文档库 最新最全的文档下载
当前位置:文档库 › 高考物理新力学知识点之热力学定律基础测试题附解析(1)

高考物理新力学知识点之热力学定律基础测试题附解析(1)

高考物理新力学知识点之热力学定律基础测试题附解析(1)
高考物理新力学知识点之热力学定律基础测试题附解析(1)

高考物理新力学知识点之热力学定律基础测试题附解析(1)

一、选择题

1.如图所示,柱形容器内封有一定质量的空气,光滑活塞C (质量为m )与容器用良好的隔热材料制成。活塞横截面积为S ,大气压为0p ,另有质量为M 的物体从活塞上方的A 点自由下落到活塞上,并随活塞一 起到达最低点B 而静止,在这一过程中,容器内空气内能的改变量E ?,外界对容器内空气所做的功W 与物体及活塞的重力势能的变化量的关系是( )

A .Mgh mg h E W +??+=

B .E W ?=,0W Mgh mg h p S h +?+?=

C .E W ?=,0W Mgh mg h p S h +?+?<

D .

E W ?≠,0W Mgh mg h p S h +?+?=

2.二氧化碳是导致“温室效应”的主要原因之一,人类在采取节能减排措施的同时,也是在研究控制温室气体的新方法,目前专家们正在研究二氧化碳的深海处理技术.在某次实验中,将一定质量的二氧化碳气体封闭在一个可以自由压缩的导热容器中,将容器缓慢移到海水某深处,气体体积减小为原来的一半,温度逐渐降低.此过程中( ) A .封闭的二氧化碳气体对外界做正功

B .封闭的二氧化碳气体压强一定增大

C .封闭的二氧化碳气体分子的平均动能增大

D .封闭的二氧化碳气体一定从外界吸收热量

3.快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。假设袋内气体与外界没有热交换,当充气袋四周被挤压时,袋内气体

A .对外界做负功,内能增大

B .对外界做负功,内能减小

C .对外界做正功,内能增大

D .对外界做正功,内能减小

4.如图所示为一定质量的理想气体压强随热力学温度变化的图象,气体经历了ab 、bc 、

cd、da四个过程。其中bc的延长线经过原点,ab与竖直轴平行,cd与水平轴平行,ad与bc平行。则气体在

A.ab过程中对外界做功

B.bc过程中从外界吸收热量

C.cd过程中内能保持不变

D.da过程中体积保持不变

5.下列有关热学的叙述中,正确的是()

A.同一温度下,无论是氢气还是氮气,它们分子速率都呈现出“中间多,两头少”的分布规律,且分子平均速率相同

B.在绝热条件下压缩理想气体,则其内能不一定增加

C.布朗运动是指悬浮在液体中的花粉分子的无规则热运动

D.液体表面层分子间距离大于液体内部分子间距离,故液体表面存在张力

6.关于永动机和热力学定律的讨论,下列叙述正确的是()

A.第二类永动机违背能量守恒定律

B.如果物体从外界吸收了热量,则物体的内能一定增加

C.保持气体的质量和体积不变,当温度升高时,每秒撞击单位面积器壁的气体分子数增多D.做功和热传递都可以改变物体的内能,但从能的转化或转移的观点来看这两种改变方式没有区别

7.下列说法正确的是()

A.气体的温度升高,分子动能都增大

B.功可以全部转化为热,但吸收的热量一定不能全部转化为功

C.液晶显示器利用了液晶的光学性质具有各向异性的特点

D.凡是符合能量守恒定律的宏观过程一定自发地发生而不引起其他变化

8.下列说法正确的是( )

A.分子的热运动就是布朗运动

B.气体的温度越高,每个气体分子的动能越大

C.物体的速度越大,内部分子的热运动越激烈

D.热力学温标的最低温度为0K,它没有负值,它的单位是物理学的基本单位之一

9.重庆出租车常以天然气作为燃料,加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)( )

A.压强增大,内能减小

B.吸收热量,内能增大

C.压强减小,分子平均动能增大

D.对外做功,分子平均动能减小

10.用相同材料制成质量相等的圆环A 和圆盘B,厚度相同,且起始温度也相同,把它们都竖立在水平地面上,如图所示.现给它们相同的热量,假设它们不与任何其他物体进行热交换,则升温后,圆环A的温度t A与圆盘B的温度t B的大小关系是

A.t A>t B B.t A=t B C.t A<t B D.无法确定

11.如图所示,A、B为两相同的绝热气缸,用绝热活塞封闭了压强、体积、温度、质量均相同的同种气体,活塞和杠杆质量不计,活塞和杠杆接触,忽略一切摩擦.O为固定轴,且MO=NO,将A中气体温度升高(变化不大)到杠杆MN重新平衡,下列说法正确的是()

A.B中气体温度不变

B.B中气体温度降低

C.A中气体克服外力做功,外界对B气体做功

D.A中气体内能增加,B中气体内能减少

12.如图所示导热性良好的汽缸内密封的气体(可视为理想气体),在等压膨胀过程中,下列关于气体说法正确的是()

A.气体内能可能减少

B.气体会向外界放热

C.气体吸收的热量大于对外界所做的功

D.气体平均动能将减小

13.关于能量的转化与守恒,下列说法正确的是()

A.任何制造永动机的设想,无论它看上去多么巧妙,都是一种徒劳

B.空调机既能致热,又能致冷,说明热传递不存在方向性

C.由于自然界的能量是守恒的,所以说能源危机不过是杞人忧天

D.一个单摆在来回摆动许多次后总会停下来,说明这个过程的能量不守恒

14.A、B两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同.将两管抽成真空后,开口向下竖直插人水银槽中(插入过程没有空气进入管内),水银柱上升至图示位置停止.假设这一过程水银与外界没有热交换,则下列说法正确的是

A.A中水银的内能增量大于B中水银的内能增量

B.B中水银的内能增量大于A中水银的内能增量

C.A和B中水银体积保持不变,故内能增量相同

D.A和B中水银温度始终相同,故内能增量相同

15.图为某种椅子与其升降部分的结构示意图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,在M向下滑动的过程中

A.外界对气体做功,气体内能增大

B.外界对气体做功,气体内能减小

C.气体对外界做功,气体内能增大

D.气体对外界做功,气体内能减小

16.下列说法正确的是()

A.一个绝热容器中盛有气体,假设把气体中速率很大的如大于v的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v的分子

B.温度高的物体的分子平均动能一定大,内能也一定大

C.气体压强的大小跟气体分子的平均动能、分子的密集程度、气体的重力都有关

D.熵值越大,代表系统分子运动越无序

17.如图,一定质量的理想气体,由a经过ab过程到达状态b或者经过ac过程到达状态c.设气体在状态b和状态c的温度分别为T b和T c,在过程ab和ac中吸收的热量分别为Q ab和Q ac.则.

