文档库 最新最全的文档下载
当前位置:文档库 › 移液管的校正实验报告1

移液管的校正实验报告1

移液管的校正实验报告1
移液管的校正实验报告1

分析化学:

移液管的使用和校准练习--------

专业:

成员:

指导老师:

移液管的使用和校准练习

摘要:移液管在使用过程中,容量器皿的实际容量与标称容量并不完全一致。因此,在准确度要求较高的分析工作中,必须对容量器皿进行校准。本次实验学习和掌握移液管的使用以及校准方法,并了解容量器皿校准的意义。实验中借助电子天平差量法辅助校准。得出结论并分析。

关键词:热胀冷缩;标准温度;差量法;电子天平;绝对较准

一、实验前言

1.1 实验目的

1、初步掌握移液管的使用方法。

2、学习移液管的校准方法,并了解容量器皿的校准的意义,并在实验中应用。

3、练习并掌握移液管的正确度数方法。

4、练习并掌握电子天平的使用和读数。

1.2实验原理

容量器皿的实际容量随着使用的次数和时间长短将发生一定的变化。因此,对容量器皿的校准是非常重要的。由于玻璃具有热胀冷缩的特性,在不同温度下容量器皿的容积也有所不同。因此校准玻璃容量器皿时,必须规定一个公用的温度计,这一规定温度值称标准温度,国际上规定玻璃容量器皿的标准温度为20℃,即在校准时都将玻璃器皿的容积校准到20℃时的实际容积。容量器皿常应用的两种校准:相对较准和绝对较准。本实验采用绝对较准。

二、实验内容

1.1 仪器与试剂

移液管(25ml)1支;锥形瓶(150ml,具有玻璃磨口塞或橡皮塞)1只;普通温度计(0~50℃,公用);分析天平,蒸馏水。

1.2 实验步骤

(1)清洗一只移液管及一个150ml锥形瓶。

(2)练习并掌握移液管的使用方法。

(3)练习并掌握移液管的正确读数方法。

(4)校准移液管1支(必须在基本掌握滴定操作和正确读数的基础上进行)。

(5)练习并掌握电子天平的正确使用及读数方法。

(6)借助电子天平并使用采用差量法校准移液管。

三、结果与讨论

3.1 不同温度下纯水的密度

水的密度随着温度的改变而改变,水最大相对密度时的温度:3.98℃。不同温度下纯水的密度值见表一。

表一不同温度下纯水的密度值

(空气密度为0.0012 g/ml,钠钙玻璃膨胀系数为2.6×10^(-6)/ ℃)

温度)/ ℃密度(g/ml) 温度/℃密度(g/ml)

10

11

12

13

14

15

16 0.9984

0.9983

0.9982

0.9981

0.9980

0.997

0.9978

17

18

19

20

21

22

23

0.9976

0.9975

0.9973

0.9972

0.9970

0.9968

0.9966

*摘录于:中华人民共和国计量器具检定规程《基本玻璃量器》,国家计量局,1980 。

3.2练习并掌握移液管的使用方法。

(1)使用前:使用移液管,首先要看一下移液管标记、准确度等级、刻度标线位置等。使用移液管前,应先用铬酸洗液润洗,以除去管内壁的油污。然后用自来水冲洗残留的洗液,再用蒸馏水洗净。洗净后的移液管内壁应不挂水珠。移取溶液前,应先用滤纸将移液管末端内外的水吸干,然后用欲移取的溶液涮洗管壁2至3次,以确保所移取溶液的浓度不变。

(2)吸液:用右手的拇指和中指捏住移液管的上端,将管的下口插入欲吸取的溶液中,左手拿洗耳球,先把球中空气压出,再将球的尖嘴接在移液管上口,慢慢松开压扁的洗耳球使溶液吸入管内,先吸入该管容量的1/3左右,用右手的食指按住管口,取出,横持,并转动管子使溶液接触到刻度以上部位,以置换内壁的水分,然后将溶液从管的下口放出并弃去,如此用反复洗3次后,即可吸取溶液至刻度以上,立即用右手的食指按住管口。

(3)调节液面:将移液管向上提升离开液面,管的末端仍靠在盛溶液器皿的内壁上,管身保持直立,略为放松食指(有时可微微转动吸管)使管内溶液慢慢从下口流出,直至溶液的弯月面底部与标线相切为止,立即用食指压紧管口。将尖端的液滴靠壁去掉,移出移液管,插入承接溶液的器皿中。

(4)放出溶液:承接溶液的器皿如是锥形瓶,应使锥形瓶倾斜30°,移液管直立,管下端紧靠锥形瓶内壁,稍松开食指,让溶液沿瓶壁慢慢流下,全部溶液流完后需等 15s后再拿出移液管,以便使附着在管壁的部分溶液得以流出。如果移液管未标明“吹”字,则残留在管尖末端内的溶液不可吹出,因为移液管所标定的量出容积中并未包括这部分残留溶液

3.3 移液管读数准确方法

移液管垂直,用右手的拇指和中指捏住移液管的上端无刻度处,让其自然下垂,视线在凹月面的最低点,要与液面成水平;读至0.01mL。

3.4 分析天平使用前的检查

检查天平盘、天平箱内是否清洁;若有洒落物,用毛刷扫出;检查天平是否水平;若不水平,调节螺旋脚使气泡在黑圈内;校准天平。每次记录数据保留两位小数点,

四、数据处理与结论

4.1移液管数据处理

实验对移液管进行了50次校准,校准数据见表二。移液管校准曲线见图一。

表二移液管的校准

室温:15℃1ml水的质量=0.9979g

X(平均值)=(n1+n2+++n50)/50=24.995

由图表可知,数据平均分布在25.00上下,+0.01和—0.02的允许范围里每一次的测量值与实际值基本相符,但我的数据中校少正值多负值,所以最终的总校准值偏小。且同一移液管与同组同学测量值的总校准值分布起伏不定,可能是由于同组不同同学操作时不同习惯造成的结果。

