文档库 最新最全的文档下载
当前位置:文档库 › 概率统计(I)2013-2014-2(13级)期末试题及参考答案

概率统计(I)2013-2014-2(13级)期末试题及参考答案

概率统计(I)2013-2014-2(13级)期末试题及参考答案
概率统计(I)2013-2014-2(13级)期末试题及参考答案

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

09-10-1-概率统计A--期末考试试卷答案

诚信应考 考出水平 考出风格 浙江大学城市学院 2009— 2010学年第 一学期期末考试试卷 《 概率统计A 》 开课单位: 计算分院 ;考试形式: 闭卷; 考试时间:2010年 1 月24日; 所需时间: 120 分钟 题序 一 二 三 总 分 得分 评卷人 一. 选择题 (本大题共__10__题,每题2分共__20 分) 1、已知()0.87.0)(,8.0)(===B A P B P A P ,,则下列结论正确的是(B ) )(A 事件B A 和互斥 )(B 事件B A 和相互独立 )(C )()()(B P A P B A P += )(D B A ? 2、设)(1x F 和)(2x F 分别为随机变量1X 和2X 的分布函数,为使)()()(21x bF x aF X F -=为某一随机变量的分布函数,在下列各组数值中应取( A ) )(A 5/2,5/3-==b a )(B 3/2,3/2==b a )(C 2/3,2/-1==b a )(D 2/3,2/1-==b a 3、设随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率() σμ<-X P 满足 ( C ) )(A 单调增大 )(B 单调减少 )(C 保持不变 )(D 增减不定 4、设),(Y X 的联合概率密度函数为?? ???≤+=其他, 01 ,1),(2 2y x y x f π,则X 和Y 为 ( C )的随机变量 )(A 独立且同分布 )(B 独立但不同分布 )(C 不独立但同分布 )(D 不独立 且不同分布 得分 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名:__________________ …………………………………………………………..装………………….订…………………..线… …………………………………………………… 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名________________ …………………………………………………………..装………………….订…………………..线………………………………………………………

概率论期末试卷

填空题(每小题4分,共32分). 1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A B ) = _______; 若 A 与 B 相互独立, 则 P (A B ) = _________. 2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________. 2014-2015学年《概率论与数理统计》期末考试试卷 (B) 一、填空题(每小题4分,共32分). 1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A B ) = _______; 若 A 与 B 相互独立, 则 P (A B ) = _________. 2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________. 3.设随机变量 X 的分布函数为,4 ,1 42 ,7.021 ,2.01 ,0 )(???? ?? ?≥<≤<≤--<=x x x x x F 则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为 X 1 2 3 p k 0.5 0.3 a 则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} = _________ . 5.设随机变量 X 服从二项分布 b (100, 0.2), 则 E (X ) = ________, D (X ) = ___________. 6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X +2Y ) = _________.

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计期末考试

一 填空 1.设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 2. 设B A 、是两相互独立事件,4.0)(,8.0)(==A P B A P ,则._____)(=B P 3. .__________)3(,3)(,2)(=-==Y X D Y X Y D X D 独立,则、且 4. 已知._________)20(,533.0)20(4.06.0=-=t t 则 5. n X X X ,,,21 是来自正态总体),(2σμN 的样本,S 是样本标准差,则 ________)( 2 2 =σ nS D 6. 设._______}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式 7. 假设一批产品中一、二、三等品各占%10%20%70、、 ,从中随意取一种,结果不是三等品,则取到的是一等品的概率是____________. 8、m X X X ,,,21 是取自),(211σμN 的样本,n Y Y Y ,,,21 是来自),(2 22σμN 的样本,且这两种样本独立,则___ ___ Y X -服从____________________. 9. 设____}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式得. 10、已知.__________)12(2)(=-=X D X D ,则 11、已知分布服从则变量)1(___________),1(~),,(~22--n t n Y N X χσμ 12设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 。 13.已知1 1 1(),() ,()432 P A P B A P A B ===,则()P AB = , ()P A B = 。 14.若()0.5,()0.4,()0.3,P A P B P A B ==-=则()P A B = 。 15.若随机变量X 服从(1,3)R -,则(11)P X -<<= 。 16.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )= 。 17.设随机变量,X Y 相互独立,且X 服从(2)P ,Y 服从(1,4)N ,则(23)D X Y -= 。