A.T b>T c,Q ab>Q ac B.T b>T c,Q ab<Q ac

C.T b=T c,Q ab>Q ac D.T b=T c,Q ab<Q ac

18.一定质量的理想气体,由初始状态A开始,状态变化按图中的箭头所示方向进行,最

后又回到初始状态A ,对于这个循环过程,以下说法正确的是( )

A .由A→

B ,气体的分子平均动能增大,放出热量

B .由B→

C ,气体的分子数密度增大,内能减小,吸收热量

C .由C→A ,气体的内能减小,放出热量,外界对气体做功

D .经过一个循环过程后,气体内能可能减少,也可能增加

19.如图所示,上端开口的圆柱形导热气缸竖直放置,一定质量的理想气体被光滑活塞封闭在气缸内,设环境的大气压保持不变,若外界温度逐渐升高,则缸内的气体( )

A .气体的体积增大,内能减小

B .气体的体积增大,吸收热量

C .气体的体积不变,内能增大

D .气体的体积不变,放出热量

20.如图所示,一定质量的理想气体从状态a 开始,经历ab 、bc 、cd 、de 四个过程到达状态e ,其中ba 的延长线经过原点,bc 连线与横轴平行,de 连线与纵轴平行。下列说法正确的是( )

A .ab 过程中气体分子热运动平均动能增加

B .bc 过程中气体分子单位时间内击容器壁次数不变

C .cd 过程中气体从外界吸热小于气体内能增量

D .de 过程中气体对外放出热量,内能不变

21.下列说法中不正确的是( )

A .紫外线照射到金属锌板表面时能够产生光电效应,则当增大紫外线的照射强度时,从锌板表面逸出的光电子的最大初动能不会发生改变

B .对于一定质量的某种理想气体,当其压强和体积不变时,内能一定不变

C .已知阿伏加德罗常数为N A ,某气体的摩尔质量为M ,密度为ρ(均为国际单位),则1个该气体分子的体积是A

M N D .在某些恒星内,3个α粒子结合成一个126C ,126C 原子的质量是12.0000u ,4

2He 原子核的质量是4.0026u ,已知1u =931.5MeV/c 2,则此核反应中释放的核能约为7.3MeV

22.蛟龙号深潜器在执行某次实验任务时,外部携带一装有氧气的气缸,气缸导热良好,

活塞与缸壁间无摩擦且与海水相通。已知海水温度随深度增加而降低,则深潜器下潜过程中,下列说法正确的是()

A.每个氧气分子的动能均减小

B.氧气放出的热量等于其内能的减少量

C.氧气分子单位时间撞击缸壁单位面积的次数增加

D.氧气分子每次对缸壁的平均撞击力增大

23.下列说法正确的是()

A.把玻璃管道的裂口放在火上烧熔,它的尖端就变圆,是因为熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故

B.用气筒给自行车打气,越打越费劲,说明气体分子之间有斥力

C.实际气体在温度不太高、压强不太大时可以当做理想气体来处理

D.为了节约能源,应提高利用率,随着技术的进步,一定可以制造出效率为100%的热机24.下列说法不正确的是()

A.饱和气压与热力学温度成正比

B.一定量的理想气体在等温膨胀过程中吸收的热量等于对外做的功,并不违反热力学第二定律

C.当分子间的引力与斥力平衡时,分子力一定为零,分子势能一定最小

D.在任何自然过程中,一个孤立系统中的总熵不会减少

25.根据热力学定律和分子动理论可知,下列说法中正确的是( )

A.已知阿伏加德罗常数和某物质的摩尔质量,一定可以求出该物质分子的质量

B.满足能量守恒定律的宏观过程一定能自发地进行

C.布朗运动就是液体分子的运动,它说明分子做永不停息的无规则运动

D.当分子间距离增大时,分子间的引力和斥力同时减小,分子势能一定增大

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.C

解析:C

【解析】

【详解】

由于系统隔热,所以气体与外界没有热交换,活塞对气体做正功,所以由热力学第一定律知气体的内能增加,且

△E=W

而从能量守恒的角度考虑,m和M减少的机械能即重力势能和大气压做功共

Mgh+mg△h+p o S△h

这部分损失的能量一部分使气体的内能增加,另一部分损失到碰撞过程中m和M的内能

上,所以

W<Mgh+mg△h+p o S△h

故选C。

2.B

解析:B

【解析】

【分析】

【详解】

A.气体体积减为原来的一半,外界对气体做正功,故A错误.

B.根据PV/T=C可知,气体体积减小到原来的一半,但是气体的温度不可能减小到原来的一半,则气体的压强一定增加,选项B正确;

C.温度降低,所以气体的气体分子的平均动能减小,故C错误.

D.温度降低,内能减小,外界对气体做正功,根据热力学第一定律△U=W+Q,封闭气体向外界传递热量,故D错误;

3.A

解析:A

【解析】

【详解】

充气袋四周被挤压时,外界对气体做功,无热交换,根据热力学第一定律分析内能的变化.充气袋四周被挤压时,体积减小,外界对气体做正功,即气体对外界做负功,根据热力学第一定律得知气体的内能增大,A正确。

4.A

解析:A

【解析】

【详解】

A.ab过程气体发生等温过程,压强降低,根据PV/ T=C,知体积增大,气体对外界做功,故A正确;

B.bc过程,连线过坐标原点,则bc过程中体积不变,W=0,温度降低,内能减小,根据?U=W+Q可知,气体放热,故B错误;

C. cd过程中气体压强不变,温度降低,则内能减小,选项C错误;

D. da过程,d与原点连线的斜率大于a与原点连线的斜率,据

C

p T

V

知,d状态气体的

体积小于a状态气体的体积,即da过程中体积增大,故D错误。

5.D

解析:D

【解析】

【详解】

A. 同一温度下,无论是氢气还是氮气,它们分子速率都呈现出“中间多,两头少”的分布规律,且分子平均动能相同,由于分子质量不同,则分子平均速率不同,选项A错误;

B. 在绝热条件下压缩理想气体,外界对气体做功,根据?U=W+Q可知其内能一定增加,选项B错误;

C. 布朗运动是指悬浮在液体中的花粉颗粒的无规则运动,不是花粉分子的热运动,选项C 错误;

D. 液体表面层分子间距离大于液体内部分子间距离,故液体表面存在张力,选项D正确. 6.C

解析:C

【解析】

【详解】

A.第二类永动机不违反能量守恒定律,违反了热力学第二定律;故A错误.