4.2移液管校准图

实验得出数据之后采用origin软件处理数据,得出图表

表三、正态分布图

观察校准值可得,几乎每一组都为0或—0.01且少有正值,且不同区间不同同学校准值不同,所以猜想校准值并不是由于系统误差造成的,而是由于人为因素造成的偏离准确值。如前面提到的个人的测量习惯不同,或温度计示数不准确。考虑到温度计与实验室处于同一环境下,造成误差的可能性不大,于是基本确定是个人测量习惯造成的误差。

感谢四川农业大学吴明君老师的指导和四川农业大学11教分析实验室所提供的试剂与仪器

[1] 四川大学化工学院,浙江大学化学系编. 分析化学实验.第三版.北京:高等教育出版社,

[2]武汉大学主编,分析化学,第五版、高等教育出版社出版 [3] 王仁国,无机及分析化学实验,北京、中国农业出版社,2007.9 [4] 王仁国,无机及分析化学,北京、中国农业出版社,2006.8

0.10

0.12

0.34

0.44

出现频率

数值分布

《管理信息系统》课程设计实验报告

《管理信息系统》课程设计实验报告 课程名称:管理信息系统 指导老师: ******* 院系:商学院 专业班级: ******** 姓名: ******** 学号: ******** 实验日期: 2011.7.11 实验地点:一机房

《管理信息系统》课程设计任务书 一.课程设计目的及意义: 《管理信息系统》课程设计是在完成《管理信息系统》课程学习之后的一次实践性教 学,是本课程理论知识的一次综合运用。通过本课程设计,能够进一步加深对信息、信息系 统、管理信息系统等基础理论知识的理解,能初步掌握结构化的生命周期法、面向对象法等 系统工程方法,进一步加强熟练应用管理信息系统的操作技能,并能够借助于管理信息系统 解决实际问题。 二.课程设计要求: 1.本课程设计时间为一周。 2.本课程设计以教学班为单位进行上机操作及实验。 3.按照任务要求完成课程设计内容。 三.课程设计任务要求: 1.任务内容:进入山东轻工业学院主页,在“网络资源”区域进入“网络教学平台”,输入各自的用户名和密码(学生学号及密码),进入本网络教学平台系统,在充分熟悉本系统 的前提下,完成下列任务要求。 2.任务要求: ①按照课程讲解的系统分析步骤和理论对本系统进行系统分析。 ②绘制不少于 3 个的主要业务流程图。 ③描述上述主要业务流程图的逻辑处理功能。 ④分析本系统的优缺点,提出改进意见,并描述改进的逻辑处理功能,绘制业务流 程图。 四.课程设计评分标准: 按照《管理信息系统课程设计大纲》的要求,本课程 1 学分,采用百分制计分,其中 任务要求②占30 分,任务要求③占30 分,任务要求④占30 分,考勤及实践表现占10 分。五.本课程设计自2011 年 6 月 27 日至 2011 年 7 月 1 日。

太原理工机械系统设计实验报告

《机械系统设计》 实验报告 姓名:马睿聪 班级:机械Z1317 学号:2013000384

实验一:采煤机的主功能及辅助功能 采煤机是一个集机械、电气和液压为一体的大型复杂系统,工作环境恶劣,如果出现故障将会导致整个采煤工作的中断,造成巨大的经济损失. 采煤机是实现煤矿生产机械化和现代化的重要设备之一.机械化采煤可以减轻体力劳动、提高安全性,达到高产量、高效率、低消耗的目的. 采煤机分锯削式、刨削式、钻削式和铣削式四种:采煤机是一个集机械、电气和液压为一体的大型复杂系统,工作环境恶劣,如果出现故障将会导致整个采煤工作的中断,造成巨大的经济损失.随着煤炭工业的发展,采煤机的功能越来越多,其自身的结构、组成愈加复杂,因而发生故障的原因也随之复杂.双滚筒采煤机综合了国内外薄煤层采煤机的成功经验,是针对我国具体国情而设计的新型大功率薄煤层采煤机. 采煤机的主要组成部分: 采煤机的类型很多,但基本上以双滚筒采煤机为主,其基本组成部分也大体相同。各种类型的采煤机一般都由下列部分组成。 (1)截割部 截割部的主要功能是完成采煤工作面的截煤和装煤,由左、右截割电机,左、右摇臂减速箱,左、右滚筒,冷却系统,内喷雾系统和弧形挡板等组成。截割部耗能占采煤机装机总功率的80%-90%,

因此,研制生产效率高和比能耗低的采煤机主要体现在截割部。 传动装置: 截割部传动装置的作用是将采煤机电动机的动力传递到滚筒上,以满足滚筒转速及转矩的要求;同时,还应具有调高功能,以适应不同煤层厚度的变化。 截割部的传动方式主要有一下几种: a)、电动机-摇臂减速箱-行星齿轮减速箱-滚筒 b)、电动机-固定减速箱-摇臂减速箱-滚筒 c)、电动机-固定减速箱-摇臂减速箱-行星齿轮减速箱-滚筒 d)、电动机-摇臂减速箱-滚筒螺旋滚筒: 螺旋滚筒是采煤机落煤和装煤的工作机构,对采煤机工作起决定性作用,消耗总装功机率的80%-90%。早期的螺旋滚筒为鼓型滚筒,现代采煤机都采用螺旋滚筒。螺旋滚筒能适应煤层的地质条件和先进的采煤方法及采煤工艺的要求,具有落煤、装煤、自开切口的功能。近些年来出现了一些新的截割滚筒,诸如滚刀式滚筒、直

