.275 7.57 4.7 14.74 4 1.27 5 1.271 8.11 5.03 16.58 5 1.27 1.26 6 8. 7 5.4 18.51 6 1.265 1.261 9.32 5.79 20.51 7 1.261 1.256 9.99 6.21 22.61 8 1.256 1.251 10.7 6.65 24.7 9 1.252 1.247 11.46 7.13 26.92 10 1.248 1.242 12.25 7.63 29.18 11 1.243 1.237 13.09 8.15 31.52 12 1.239 1.232 13.99 8.75 34.08 13 1.235 1.228 14.94 9.35 36.59 14 1.23 1.223 15.95 9.97 39.19

相关文档
相关文档 最新文档