B.改变内能的方式有做功和热传递,物体从外界吸收了热量,物体的内能不一定增加;故B错误.

C.保持气体的质量和体积不变,当温度升高时,压强增大,每秒撞击单位面积器壁的气体分子数增多;故C正确.

D.做功和热传递都可以改变物体的内能,但从能时转化或转移的观点来看这两种改变方式是有区别的;故D错误.

7.C

解析:C

【解析】

【详解】

A.气体的温度升高,分子的平均动能增大,并不是每个分子的动能都增大,故A错误.

B.当存在其他影响时,吸收的热量可以全部转化为功,故B错误.

C.液晶像液体一样具有流动性,而其光学性质与某些晶体相似具有各向异性,彩色液晶显示器利用了液晶的光学性质具有各向异性的特点,故C正确.

D.一切宏观自然过程除了要符合能量守恒定律,还得符合热力学第二定律,故D错误. 8.D

解析:D

【解析】

【详解】

A. 布朗运动观察到的是固体颗粒的无规则运动,反映了液体分子的无规则运动,但不是分子的热运动,故A错误;

B. 气体的温度越高,气体分子的平均动能越大,并非每个气体分子的动能越大,故B错误;

C. 物体本身运动跟组成此物体的分子的热运动没关系,温度越高,内部分子的热运动越激烈,故C错误;

D. 根据热力学第三定律,热力学温标的最低温度为0K,它没有负值;它的单位是物理学的基本单位之一,故D正确;

9.B

解析:B

【解析】

质量一定的气体,体积不变,当温度升高时,是一个等容变化,据压强的微观解释:(1)温度升高:气体的平均动能增加;(2)单位时间内撞击单位面积的器壁的分子数增多,可知压强增大.由于温度升高,所以分子平均动能增大,物体的内能变大;体积不变,对内外都不做功,内能增大,所以只有吸收热量,故ACD 错误,B 正确.

10.C

解析:C

【解析】

【详解】

由于圆环与圆盘的重心的位置都在它们的几何中心,所以开始时A 的重心位置比较高;若A 与B 升高相等的温度,根据热胀冷缩可知,A 的重心位置升高的高度大.A 的重力势能增大量:△E PA >△E PB ,所以A 克服重力做的功比较多;

根据热力学第一定律:△U =Q +W ;A 与B 吸收相等的热量,而A 克服重力做的功比较多,所以A 的内能的增加量比较小.所以A 温度的升高量比较小,则t A <t B 。

A. t A >t B 。与上述结论不符,故A 错误;

B. t A =t B 。与上述结论不符,故B 错误;

C. t A <t B 。与上述结论相符,故C 正确;

D. 无法确定。与上述结论不符,故D 错误。

故选:C

11.C

解析:C

【解析】

【详解】

AB .活塞和杠杆质量不计,将A 中气体温度升高,则A 的体积增大,A 上方的活塞上升,

B 上方的活塞下降,外界对B 做功,0W >

,由于汽缸与活塞都绝热,0Q =,由热力学第一定律可知:0U W Q ?=+>,B 中气体内能增加,气体温度升高,故AB 错误; C .A 气体体积变大,气体对外做功,即A 中气体克服外力做功,B 体积减小,外界对B 做功,故C 正确;

D .A 气体温度升高,内能增加,由A 的分析可知,B 的内能增加,故D 错误. 故选C.

点睛:理想气体的内能由温度决定,温度升高内能增大,温度降低内能减少;根据气体A 的温度升高判断气体的体积如何变化,然后判断气体B 的体积如何变化,然后判断气体做功情况,再判断气体内能如何变化.

12.C

解析:C

【解析】

【分析】

【详解】

气体等压膨胀,根据理想气体状态方程pV

C

T

知T升高;

A.理想气体的内能只与温度有关,温度升高则内能增大,故A错误;

B.体积增大,则气体对外界做功,又内能增加,根据热力学第一定律知气体一定吸热,故B错误;

C.由前面分析知气体吸热,即Q>0,气体对外界做功即W<0,根据热力学第一定律

△U=Q+W>0

得Q>W,故C正确;

D.温度是分子平均动能的标志,温度升高,气体平均动能将增大,故D错误。

故选C。

13.A

解析:A

【解析】

【分析】

【详解】

第一类永动机违背能量守恒定律,第二类永动机违背热力学第二定律,任何制造永动机的设想,无论它看上去多么巧妙,都是一种徒劳,A正确.热传递的方向性是指在没有外界影响的前提下,空调机工作过程掺进了电流做功,显然不满足这个前提,B错误.虽然自然界的能量是守恒的,但存在能量耗散,不同的能量其可利用的品质不同,能源危机不是杞人忧天,C错误.单摆在来回摆动许多次后总会停下来,机械能减少,但由于摩擦等各种因素,变成了其他形式的能量,能量是守恒的,D错误.

14.B

解析:B

【解析】

选B.由于水银与外界没有热交换,大气压力对水银做功,一部分转化为水银的重力势能,一部分转化为水银的内能,两种情况下管中进入的水银量相等,故大气将槽中水银面向下压的距离相等,因此大气压力做功相等,图A管中水银的重力势能比图B的大,因此A中水银的内能增量比B中小,B正确.

15.A

解析:A

【解析】

【分析】

【详解】

筒内气体不与外界发生热交换,当气体体积变小时,则外界对气体做功,外界对气体做功使气体的内能增大.A正确.

16.D

解析:D

【解析】

【分析】

【详解】

A .把气体中分子速率很大的如大于v 的分子全部取走,则气体的温度会下降,此后气体的由于碰撞等原因,仍然会出现速率大于v 的分子;故A 错误;

B .温度高的物体的分子平均动能一定大,而内能与物体的温度、体积和物质的量有关,所以温度高的物体内能不一定大。故B 错误;

C .气体对容器壁的压强是由于大量气体分子对器壁碰撞作用产生的,压强的大小跟气体分子的平均动能、分子的密集程度有关。故C 错误;

D .微观状态的数目Ω是分子运动无序性的一种量度,由于Ω越大,熵也越大,那么熵自然也是系统内分子运动无序性的量度,所以熵越大,代表系统分子运动越无序,故D 正确。

故选D 。

17.C

解析:C

【解析】

试题分析:设气体在a 状态时的温度为T a ,由图可知:V C =V a =V 0、V b =2V 0=2V a , ①从a 到b 是等压变化:

解得:T b =2T a 从a 到c 是等容变化:,由于P c =2P 0=2P a 解得:T c =2T a ,所以:T b =T c

②因为从a 到c 是等容变化过程,体积不变,气体不做功,故a→c 过程增加的内能等于a→c 过程吸收的热量;而a→b 过程体积增大,气体对外做正功,由热力学第一定律可知a→b 过程增加的内能大于a→b 过程吸收的热量,Q ac <Q ab .