移液管标准校正规范

移液管校正标准操作规程 1.目的: 建立移液管校正的标准操作规程,对检验过程中使用的移液管进行校正,以保证其体积和标示量在误差允许范围内,避免因移液管的误差导致检验结果错误,使检验数据准确可靠。 2.范围: 适用于本公司质检部移液管0.1mL、0.2mL、1ml、2ml、3ml、5ml、10ml、15ml、20ml、50ml、100ml单标线吸管和分度吸管的校正。 3.职责 质检部的化验员对本标准的实施负责 4 内容 检定的原理采用衡量法。衡量法是用天平称量分度吸管中纯化水的质量,然后按照该温度下纯化水的密度,算出单标线移液管的容积。 4.1 外观: 4.1.1 移液管的玻璃应清澈、透明。分度线和量的数值应清晰、完整、耐久,分度线应平直,分格均匀并必须与器轴相垂直,相邻两分度线的中心距离应大于1mm。4.1.2移液管应具有下列标记: 厂名和商标 标准温度(20℃) 等待时间 t xx S 用法标记量出式用“Ex” 标称总容量与单位 xx ml 准确度等级 A、B 4.2.总则 4.2.1移液管在规定的时间按本规程进行校正,不合格不得使用。 4.2.2先用洁净烧杯盛接适量蒸馏水放置于天平室内,插入温度计观测温度。 4.2.3将校正用的蒸馏水、锥形瓶、移液管在天平室内的滴定台上放置一段时间,使水温和室温相差不超过0.1℃。 4.2.4待校正的移液管应洗干净,并自然干燥。

4.2.5标定工作室的室温不宜超过20±5℃,且要稳定。如室温有变化,须在每次放下时,记录水的温度。 4.2.6称量水质量所用天平精确到0.0001g 4.2.7温度计精度0.1℃。 4.3 校正方法: 4.3.1 水的流出时间: 用洗净的移液管吸取纯化水,使液面达刻度线以上约5mm处,速用食指堵住吸管口,慢慢将弯液面准确地调至刻度线,将食指放开并计时,使水充分流出,直至液面降至最低点的流出时间应符合表1中之规定。 4.3 .2纯化水质量的标定: 用洗净的移液管取纯化水,使液面达刻度线以上约5mm处,速用食指堵住吸管口,擦干吸管外壁的水,慢慢将液面准确地调至刻度,将已称重的称量杯放在垂直的单标线吸管下(称量杯倾斜30度),放开食指,使纯化水沿称量杯壁流下,纯化水流至尖端不流时,按规定时间等待后(A级等待15秒,B级等待3秒),精密称定称量杯与水的重量,计算得纯化水的质量。 4.4 记录与计算: 由表3查得K(t),按式(1)计算出滴定管所测各段水的校正值。 △V= m*K(t)-V1 (1) 式中: △V—校正值,mL; V1—滴定管的读数,mL; m—称出水的质量,g; K(t)—转换系数,由表2查得。 5. 检定结果处理和检定周期: 根据上述检定项目的检定数据,查1表,判定其是否符合相应的标准等级。检定周期为一年,可根据实际情况做适当调整。 6.校正工作结束,记录于“仪器、仪表、校验、检定、维修记录”中。 附注:1 弯液面的调定 弯液面的最低点应与分度线上边缘的水平面相切,视线应与分度线在同一平面上,

系统设计实验报告

系统设计实验报告——远程在线考试系统

目录软件需求说明书························1 引言··························· 1.1编写目的······················· 1.2背景························· 1.3定义························· 1.4参考资料······················· 2 程序系统的结构························ 3 程序设计说明·························

1引言 1.1编写目的 本文档的编写目的是为远程在线考试系统项目的设计提供: a.系统的结构、设计说明; b.程序设计说明; c. 程序(标识符)设计说明 1.2背景 随着网络技术的飞速发展,现在很多的大学及社会上其它的培训部门都已经开设了远程教育,并通过计算机网络实现异地教育。但是,远程教育软件的开发,就目前来说,还是处于起步的阶段。因此,构建一个远程在线考试系统,还是有很大的实际意义的。 根据用户提出的需求,本项目组承接该系统的开发工作 a.开发软件系统的名称:远程在线考试系统 b.本项目的任务提出者:福州大学软件学院 c.用户:各类大专院校学校、中小学校。 1.3定义 远程在线考试系统 远程在线考试系统是基于用Browser/Web模式下的,可以实现考试题库管理、多用户在线考试、自动阅卷功能的系统。

1.4参考资料 ?GB 8566 计算机软件开发规范 ?GB 8567 计算机软件产品开发文件编制指南?软件设计标准 ?《ASP与SQL-Server2000》清华大学出版社?《可行性研究报告》 ?《项目计划文档》 ? 2程序系统的结构 3程序1(标识符)设计说明

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

移液管校正操作规程

颁发部门:质量部文件编号:SOP-- 版本/修订:A/0 页码:1/3 编制:审核:批准: 日期:日期:日期: 分发部门:质量部 移液管校正标准操作规程 目的:制订移液管校正标准操作规程,确保药物分析的准确性 职责:检验员对本规程的实施负责,对本规程的有效执行承担监督检查责任。 范围:1ml、2ml、5ml、10ml、15ml、20ml、25ml、50ml、100ml单标线吸管的检定。 规程: 1 检定的原理采用衡量法。衡量法是用天平称量分度移液管中纯化水的质量,然后按照该温度下纯水的密度,算出单标线移液管的容积。 2 检定项目和技术要求: 2.1 单标线移液管的玻璃应清澈、透明。 2.2 分度线和量的数值应清晰、完整、耐久,分度线应平直,分格均匀并必须与器轴相垂直,相邻两分度线的中心距离应大于1mm。 2.3 单标线移液管应具有下列标记: 2.3.1 厂名和商标 2.3.2 标准温度(20℃) 2.3.3 等待时间t xx S 2.3.4 用法标记量出式用“Ex” 2.3.5 标称总容量与单位xx ml 2.3.6 准确度等级A、B 2.4 容量允差、水的流出时间和分度线宽度均应符合下表之规定 单标线移液管质量检验表 标称总容量(ml) 1 2 3 5 10 15 20 25 50 100 容量允差(ml)A ±0.007 ±0.010 ±0.015 ±0.020 ±0.025 ±0.030 ±0.05 ±0.08 B ±0.015 ±0.020 ±0.030 ±0.040 ±0.050 ±0.060 ±0.10 ±0.16 水的流出时间(S)A 7~12 15~25 20~30 20~35 25~35 35~45 B 5~12 10~25 15~30 20~35 25~40 30~45