故选C

考点:理想气体的状态变化曲线

【名师点睛】该题考查了气体的状态方程和热力学第一定律的应用,利用气体状态方程解决问题时,首先要确定气体状态和各状态下的状态参量,选择相应的气体变化规律解答;在利用热力学第一定律解决问题时,要注意气体的做功情况,区分对内做功和对外做功,同时要注意区分吸热还是放热.

18.C

解析:C

【解析】

【分析】

【详解】

A .根据图象可以知道,A →

B ,气体的压强体积都变大, PV 的乘积变大,根据

C PV T =可知气体的温度升高,所以气体的分子平均动能增加;温度升高则内能增加,而体积变大,气体对外做功,根据热力学第一定律知气体要吸收热量,选项A 错误;

B .由B →

C ,气体做的是等容变化,分子数密度不变;等容变化,压强减小,温度降低,内能减小;体积不变,0W =,内能减小,气体放出热量;选项B 错误;

C .C →A 过程,气体做的是等压变化,体积减小,根据C PV T

=可知温度降低,则气体内能减小,体积减小则外界对气体做功,根据热力学第一定律知气体放出热量,选项C 正确;

D .经过一个循环过程后,回到A 点,温度跟初始温度相同,则内能不变,选项D 错误。 故选C 。

19.B

解析:B

【解析】

【分析】

【详解】

气缸内气体压强不变,气体发生等压变化。由于气缸是导热的,外界温度逐渐升高,缸内气体温度升高,由盖?吕萨克定律可知,气体体积变大,气体温度升高,气体内能增大;气体体积变大,对外做功,由热力学第一定律可知,为保证内能增大,则气体要吸收热量,故B 正确,A CD 错误。

故选B 。

20.A

解析:A

【解析】

【分析】

【详解】

A .ab 过程气体温度升高,分子平均动能增大,故A 正确。

B .bc 过程温度升高,压强不变,则气体分子平均动能增大,为保持压强不变,单位时间内气体分子与器壁碰撞次数应减少,故B 错误;

C .cd 过程气体体积增大,故对外做功,又温度升高,内能增大,根据热力学第一定律可知,气体从外界吸收热量且大于内能增量,故C 错误;

D .de 过程气体体积增大,对外做功,因温度不变,内能不变,则气体从外界吸收热量,故D 错误。

故选A 。

21.C

解析:C

【解析】

【分析】

【详解】

A .光电子的最大初动能与入射光的频率有关,与入射光的强度无关,选项A 说法正确,故A 错误;

B .根据理想气体状态方程

PV C T

=

可知,气体温度不变,内能也一定不变,选项B 说法正确,故B 错误;

C .由于空气分子之间的距离非常大,所以不能估算空气分子的大小。气体的摩尔体积为M

ρ,所以一个空气分子所占的空间为

A

M V N ρ= 选项C 说法错误,故C 正确;

D .该核反应的质量亏损

40026312000000078m u ?=.?-.=.

则释放的核能

200078931eV 7eV 7eV E mc ?=?=.?.5M =.266M ≈.3M

选项D 说法正确,故D 错误。

故选C 。

22.C

解析:C

【解析】

【分析】

【详解】

A .海水温度随深度增加而降低,气缸导热良好,氧气分子平均动能降低,但不是每个氧气分子的动能均减小,故A 错误;

B .根据热力学第一定律

U W Q ?=+

内能的减少量等于氧气放出的热量和外界对氧气做功之和,故B 错误;

C .根据液体压强公式

p gh ρ=

可知随下潜深度增加,海水压强增大,由于活塞与缸壁间无摩擦且与海水相通,氧气压强增加,即氧气分子单位时间撞击缸壁单位面积的次数增加,故C 正确;

D .根据冲量定理

Ft =mv

氧气分子平均动能降低,氧气分子每次对缸壁的平均撞击力减小,故D 错误。 故选C 。

23.A

解析:A

【解析】

【分析】

【详解】

A .液体表面存在张力,表面要缩小到最小而平衡,故A 正确;

B .用气筒给自行车打气,越大越费劲,是因为车胎内外压强差越来越大,与气体分子之

间有斥力无关,故B错误;

C.严格遵守气体实验定律的气体是理想气体,实际气体在温度不太低、压强不太大的情况下可以看作理想气体,故C错误;

D.根据热力学第二定律可知,不可能制造出效率为100%的机器,故D错误。

故选A。

24.A

解析:A

【解析】

【分析】

正确

【详解】

A.饱和汽的气压随温度而变。温度越高,饱和汽的气压越大,但与热力学温度不成正

比,故A错误,符合题意;

B.一定量的理想气体在等温膨胀过程中吸收的热量等于对外做的功,并不违反热力学第二定律,因为热力学第二定律的前提是不引起其他变化,B选项中并没有限制,故B正确;

C.当分子间的引力与斥力平衡时,如下图中0r处

此时分子势能一定最小,故C正确;