实验报告二 Matlab图像代数运算和几何变换

实验二Matlab图像代数运算和几何变换 一、实验目的 1、掌握不同图像类型的转换 2、掌握图像代数运算和几何变换的方法; 3、掌握灰度级插值法的实验方法。 二、实验内容 1、练习图像类型转换的相关命令(ind2rgb,mat2gray,grayslice,rgb2gray,rgb2ind,im2bw,ind2gray,dither)(p69-73); 2、练习课本6.3.2(p139-p143)图像代数运算的内容; 3、练习图像平移 (p148),图像比例变换(p153),图像旋转(p156),图像镜像变换(p158),图像切割(p160)Matlab实现例题; 4、练习灰度级插值法(p171)。 三、实验步骤和结果 1、练习图像类型转换的相关命令(ind2rgb,mat2gray,grayslice,rgb2gray,rgb2ind,im2bw,ind2gray,dither) (1)mat2gray()函数 I=imread('rice.png'); >> J=filter2(fspecial('sobel'),I); >> K=mat2gray(J); >> imshow(I); >> figure,imshow(K) (2)、grayslice()函数 >> I=imread('snowflakes.png'); >> X=grayslice(I,16); >> imview(I) imview(X,jet(16)) (3)、rgb2ind()函数 > RGB=imread('peppers.png'); >> imshow(RGB); >> figure,imshow(RGB) >> [X,map]=rgb2ind(RGB,128); >> figure,imshow(X,map) (4)、im2bw()函数 >> load trees >> BW=im2bw(X,map,0.4); >> figure,imshow(X,map) >> figure,imshow(BW) (5)、ind2gray()函数 load trees >> I=ind2gray(X,map); >> figure,imshow(X,map) >> figure,imshow(I) (6)、dither()函数 >> RGB=imread('peppers.png'); >> [X,map]=rgb2ind(RGB,256); >> I=dither(RGB,map); >> BW=dither(I); >> imshow(RGB,map); >> figure,imshow(RGB,map); >> figure,imshow(BW) Result: (1)转换后图像(2)索引色图像

移液器使用与校正

移液器使用与校正 移液器使用【操作步骤】 1.设定容量值:转动加样器的调节旋钮,反时针方向转动旋钮,可提高设定移液量。顺时针方向转动旋钮,可降低设定移液量。在调整设定移液量的旋钮时,不要用力过猛,并应注意使移液器显示的数值不超过其可调范围。 2.预洗:当装上一个新吸头时应预洗吸头,先吸入一次液体并将之排回原容器中。 3.吸液: [1] 选择合适的吸头安放在移液套筒上,稍加扭转压紧吸嘴使之与套筒之间无空气间隙。 [2] 取液之前,所取液体应在室温(15℃-25℃)平衡。 [3] 把按钮压至第一停点,垂直握持加样器,使吸头浸入液面下2~3毫米处,然后缓慢平稳地松开按钮,吸入液体,等一秒钟,然后将吸头提离液面,贴壁停留2-3秒,使管尖外侧的液滴滑落。 4.放液: [1] 将吸头口贴到容器内壁底部并保持100~40°倾斜。 [2] 平稳地把按钮压到第一停点,等一秒钟后再把按钮压到第二停点以排出剩余液体。 [3] 压住按钮,同时提起加样器,使吸头贴容器壁擦过。 [4] 松开按钮。 [5] 按吸头弹射器除去吸头。 5.加样器吸嘴为一次性使用。 移液器详细使用步骤 在进行分析测试方面的研究时,一般采用移液枪(pipette)量取少量或微量的液体。对于移液枪的正确使用方法及其一些细节操作,是很多人都会忽略的。现在分几个方面详细叙述。 1、量程的调节 正确的容量设定分为两个步骤,一是粗调,即通过排放按钮将容量值迅速调整至接近自己的预想值;二是细调,当容量值接近自己的预想值以后,应将移液器横置,水平放至自己的眼前,通过调节轮慢慢地将容量值调至预想值,从而避免视觉误差所造成的影响。 在容量设定时,还有一个需要特别注意的地方。当我们从大值调整到小值时,刚好就行;但从小值调整到大值时,就需要调超三分之一圈后再返回,这是因为计数器里面有一定的空隙,需要弥补。 在该过程中,千万不要将按钮旋出量程,否则会卡住内部机械装置而损坏了移液枪。 2、枪头(吸液嘴)的装配 在将枪头(pipette tips)套上移液枪时,很多人会使劲地在枪头盒子上敲几下,这时错误的做法,因为这样会导致移液枪的内部配件(如弹簧)因敲击产生的瞬时撞击力而变得松散,甚至会导致刻度调节旋钮卡住。正确的方法是将移液枪(器)垂直插入枪头中,稍微用力左右微微转动即

opengl立方体的简单三维交互式几何变换实验报告+代码

立方体的简单三维交互式几何变换 这个学期对opengl的学习,使我对计算机图形学的一些算法过程有了更多的了解。因为对三维图形的显示比较感兴趣,就做了立方体的简单三维交互式几何变换。 功能:键盘的方向键实现立方体的上下左右平移;A键,S键分别实现向前,向后旋转;J键,K键分别实现放大,缩小;C键退出。 程序模块: 1.该模块为绘制一个立方体。 void DrawBox() { glBegin(GL_QUADS); //前面 glColor3f(1,0,0); glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的左下 glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的右下 glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右上 glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左上 // 后面 glColor3f(0,1,0); glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右下 glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的右上

glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左下 // 顶面 glColor3f(0,0,1); glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的左上glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左下glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的右上// 底面 glColor3f(1,1,0); glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的左下glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的右下// 右面 glColor3f(0,1,1); glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的左下// 左面 glColor3f(1,0,1);