D.用熵的概念表示热力学第二定律:在任何自然过程中,一个孤立系统的总熵不会减小,故D正确。

故选A。

25.A

解析:A

【解析】

试题分析:知道某物质摩尔质量和阿伏加德罗常数,根据mol

A

M

m

N

,可以求出其分子质量,故A正确.根据热力学第二定律可知一切热现象都有方向性,如热量不可能自发的从低温向高温传递,故B错误..布朗运动是固体微粒的无规则运动是由液体分子撞击形成的,反应了液体分子的无规则运动,故C错误.首先明确了开始分子之间距离与0r关系,才能判断分子势能的变化情况,若开始分子之间距离小于0r,则在分子之间距离增大到大于

r过程中,分子势能先减小后增大,故D错误.故选A.0

考点:分子动理论、布朗运动、热力学第二定律

工程热力学基础试卷

淮海工学院 13 --- 14学年第2学期热工基础(二)试卷(A 闭卷) 1.[ ]把热量转化为功的媒介称为------- A功源B热源C质源D工质 2.[ ]闭口系统是指-----的系统 A 与外界没有物质交换 B 与外界没有热量交换 C 与外界既没有物质交换也没有热量交换 D 与外界没有功的交换 3.[ ]若热力系统内部各处的压力,温度都相同,则工质处于------状态A平衡 B 均衡C稳定 D 恒定 4. [ ] 比容与------互为倒数 A 质量 B 压力 C 体积 D 密度 5.[ ]热量-----状态参数,压力------状态参数 A 是/不是 B 不是/是 C 是/是 D 不是/不是 6.[ ] 工质经过一个循环,又回到初态,其熵----- A 增加 B 减少 C 不变 D 变化不定 7.[ ] 热力学第一定律阐述了能量转换的------ A 方向 B 速度 C 限度 D 数量关系 8. [ ] 热力学第二定律指出--- A 能量只能转换不能增加或消灭 B 能量只能增加或转换不能消灭 C 能量在转换中是有方向性的 D 能量在转换中是无方向性的 9.[ ]要确定饱和湿蒸汽的参数,除了知道其温度外,还必须知道其——。 A 压力B过热度 C 干度 D 不再需要 10.[ ] 在缩放形喷管的最小截面处,马赫数为---- A 大于1 B 等于1 C 小于1 D 等于0 二、判断题(正确的打√,错误的打×,每题1分,共10分) 1、( ) 经过一个可逆过程,工质不会恢复到原来状态。 2、( ) 在压容图上,准静态过程和非准静态过程都可以用一条连续曲线表示。 3、( ) 卡诺循环的热效率仅与高温热源的温度有关。 4、( ) 理想气体在绝热过程中,技术功是膨胀功的k倍 5、( )当喷管流道截面积从大变小又从小变大时,气体的流速减小。 6、( )喷管内稳定流动气体在各截面上的流速不同,流量也不相同。 7、( )未饱和湿空气中水蒸汽的分压力小于其温度所对应的饱和压力 8、( )饱和湿空气的干球温度大于湿球温度,等于露点温度。 9、( ) 在水蒸气的h-s图上,湿蒸汽的定压线是倾斜的直线,它也是等温线。 10、( )湿空气的绝热加湿过程可近似看作焓值不变的过程。 三、简答题(20分) 1.(5分)如果容器中气体的压力保持不变,那么压力表的读数一定也保持不变,对吗?简述理由 2. (5分)分别在下图中画出气体经压缩、升温、放热的过程,终态在哪个区域?

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

高考物理专题汇编物理牛顿运动定律的应用(一)及解析

高考物理专题汇编物理牛顿运动定律的应用(一)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动

《大学物理学》热力学基础练习题

《大学物理学》热力学基础 一、选择题 13-1.如图所示,bca 为理想气体的绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是 ( ) (A )b 1a 过程放热、作负功,b 2a 过程放热、作负功; (B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功; (C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功; (D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。 【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+?知b 2a 过程放热,b 1a 过程吸热】 13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B ,且他们的压强相等,即A B P P =。问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然 ( ) (A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。 【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】 13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。 【提示:等体过程不做功,有Q E =?,而2 mol M i E R T M ?= ?,所以需传5J 】 13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是( ) A () C () B () D ()

热力学第二定律的建立

热力学第二定律的建立

热力学第二定律的建立 1850年克劳修斯提出热力学第二定律以后,至20世纪初,一直被作为与热力学第一定律并列的热力学两大基本定律,引起学术界特别是物理学界的极大重视。这两个基本定律的发现,使热力学在19世纪50年代初时起,被看作近代物理学中的一个新兴的学科,和物理学家们极其热衷的重要领域,得到物理学家和化学家们的关注。 1、热力学第二定律产生的历史背景 18世纪末惠更斯和巴本(Dents Papin,1647~1714)实验研究的燃气汽缸,塞维利(Thomas Savery,1650~1715)于1798年制成的“矿工之友”,及纽可门(Newcomen Thomas,1663~1729)于1712年发明的“大气机”等早期的蒸汽机,都是利用两个不同温度的热源(锅炉和水)并使部分热量耗散的方法使蒸汽机作功的,也可以说不自觉地运用热力学第二定律的思想,进行设计的。瓦特改进纽可门蒸汽机的关键,是以冷凝器取代大气作为第二热源,因而使耗散的热量大大降低。为了进一步减少热的耗散量和

提高热效率与功率,18世纪末和19世纪40年代又先后研制成中低压和高低压二级膨胀式蒸汽机。热机的整个发展史说明,它的热效率可以不断提高和耗散的热量可以逐渐减少。但是,热机的热效率至今虽然逐渐有所提高,但耗散的热量永远也不可能消除。因此,卡诺的可逆循环只可趋近而永远也无法达到。这就提出了一个十分重要的问题,就是卡诺提出的“在蒸汽机内,动力的产生不是由于热质的实际消耗,而是由热体传到冷体,也就是重新建立了平衡”的论断中,最后的话是不正确的,这不仅因为他相信热质说引起的,而且因为在无数事实中,这种热平衡在一个实际热机中是不可达到的。事实说明,机械功可以完全转化为热,但在不引起其他变化的条件下,热却不可能完全转化为机械功。 人们设想,如果出现一个制成这样永动机的先例,即一个孤立热力学系统会从低温热源取热而永恒地做功,那么大地和海洋几乎可以作为无尽的低温热源,做功将是取之不尽的。事实上这与热力学原理相矛盾的,这就意味着可能有一个新的热力学基本定律在起着作用。综上可见,虽然有的事件是不违背热力学第一定律的但也不可

高考物理牛顿运动定律试题经典及解析

高考物理牛顿运动定律试题经典及解析 一、高中物理精讲专题测试牛顿运动定律 1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求: (1)物体与水平面间的动摩擦因数; (2)水平推力F的大小; (3)s内物体运动位移的大小. 【答案】(1)0.2;(2)5.6N;(3)56m。 【解析】 【分析】 【详解】 (1)由题意可知,由v-t图像可知,物体在4~6s内加速度: 物体在4~6s内受力如图所示 根据牛顿第二定律有: 联立解得:μ=0.2 (2)由v-t图像可知:物体在0~4s内加速度: 又由题意可知:物体在0~4s内受力如图所示 根据牛顿第二定律有: 代入数据得:F=5.6N (3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:

【点睛】 在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活 处理.在这类问题时,加速度是联系运动和力的纽带、桥梁. 2.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为 0.8h m =。在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不 动,而货物继续运动,最后恰好落在光滑轨道上的B 点。已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。 ()1求货物从小车右端滑出时的速度; ()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车 的长度是多少? 【答案】(1)3m/s ;(2)6.7m 【解析】 【详解】 ()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动, 在竖直方向上:2 12 h gt = , 水平方向:AB x l v t = 解得:3/x v m s = ()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研 究对象,系统在水平方向动量守恒, 由动量守恒定律得:()0mv m M v =+共, 解得:4/v m s =共, 由能量守恒定律得:()2201122 Q mgs mv m M v μ==-+共相对, 解得:6s m =相对, 当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得: 22 11'22 x mgs mv mv 共μ-= -,

热力学第一定律练习题

第2章 《热力学第一定律》练习题 一、思考题 1. 理想气体的绝热可逆和绝热不可逆过程的功,都可用公式V W C T =?计算,那两种过程所做的功是否一样 2. 在相同的温度和压力下,一定量氢气和氧气从四种不同的途径生成水:(1)氢气在氧气中燃烧,(2)爆鸣反应, (3)氢氧热爆炸,(4)氢氧燃料电池。在所有反应过程中,保持反应方程式的始态和终态都相同,请问这四种变化途径的热力学能和焓的变化值是否相同 3. 在298 K , kPa 压力下,一杯水蒸发为同温、同压的气是一个不可逆过程,试将它设计成可逆过程。 二、填空题 1. 封闭系统由某一始态出发,经历一循环过程,此过程的_____U ?=;_____H ?=;Q 与W 的关系是______________________,但Q 与W 的数值________________________,因为_________________________。 2. 状态函数在数学上的主要特征是________________________________。 3. 系统的宏观性质可分为___________________________________,凡与系统物质的量成正比的物理量均称为___________________________。 4. 在300K 的常压下,2mol 的某固体物质完全升华过程的体积功_________e W =。 5. 某化学反应:A(l) + (g) → C(g)在500K 恒容条件下进行,反应进度为1mol 时放热10kJ ,若反应在同样温度恒容条件下进行,反应进度为1mol 时放热_____________________。 6. 已知水在100℃的摩尔蒸发焓40.668ap m H ν?=kJ·mol -1,1mol 水蒸气在100℃、条件下凝结为液体水,此过程的_______Q =;_____W =;_____U ?=;_____H ?=。 7. 一定量单原子理想气体经历某过程的()20pV ?=kJ ,则此过程的_____U ?=;_____H ?=。 8. 一定量理想气体,恒压下体积工随温度的变化率____________e p W T δ?? = ????。 9. 封闭系统过程的H U ?=?的条件:(1) 对于理想气体单纯pVT 变化过程,其条件是_____________________; (2)对于有理想气体参加的化学反应,其条件是______________________________________。 10. 压力恒定为100kPa 下的一定量单原子理想气体,其_____________p H V ???= ????kPa 。 11. 体积恒定为2dm 3的一定量双原子理想气体,其_______________V U p ???= ????m 3 。

热力学第二定律

第二章热力学第二定律 2.1 自发变化的共同特征 自发变化某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。 自发变化的共同特征—不可逆性任何自发变化的逆过程是不能自动进行的。例如: (1)焦耳热功当量中功自动转变成热; (2)气体向真空膨胀 (3)热量从高温物体传入低温物体; (4)浓度不等的溶液混合均匀; (5)锌片与硫酸铜的置换反应等, 它们的逆过程都不能自动进行。当借助外力,体系恢复原状后,会给环境留下不可磨灭的影响。 2.2热力学第二定律(T h e S e c o n d L a w o f T h e r m o d y n a m i c s) 克劳修斯(Clausius)的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。” 开尔文(Kelvin)的说法:“不可能从单一热源取出热使之完全变为功,而不发生其它的变化。” 后来被奥斯特瓦德(Ostward)表述为:“第二类永动机是不可能造成的”。 第二类永动机:从单一热源吸热使之完全变为功而不留下任何影响。 2.3卡诺循环与卡诺定理 2.3.1卡诺循环(C a r n o t c y c l e) 1824 年,法国工程师N.L.S.Carnot (1796~1832)设计了一个循环,以理想气体为工作物质,从高温T h热源吸收Q h的热量,一部分通过理想热机用来对外做功W,另一部分Q c的热量放给低温热源T c。这种循环称为卡诺循环. 1mol 理想气体的卡诺循环在pV图上 可以分为四步:

过程1:等温T h 可逆膨胀由 p 1V 1到p 2V 2(A B) 10U ?= 2 1h 1 ln V W nRT V =- h 1Q W =- 所作功如AB 曲线下的面积所示。 过程2:绝热可逆膨胀由 p 2V 2T h 到p 3V 3T c (B C) 20Q = c h 22,m d T V T W U C T =?=? 所作功如BC 曲线下的面积所示。 过程3:等温(T C)可逆压缩由p 3V 3 到p 4V 4(C D) 30U ?=4 3c 3 ln V W nRT V =- 环境对体系所作功如DC 曲线下的面积所示 过程4:绝热可逆压缩由 p 4V 4T c 到p 1V 1 T h (D A)40Q = h c 44,m d T V T W U C T =?=? 环境对体系所作的功如DA 曲线下的面积所示 整个循环:0U ?= Q h 是体系所吸的热,为正值,Q Q Q =+c h Q c 是体系放出的热,为负值。 2413 (W W W W W =+和对消) 即ABCD 曲线所围面积为热机所作的功。 根据绝热可逆过程方程式过程2:11h 2c 3T V T V γγ--= 过程4:11h 1c 4T V T V γγ--= 相除得 3 214 V V V V = 24c h 13 13ln ln W W V V nRT nRT V V =--+ 所以 2 c h 1 ()ln V nR T T V =-- 2.3.2 热机效率(efficiency of the engine )

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

高考物理力学知识点之热力学定律基础测试题(6)

高考物理力学知识点之热力学定律基础测试题(6) 一、选择题 1.如图所示,水平放置的封闭绝热气缸,被一锁定的绝热活塞分为体积相等的a、b两部分。已知a部分气体为1mol氧气,b部分气体为2 mol氧气,两部分气体温度相等,均可视为理想气体。解除锁定,活塞滑动一段距离后,两部分气体各自再次达到平衡态时,它们的体积分别为V a、V b,温度分别为T a、T b。下列说法正确的是 A.V a>V b, T a>T b B.V a>V b, T a<T b C.V a<V b, T a<T b D.V a<V b, T a>T b 2.下列说法正确的是() A.决定封闭理想气体压强大小的是,分子密集程度和分子的平均动能 B.决定理想气体压强的是,分子平均动能和分子种类 C.质量相同的0C?的水和0C?的冰具有相同的内能 D.一定质量的理想气体绝热自由膨胀过程,内能一定减少 3.如图所示,一导热性能良好的金属气缸内封闭一定质量的理想气体。现缓慢地向活塞上倒一定质量的沙土,忽略环境温度的变化,在此过程中() A.气缸内大量分子的平均动能增大 B.气体的内能增大 C.单位时间内撞击气缸壁单位面积上的分子数增多 D.气缸内大量分子撞击气缸壁的平均作用力增大 4.快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。假设袋内气体与外界没有热交换,当充气袋四周被挤压时,袋内气体 A.对外界做负功,内能增大 B.对外界做负功,内能减小 C.对外界做正功,内能增大 D.对外界做正功,内能减小 5.根据学过的热学中的有关知识,判断下列说法中正确的是()

A.机械能可以全部转化为内能,内能也可以全部用来做功转化成机械能 B.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体 C.尽管科技不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降到-293 ℃D.第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,随着科技的进步和发展,第二类永动机可以制造出来 6.若通过控制外界条件,使图甲装置中气体的状态发生变化.变化过程中气体的压强p随热力学温度T的变化如图乙所示,图中AB线段平行于T轴,BC线段延长线通过坐标原点,CA线段平行于p轴.由图线可知 A.A→B过程中外界对气体做功 B.B→C过程中气体对外界做功 C.C→A过程中气体内能增大 D.A→B过程中气体从外界吸收的热量大于气体对外界做的功 7.一定质量的理想气体由状态A变化到状态B,气体的压强随热力学温度变化如图所示,则此过程() A.气体的密度减小 B.外界对气体做功 C.气体从外界吸收了热量 D.气体分子的平均动能增大 8.如图所示,一定质量的理想气体密封在绝热(即与外界不发生热交换)容器中,容器内装有一可以活动的绝热活塞.今对活塞施以一竖直向下的压力F,使活塞缓慢向下移动一段距离后,气体的体积减小.若忽略活塞与容器壁间的摩擦力,则被密封的气体( )

高考物理牛顿运动定律练习题及解析

高考物理牛顿运动定律练习题及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.如图1所示,在水平面上有一质量为m 1=1kg 的足够长的木板,其上叠放一质量为m 2=2kg 的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等?现给木块施加随时间t 增大的水平拉力F =3t (N ),重力加速度大小g =10m/s 2

大学物理章 热力学基础 试题

第9章热力学基础 一、选择题 1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [ ] (A) 准静态过程一定是可逆过程 (B) 可逆过程一定是准静态过程 (C) 二者都是理想化的过程 (D) 二者实质上是热力学中的同一个概念 2. 对于物体的热力学过程, 下列说法中正确的是 [ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 : (B) 摩尔热容量的大小与所经历的过程无关 (C) 在物体内, 若单位体积内所含热量越多, 则其温度越高 (D) 以上说法都不对 3. 有关热量, 下列说法中正确的是 [ ] (A) 热是一种物质 (B) 热能是物质系统的状态参量 (C) 热量是表征物质系统固有属性的物理量 (D) 热传递是改变物质系统内能的一种形式 " 4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的一种量度 (B) 功是描写系统与外界相互作用的物理量 (C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D) 系统具有的能量等于系统对外作的功 5. 理想气体状态方程在不同的过程中有不同的微分表达式, 示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式 ` [ ] (A) 等温过程(B) 等压过程

(C) 等体过程 (D) 绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程 8. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 则式 V p p V M R T d d d += μ 表示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 任意过程 ¥ 9. 热力学第一定律表明: [ ] (A) 系统对外作的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量 (C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于1 10. 对于微小变化的过程, 热力学第一定律为d Q = d E d A .在以下过程中, 这三者同时为正的过程是 [ ] (A) 等温膨胀 (B) 等容膨胀 ¥ (C) 等压膨胀 (D) 绝热膨胀 11. 对理想气体的等压压缩过程,下列表述正确的是 [ ] (A) d A >0, d E >0, d Q >0 (B) d A <0, d E <0, d Q <0 (C) d A <0, d E >0, d Q <0 (D) d A = 0, d E = 0, d Q = 0 12. 功的计算式A p V V = ?d 适用于 [ ] (A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程 13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2 ,(V p . 一次是等温压缩到 2V , 外界作功A ;另一次为绝热压缩到2 V , 外界作功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较