操作系统课程设计实验报告

河北大学工商学院 课程设计 题目:操作系统课程设计 学部信息学部 学科门类电气信息 专业计算机 学号2011482370 姓名耿雪涛 指导教师朱亮 2013 年6月19日

主要内容 一、设计目的 通过模拟操作系统的实现,加深对操作系统工作原理理解,进一步了解操作系统的实现方法,并可练习合作完成系统的团队精神和提高程序设计能力。 二、设计思想 实现一个模拟操作系统,使用VB、VC、CB等windows环境下的程序设计语言,以借助这些语言环境来模拟硬件的一些并行工作。模拟采用多道程序设计方法的单用户操作系统,该操作系统包括进程管理、存储管理、设备管理、文件管理和用户接口四部分。 设计模板如下图: 注:本人主要涉及设备管理模块

三、设计要求 设备管理主要包括设备的分配和回收。 ⑴模拟系统中有A、B、C三种独占型设备,A设备1个,B设备2个,C设备2个。 ⑵采用死锁的预防方法来处理申请独占设备可能造成的死锁。 ⑶屏幕显示 注:屏幕显示要求包括:每个设备是否被使用,哪个进程在使用该设备,哪些进程在等待使用该设备。 设备管理模块详细设计 一、设备管理的任务 I/O设备是按照用户的请求,控制设备的各种操作,用于完成I/O 设备与内存之间的数据交换(包括设备的分配与回收,设备的驱动管理等),最终完成用户的I/O请求,并且I/O设备为用户提供了使用外部设备的接口,可以满足用户的需求。 二、设备管理函数的详细描述 1、检查设备是否可用(主要代码) public bool JudgeDevice(DeviceType type) { bool str = false; switch (type) { case DeviceType.a: {

心得体会 机械原理实验心得体会

机械原理实验心得体会 机械原理实验心得体会 机械原理课程设计心得体会 十几天的机械原理课程设计结束了,在这次实践的过程中学到了一些除技能以外的其他东西,领略到了别人在处理专业技能问题时显示出的优秀品质,更深切的体会到人与人之间的那种相互协调合作的机制,最重要的还是自己对一些问题的看法产生了良性的变化. 在社会这样一个大群体里面,沟通自然是为人处世的基本,如何协调彼此的关系值得我们去深思和体会.在实习设计当中依靠与被依靠对我的触及很大,有些人很有责任感,把这样一种事情当成是自己的重要任务,并为之付出了很大的努力,不断的思考自己所遇到的问题.而有些人则不以为然,总觉得自己的弱势…..其实在生活中这样的事情也是很多的,当我们面对很多问题的时候所采取的具体行动也是不同的,这当然也会影响我们的结果.很多时候问题的出现所期待我们的是一种解决问题的心态,而不是看我们过去的能力到底有多强,那是一种态度的端正和目的的明确,只有这样把自己身置于具体的问题之中,我们才能更好的解决问题. 在这种相互协调合作的过程中,口角的斗争在所难免,关键是我们如何的处理遇到的分歧,而不是一味的计较和埋怨.这不仅仅是在类似于这样的协调当中,生活中的很多事情都需要我们有这样的处理能力,面对分歧大家要消除误解,相互理解,增进了解,达到谅解…..也许很多问题没有想象中的那么复杂,关键还是看我们的心态,那种处理和解决分歧

的心态,因为毕竟我们的出发点都是很好的.课程设计也是一种学习同事优秀品质的过程,比如我组的纪超同学,人家的确有种耐得住寂寞的心态.确实他在学习上取得了很多傲人的成绩,但是我所赞赏的还是他追求的过程,当遇到问题的时候,那种斟酌的态度就值得我们每一位学习,人家是在用心造就自己的任务,而且孜孜不倦,追求卓越.我们过去有位老师说得好,有有些事情的产生只是有原因的,别人能在诸如学习上取得了不一般的成绩,那绝对不是侥幸或者巧合,那是自己付出劳动的成果的彰显,那是自己辛苦过程的体现.这种不断上进,认真一致的心态也必将导致一个人在生活和学习的各个方面做的很完美,有位那种追求的锲而不舍的过程是相同的,这就是一种优良的品质,它将指引着一个人意气风发,更好走好自己的每一步. 在今后的学习中,一定要戒骄戒躁,态度端正,虚心认真….要永远的记住一句话:态度决定一切. 一、温故而知新。课程设计发端之始,思绪全无,举步维艰,对于理论知识学习不够扎实的我深感“书到用时方恨少”,于是想起圣人之言“温故而知新”,便重拾教材与实验手册,对知识系统而全面进行了梳理,遇到难处先是苦思冥想再向同学请教,终于熟练掌握了基本理论知识,而且领悟诸多平时学 习难以理解掌握的较难知识,学会了如何思考的思维方式,找到了设计的灵感。二、思路即出路。当初没有思路,诚如举步维艰,茫茫大地,不见道路。在对理论知识梳理掌握之后,茅塞顿开,柳暗花明,思路如泉涌,高歌“条条大路通罗马”。顿悟,没有思路便无出路,

移液管的适用与校正练习实验报告

移液管的使用与校正练习 实 验 报 告 姓名:陈茂婷 学号:20142703 班级:应化201403 指导老师:吴明君 协作同学:蒋大港

摘要: 在实际的使用过程中,移液管的实际容量与其所标出的容量之间并非完全相符,且移液管是实验室精密仪器之一,因此,在准确度要求较高的分析实验过程中,需要对其进行校正。本次实验目的在于了解移液管的使用方法,学习移液管的校准方法,并了解容量器皿校正的意义。容量器皿校正的方法有相对校正和绝对校正,本实验采用绝对校正。 关键词: 相对校正;绝对校正;移液管;使用 前言: 因为移液管为玻璃容量器皿,随着使用次数的增加,其会受到一定的损耗。并且由于玻璃具有热胀冷缩的特性,在不同温度下容量器皿的容积也有所不同。

因此校准玻璃容量器皿时,必须规定一个公用的温度计,这一规定温度值称标准温度,国际上规定玻璃容量器皿的标准温度为20℃。即在校准时都将玻璃器皿的容积校准到20℃时的实际容积。 1、实验方法: 1.1仪器与试剂 移液管(20 mL)一支; 锥形瓶(50 mL,具有玻璃磨口塞)1只 普通温度计(0~50℃或0~100℃,公用) 分析天平(0.1 mg) 自来水 1.2实验步骤 (1)将清洗干净的移液管垂直放置,吸纯净水至最高标准线以下5 mm处,擦去移液管尖嘴外面的水。 (2)缓慢将液面调整到被检分度线上,除去尖嘴处最后一滴水。 (3)取一只容量大于移液管的带盖称量瓶,进行空称量平衡(去皮)。 (4)称量瓶倾斜30°,将移液管尖嘴紧贴其内壁,使水充分地流入称量瓶中。当水留至尖嘴处不流时,等待约3 s,随即用称量瓶移去尖嘴处最后一滴水。 (5)在调整液面的同时,应观察水温,读取准确至0.1℃。 (6)重复移取称量60次,得到放入水的质量。 (7)根据放入水的质量和水在该温度下的相对密度,计算被检吸量管在室温下实际容量,并进行误差计算。 2、练习并掌握移液管的使用方法: 2.1使用前:使用移液管,首先要看一下移液管标记、准确度等级、刻度标线位置等。使用移液管前,应先用铬酸洗液润洗,以除去管内壁的油污。然后用自来水冲洗残留的洗液,再用蒸馏水洗净。洗净后的移液管内壁应不挂水珠。移取溶液前,应先用滤纸将移液管末端内外的水吸干,然后用欲移取的溶液涮洗管壁2至3次,以确保所移取溶液的浓度不变。 2.2吸液:用右手的拇指和中指捏住移液管的上端,将管的下口插入欲吸取

X-opengl立方体的简单三维交互式几何变换实验报告代码

立方体的简单三维交互式几何变换 立方体的简单三维交互式几何变换。 功能:键盘的方向键实现立方体的上下左右平移;A键,S键分别实现向前,向后旋转;J键,K键分别实现放大,缩小;C键退出。 程序模块: 1.重绘回调函数,在窗口首次创建或用户改变窗口尺寸时被调用。void reshape(int w, int h) { glViewport(0, 0, w, h);// 指定视口的位置和大小 glMatrixMode(GL_PROJECTION); glLoadIdentity(); //glFrustum(-1.0, 1.0, -1.0, 1.0, 3.1, 10.0); //gluPerspective(45,1,0.1,10.0); glOrtho(-2.0, 2.0, -2.0, 2.0, 2.0, 10.0); } 2.绘制一个立方体。 void DrawBox() { glBegin(GL_QUADS); //前面

glColor3f(1,0,0); glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的左下glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右上glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左上// 后面 glColor3f(0,1,0); glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右下glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左下 // 顶面 glColor3f(0,0,1); glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的左上glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左下glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的右上// 底面 glColor3f(1,1,0); glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的左下

有限元分析实验报告

学生学号1049721501301实验课成绩 武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析机电工程学院开课学院 指导老师姓名

学生姓名 学生专业班级机电研1502班 学年第学期2016—20152 实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直 向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 方形截面悬臂梁模型建立1.1 建模环境:DesignModeler15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为 2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正 视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。 (2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图 1.1所示。

图1.1方形截面梁模型 :定义单元类型1.2 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图 1.2

所示: 图1.2网格划分 1.21定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中 力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示:

心得体会 机械设计学实验心得体会

机械设计学实验心得体会 机械设计学实验心得体会 《机械设计学》实践教学机械创新设计实验报告 学生姓名:学号:班级: 题目: 小组组长: 年月日 机械创新设计实验 一、 实验目的 通过实验使学生能够以系统的观点去发掘机械产品设计的规律和特点,并培养学生的创新意识,使学生的综合素质得到提高。二、实验原理 系统设计方法。三、实验要求 分组(最好4~6人)或个人完成实验,独立完成实验报告。四、实验仪器设备 机械系统设计手册及相关参考书。五、实验类型、性质与学时 类型:综合、创新学时:6课时六、实验步骤 根据所学知识,提出一机械设备总体设计方案(参考题目附后),要求包含物料 流系统、能量流系统及信息流系统;分小组讨论并确定方案。七、实验报告

实验报告必须包含的内容: 1、引言:对所选课题进行资料收集,简单介绍类似系统或技术的国内外研究与应用现状; 2、描述系统的总功能、分功能; 3、分功能实现方案;3、绘制系统的功能结构图; 4、绘制系统的运动循环图; 5、绘制系统的总体设计草图; 题目一(适用于一组):载重车装载系统的开发 见教材P362《课外作业1》 题目二(适用于二组):讲义自动发放机见教材P363《课外作业3》题目四(适用于四组):比萨饼成形机见教材P365《课外作业7》 题目六(适用于六组):移动车载升降系统设计设计一个安装在一台卡车上的升降平台,要求如下: 1.收缩范围:距离车厢底部2米到8米; 2.收缩至2米时不影响卡车正常行驶; 3.升高至8米时能够保证在不大于10km/h的行使速度,加速度不大于0.5m/s2 的情况下安全作业; 4.平台顶部能承受30kg负荷。 要求设计移动平台(含驱动、制动、控制系统)题目八(适用于七组):布线装置见教材P364《课外作业4》 分组情况 1题目一魏绍超吴昊张健马耀军许晓蒙贺建博2题目二齐相宇杨荣耀

数字图像处理图像变换实验报告.