(完整版)物理化学上热力学第一定律知识框架图总结.doc

第一章,热力学第一定律各知识点架构纲目图如下: 系统:隔离系统;封闭系统;敞开系统 环境:在系统以外与系统密切相关部分 状态:系统的所有物理性质和化学性质的综合体现系统及状态及状态函数类型:广度量;强度量 状态状态函数 (热力学性质 ) 特性:①改变值只与始、末态有关而与具体途径无关; ②不同状态间的改变值具有加和性。 即殊途同归,值变相等;周而复始,其值不变。热力学平衡:热平衡;力学平衡;相平衡;化学平衡 单纯的 pTV 变化 状态变化 溶解及混合 及过程 相变化 化学变化 系 统 状 态 变 简单的化 时 pTV 变化, 计 算 系 统 与 环 境 系统与环境 间 交间交换能量 换 的计算 (封闭 的 能 恒压过程 (p 始 =p 终 =p 环 ) 恒温过程 (T 始=T 终=T 环 ) 恒容过程 (V 始=V 终) 绝热过程 (Q = 0) 节流过程 (H = 0) 理想气体 (IG) 系统:U T2 C V ,m dT ; H n T2 n C p,m dT T2 T1 T1 Q p =△ H= n C p ,m dT ;W=-p外(V2-V1); 恒压过程:T1 △U=△ H -p△ V ( 常压下,凝聚相: W ≈ 0;△ U≈△ H) 理想气体焦尔实验: (1)结论: (?U/?V) T=0; (2)推论: U IG=f ( T); H IG=g (T) 恒温过程 △U=△H=0; W=-Q = V2 nRT lnV2 /V1 (可逆 ) V pdV 1 恒容过程:W=0; Q V =△ U= T2 n C V ,m dT ; T1 绝热过程: Q=0;△ U= W 不可逆(恒外压):nC V,m( T2 -T1)=- p2(V2-V1) 可逆:p1V1 1 1 T1 ) ( nC V , m (T2 1 1 1 ) >0 V 2 V1 致冷 节流膨胀: Q=0 ;△H=0;J-T=(d T/dp) H =0 T 不变 ( 例如理想气体 ) <0 致热 量系统, W 非 =0) 相变化Q p =△ H; W=-p△V △U= △H- p△ V =-nRT (气相视为IG) ≈0,△ U≈△ H (常压下凝聚态间相变化) 相变焓与温度关系:T2 H m (T2 )H m (T1 ) C p,m dT T1 热力学第一定律及焓函数 反应进度定义、标准摩尔生成焓和标准摩尔燃烧焓的定义。 摩尔反应焓的定义:△r H m=△ r H/△ 化学变化 标准摩尔反应焓的计算: ! B ! r H m (T1 ) f H m (B, T ) 恒压反应热与恒容反应热的关系:△r H m=△ r U m+∑νB(g)RT ! T2 基希霍夫公式:( r H m ) C ; H ! (T ) H ! (T ) C dT p r r r p, m T r p ,m m 2 m 1 T1 热(Q):系统与环境间由于温差而交换的能量。是物质分子无序运动的结果。是过程量。功 (W) :除热以外的,在系统与环境间交换的所有其它形式的能量。是物质分子有序运动的 结果,是过程量。 热力学能 (U):又称为内能,是系统内部能量的总和。是状态函数,且为广度量,但绝对值不知道。 热力学第一定律数学表达式:△ U=Q+W,在封闭系统, W 非 =0,恒容条件下,△ U=Q V。 焓函数 (H):定义, H≡ U+pV, 是状态函数,且为广度量,但绝对值不知道。在封闭系统, 1 W非 =0,恒压条件下,△H=Q p。

高考物理牛顿运动定律专项训练及答案.doc

高考物理牛顿运动定律专项训练及答案 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v0= 2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v1= 4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v2= 1m/s,方向向左。重力加速度g= 10m/s2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】( 1)0.3( 2)1 (3)2.75m 20 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:a1 v2 v1 1 4 m / s2 3m / s2,方向向右 t 1 对小滑块根据牛顿第二定律有:1mg ma1,可以得到: 1 0.3 ; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: v0 1 mg22mg m t1 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 1 mg 2 2mg m v2 t2 而且 t1 t2 t 1s 联立可以得到: 1 t1 0.5s,t2 0.5s ; 2 , 20 (3)在t1 0.5s时间内,木板向右减速运动,其向右运动的位移为:0v0 x1t10.5m ,方向向右; 在 t20.5s 时间内,木板向左加速运动,其向左加速运动的位移为:

第6章 热力学基础练习题(大学物理11)

06章 一、填空题 1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 的方向进行。 2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了_____________的过程是不可逆的,而克劳修斯表述指出了__________的过程是不可逆的。 3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 (填增加或减少),E 2—E 1= J 。 4.一定量的理想气体在等温膨胀过程中,内能 ,吸收的热量全部用于 。 5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 J 。 6、在孤立系统内部所发生的过程,总是由热力学概率 的宏观状态向热力学概率 的宏观状态进行。 7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热_______J 。 8、一定量的气体由热源吸收热量526610J ??,内能增加5 41810J ??,则气体对外作 功______J 。 9、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 。 10、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_____J 。 11、气体经历如图1所示的一个循环过程,在这个循环中, 外界传给气体的净热量是 J 。 12、一热机由温度为727℃的高温热源吸热,向温度为 527℃的低温热源放热。若热机可看作卡诺热机,且每一 循环吸热2000J,则此热机每一循环作功 J 。 13、1mol 的单原子分子理想气体,在1atm 的恒定压强下,从0℃加热到100℃,则气体的

高考物理牛顿运动定律真题汇编(含答案)

高考物理牛顿运动定律真题汇编(含答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求: (1)刚放上传送带时物块的加速度; (2)传送带将该物体传送到传送带的右端所需时间. 【答案】(1)24/a g m s μ==(2)1t s = 【解析】 【分析】 先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】 (1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得: mg ma μ= 代入数据得:2 4/a g m s μ== (2)设物体加速到与传送带共速时运动的位移为0s 根据运动学公式可得:2 02as v = 运动的位移: 2 0842v s m a ==> 则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有 212 l at = 解得 1t s = 【点睛】 物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力. 2.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)

1热力学基础练习与答案

第一次 热力学基础练习与答案 班 级 ___________________ 姓 名 ___________________ 班内序号 ___________________ 一、选择题 1. 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程 是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最 多的过程 [ ] (A) 是A →B. (B) 是A →C. (C) 是A →D. (D) 既是A →B 也是A →C , 两过程吸热一样多。 2. 有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看 成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢 气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量 是: [ ] (A) 6 J. (B) 5 J. (C) 3 J. (D) 2 J. 3.一定量的某种理想气体起始温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中 [ ] (A) 气体向外界放热 (B) 气体对外界作正功 (C) 气体内能增加 (D) 气体内能减少 4. 一定量理想气体经历的循环过程用V -T 曲线表示如图.在此循 环过程中,气体从外界吸热的过程是 [ ] (A) A →B . (B) B →C . (C) C →A . (D) B →C 和B →C . 5. 设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在 一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的 [ ] (A) n 倍. (B) n -1倍. (C) n 1倍. (D) n n 1 倍. 6.如图,一定量的理想气体,由平衡状态A 变到平衡状态 B (p A = p B ),则无论经过的是什么过程,系统必然 [ ] (A) 对外作正功. (B) 内能增加. (C) 从外界吸热. (D) 向外界放热. V

高考物理牛顿运动定律题20套(带答案)

高考物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。传送带BC 间距 0.8L m =,以01/v m s =顺时针运转。两个转动轮O 1、O 2的半径均为0.08r m =,半径

O 1B 、O 2C 均与传送带上表面垂直。用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。求: (1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】 解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2 v mgcos θm r = 解得: v 0.8m /s = 对滑块在传送带上的分析可知:mgsin θμmgcos θ= 故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v = 解得:t 1s = (2)滑块从K 至B 的过程,由动能定理可知:2f 1 W W mv 2 -=弹 根据功能关系有: p W E =弹 解得:f W 0.68J = 3.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求

相关文档
相关文档 最新文档