实验报告 实验名称:图像处理 姓名:刘强 班级:电信1102 学号:1404110128

实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件 PC机数字图像处理实验教学软件大量样图 二、实验目的 1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的 简单操作; 2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体 步骤; 3、观察图像的灰度直方图,明确直方图的作用和意义; 4、观察图像点运算和几何变换的结果,比较不同参数条件下的变换效果; 5、观察图像正交变换的结果,明确图像的空间频率分布情况。 三、实验原理 1、图像灰度直方图、点运算和几何变换的基本原理及编程实现步骤 图像灰度直方图是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。 图像点运算是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。点运算可以看作是“从象素到象素”的复制操作,而这种复制操作是通过灰度变换函数实现的。如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为: B(x,y)=f[A(x,y)] 其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值和输出灰度值之间的转换关系。一旦灰度变换函数确定,该点运算就完全确定下来了。另外,点运算处理将改变图像的灰度直方图分布。点运算又被称为对比度增强、对比度拉伸或灰度变换。点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸和均衡等。 图像几何变换是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放和图像旋转等,其理论基础主要是一些矩阵运算,详细原理可以参考有关书籍。 实验系统提供了图像灰度直方图、点运算和几何变换相关内容的文字说明,用户在操作过程中可以参考。下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:

软件设计与体系结构实验报告

福建农林大学计算机与信息学院 实验报告 课程名称:软件设计与体系结构 姓名:陈宇翔 系:软件工程系 专业:软件工程 年级:2007 学号:070481024 指导教师:王李进 职称:讲师 2009年12月16日

实验项目列表

福建农林大学计算机与信息学院实验报告 学院:计算机与信息学院专业:软件工程系年级:2007 姓名:陈宇翔 学号:070481024 课程名称:软件设计与体系结构实验时间:2009-10-28 实验室田实验室312、313计算机号024 指导教师签字:成绩: 实验1:ACME软件体系结构描述语言应用 一、实验目的 1)掌握软件体系结构描述的概念 2)掌握应用ACMESTUDIO工具描述软件体系结构的基本操作 二、实验学时 2学时。 三、实验方法 由老师提供软件体系结构图形样板供学生参考,学生在样板的指导下修改图形,在老师的指导下进行软件体系结构描述。 四、实验环境 计算机及ACMESTUDIO。 五、实验内容 利用ACME语言定义软件体系结构风格,修改ACME代码,并进行风格测试。 六、实验操作步骤 一、导入Zip文档 建立的一个Acme Project,并且命名为AcmeLab2。如下图:

接着导入ZIP文档,导入完ZIP文档后显示的如下图: 二、修改风格 在AcmeLab2项目中,打开families下的TieredFam.acme.如下图: 修改组件外观 1. 在组件类型中,双击DataNodeT; 在其右边的编辑器中,将产生预览;选择Modify 按钮,将打开外观编辑器对话框。 2. 首先改变图形:找到Basic shape section,在Stock image dropdown menu中选 择Repository类型. 3. 在Color/Line Properties section修改填充颜色为深蓝色。 4. 在颜色对话框中选择深蓝色,并单击 [OK]. 5. 修改图形的边框颜色为绿色 7. 单击Label tab,在Font Settings section, 设置字体颜色为白色,单击[OK] 产生的图形如下图:

心得体会 机械原理直齿圆柱齿轮实验心得体会

机械原理直齿圆柱齿轮实验心得体会 机械原理直齿圆柱齿轮实验心得体会 《机械原理》实验班级 姓名机构运动简图测绘学号 一、实验目的: 1.学会运用构件及其运动副联接常用符号和机械中常用机构的简图符号,正确绘制出机构运动简图; 2.通过实验进一步理解机构运动简图的意义; 3.熟练掌握机构自由度的计算方法,学会判断运动链能否成为机构。 二、实验内容: 机构运动简图是用国家标准规定的简单符号和线条代表运动副和构件,并按一定的比例尺表示机构的运动尺寸,绘制出的表示机构的简明图形。不严格按比例绘制的简图称为机构示意图。在分析研究现有机械和构思设计新机械时都需要绘制机构运动简图。因此,我们必须熟练掌握正确绘制机构运动简图的方法。 1.绘制三个机构的运动简图,测绘对象:1)油泵――摆杆式油泵、摆块式油泵;2)冲床――滚子式、滑块式;3)插齿机――从曲柄开始到插齿刀;4)牛头刨床――从小齿轮开始画起。其中,1、2必做,3、4选其一。对于油泵,要对其进行必要的尺寸测量,然后按比例画出其机构简图;对其余机构则绘出机构示意图。2.计算所画机构的自由度,判断其能否成为机构? 3.在东6D座参观常用机构的电动模型,观察各机构的运动。

三、实验步骤: 1.分析机械的组成情况和运动情况:确定机械是由多少个构件组成?哪个是原动件和机架?哪部分是执行构件和传动部分? 2.沿着运动传递路线,分析两构件间相对运动的性质,以确定运动副的类型和数目;3.适当地选择运动简图的视图平面; 4.选择适当比例尺,绘制机构运动简图。在原动件上标出代表其转动方向的箭头,并从原动件起,按传动路线标出各构件的编号(1、2、3、······)和运动副的代号(A、B、C、······)。5.绘制完机构运动简图和计算其自由度后,由指导教师签字认可,方可离去。 四、注意事项: 1.上课时自带直尺、橡皮、铅笔和画草图用的白纸。 2.课堂上只要求画出各机构简图的草图,草图应画在自带的白纸上。 五、实验报告: 1.直接将报告填写在后面作业纸上。2.将课堂上所绘制的各机构简图的草图,按机械制图的要求画出正式的机构运动简图或机构示 意图。 3.计算机构自由度时应列出公式,并写明其活动构件数、各级运动副的数目。4.说明机构是否具有确定运动?为什么? 5.将有教师签字的草图附在实验报告后一同按时交上。 六、思考题: 1.在计算平面机构自由度时应注意哪些事项?2.机构运动简图与机构示意图的区别?

移液管校正标准操作规程

目的:制订移液管校正标准操作规程,确保药物分析的准确性。 适用范围:1ml、2ml、3ml、5ml、10ml、15ml、20ml、50ml、100ml单标线吸管的检定。 责任:检验人员对本规程的实施负责,检验室主任对本规程的有效执行承担监督检查责任。 校正规程: 1. 检定的原理采用衡量法。衡量法是用天平称量分度吸管中纯化水的质量,然后按照该温度下纯水的密度,算出单标线吸管的容积。 2. 检定项目和技术要求: 2.1 单标线吸管的玻璃应清澈、透明。 2.2 分度线和量的数值应清晰、完整、耐久,分度线应平直,分格均匀并必须与器轴相垂直,相邻两分度线的中心距离应大于1mm。 2.3 单标线吸管应具有下列标记: 2.3.1 厂名和商标 2.3.2 标准温度(20℃) 2.3.3 等待时间 t xx S 2.3.4 用法标记量出式用“Ex” 2.3.5 标称总容量与单位 xx ml 2.3.6 准确度等级 A、B 2.4 容量允差、水的流出时间和分度线宽度均应符合下表之规定。

单标线吸管 3. 检定条件: 3.1 万分之一天平。 3.2 温度范围0~50℃、分度值为0.1℃的温度计。 3.3 分度值为0.1秒的秒表。 3.4 称量杯、测温筒、检定架。 3.5 标定工作室的室温不宜超过20±5℃,且要稳定。 3.6 纯化水。 3.7 单标线吸管。 4. 检定方法: 4.1 水的流出时间: 用洗净的单标线吸管吸取纯化水,使液面达刻度线以上约5mm处,速用食指堵住吸管口,慢慢将弯液面准确地调至刻度线,将食指放开并计时,使水充分流出,直至液面降至最低点的流出时间应符合4.2.4表中之规定。 4.2 纯化水质量的标定: 用洗净的单标线吸管吸取纯化水,使液面达刻度线以上约5mm处,速用食指堵住吸管口,擦干吸管外壁的水,慢慢将液面准确地调至刻度,将已称重的称量杯放在垂直的单标线吸管下(称量杯倾斜30度),放开食指,使纯化水沿称量杯壁流下,纯化

MATLAB几何变换实验报告

作业二几何变换 一、编写一个函数,实现将一幅图像旋转一定角度,以该图像中心点为旋转点。分别使用三种插值方法。 1、原理: 平移变换: x = u + δx y = v + δy 旋转变换: x = ucosθ - vsinθ y = usinθ + vcosθ 2、源码: function wchy1(I,jiaodu,wchy) %用三种插值方法实现将一幅图像旋转一定角度 %I:待处理图片名称 %jiaodu:要旋转的角度,旋转方向为顺时针 %wchy:插值方法,1代表最近邻插值,2代表双线性插值,3代表三次内插法 img=imread(I); figure,subplot(1,2,1); imshow(img),title('原图'); [h,w]=size(img); theta=jiaodu/180*pi; py=[1 0 w/2;0 1 h/2;0 0 1]; rot=[cos(theta) -sin(theta) 0;sin(theta) cos(theta) 0;0 0 1]; pix1=[1 1 1]*py*rot;%变换后图像左上点的坐标 pix2=[1 w 1]*py*rot;%变换后图像右上点的坐标 pix3=[h 1 1]*py*rot;%变换后图像左下点的坐标 pix4=[h w 1]*py*rot;%变换后图像右下点的坐标 height=round(max([abs(pix1(1)-pix4(1))+0.5 abs(pix2(1)-pix3(1))+0.5]));%变换后图像的高度

width=round(max([abs(pix1(2)-pix4(2))+0.5 abs(pix2(2)-pix3(2))+0.5]));%变换后图像的宽度 imgn=zeros(height,width); delta_y=abs(min([pix1(1) pix2(1) pix3(1) pix4(1)]));%取得y方向的负轴超出的偏移量 delta_x=abs(min([pix1(2) pix2(2) pix3(2) pix4(2)]));%取得x方向的负轴超出的偏移量 switch wchy case 1 for i=1-delta_y:height-delta_y for j=1-delta_x:width-delta_x pix=[i j 1]/rot/py; %用变换后图像的点的坐标去寻找原图像点的坐标,否则有些变换后的图像的像素点无法完全填充 if pix(1)>=1 && pix(2)>=1 && pix(1)<=h && pix(2)<=w imgn(i+delta_y,j+delta_x)=img(round(pix(1)),round(pix(2))); end end end subplot(1,2,2),imshow(uint8(imgn)),title('最近邻插值法旋转后的图片') case 2 for i=1-delta_y:height-delta_y for j=1-delta_x:width-delta_x pix=[i j 1]/rot/py; %用变换后图像的点的坐标去寻找原图像点的坐标, %否则有些变换后的图像的像素点无法完全填充 float_Y=pix(1)-floor(pix(1)); float_X=pix(2)-floor(pix(2)); if pix(1)>=1 && pix(2)>=1 && pix(1) <= h && pix(2) <= w pix_up_left=[floor(pix(1)) floor(pix(2))];%四个相邻的点 pix_up_right=[floor(pix(1)) ceil(pix(2))]; pix_down_left=[ceil(pix(1)) floor(pix(2))]; pix_down_right=[ceil(pix(1)) ceil(pix(2))]; value_up_left=(1-float_X)*(1-float_Y);%计算临近四个点的权重 value_up_right=float_X*(1-float_Y); value_down_left=(1-float_X)*float_Y; value_down_right=float_X*float_Y;

相关文档