概率论与数理统计期末考试试题及解答

《概率论与数理统计》期末试题 一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的 概率为__________. 答案: 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P Y . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F =

概率统计 期末考试试卷及答案

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

概率统计期末试卷.docx

浙 江 工 业 大 学 概 率 统 计 期 末 试 卷 ( A ) (2009 ~ 2010 第 一 学 期) 2010-1-14 任课教师 学院: 班级: 上课时间:星期 ____,_____节 学号: 姓名: 一、选择题(每题 2 分 , 共 10 分) 1. n 个 随 机 变 量 X i (i 1,2,3, , n) 相 互 独 立 且 具 有 相 同 的 分 布 , 并 且 E( X i ) a , D( X i ) b , 则这些随机变量的算术平均值 X 1 n 的数学期望和方差分别 X i n i 1 为 ( ) ( A ) a , b ( B ) a , b ( C ) a , b ( D ) a , b 2 2. n n 2 n n 设 X 1 , X 2 , , X 500 为独立同分布的随机变量序列 , 且 X 1 ~ B(1, p) , 则下列不正确的为 ( ) 1 500 500 ~ B(500, p) (A) X i p (B) X i 500 i 1 i 1 500 ( ) ( ) P a X i b (C) i 1 500 b 500 p a 500 p (D) P a X i b Φ Φ . i 1 500 p(1 p) 500 p(1 p) 3. 设0 P( A) 1,0 P(B) 1, P(A | B) P( A | B ) 1, 则 ( ) (A) P( A | B) P(A) (B) B A (C) AB (D) P( AB) P( A)P(B) 4. 如果随机变量 X ,Y 满足 D( X Y) D ( X Y ) , 则必有 ( ) (A) X 与 Y 独立 (B) X 与Y 不相关 (C) DY 0 (D) DX 5. 设 A 和 B 是任意两个概率不为零的不相容事件 , 则下列结论中肯定正确的是 ( ) (A) A 与 B 不相容 (B) A 与 B 相 容 (C) P( AB) P( A)P(B) ; (D) P( A B) P( A) P(B) 二、填空题(每空 3 分 , 共 30 分) 1. 设 X ~ N (1, 1/ 2), Y ~ N (0, 1/ 2) , 且相互独立 , Z X Y , 则 P(Z 0) 的值为 ( 结果用正态分布函数 表示 ).

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

最新版概率统计简明教程期末复习题(含答案)

考试的形式、试卷结构 1. 考试形式为闭卷、笔试。满分100分,考试时间为120分钟。 2. 试卷内容比例:第一、二、三章约占27%,第四章约占29%,第六章约占14%,第七章约 占16%,第八、九、十章约占14%。 3. 试卷题型比例:填空题占15%,选择题占15%,计算题占49%,综合题占21%. 题型示例与答案 一、填空题(本大题共5小题,每小题3分,共15分。) 1.在随机事件A ,B ,C 中至多有一个发生的事件可表示为_________________; 2.设随机事件A 与B 互斥,则P(AB)等于___________; 3.设随机变量X 的数学期望E(X)=a ,则E(2X+5)等于______________________; 4.设随机变量X 的方差D(X)=b, 则D(2X+5)等于______________________; 5.设随机变量X 服从正态分布N(μ,σ2), 则其密度函数f(x)=_______ __________。 二、单选题(本大题共5小题,每小题3分,共15分。) 1. A 与B 是两个随机事件,若AB ≠φ,则A 与B 关系是( )。 (A) 对立; (B) 独立; (C)互斥; (D) 相容 2. 进行一系列独立的试验,每次试验成功的概率为p ,则在成功2次之前已经失败3 次的概率为: A .32)1(4p p - B .3)1(4p p - C .32)1(10p p - D .3 2)1(p p - 3. 设F(x)是随机变量X 的分布函数,则F(x)具有性质( )。 x x x x A F x 1B F x 1C F x 0D F x →+∞ →-∞ →+∞ →+∞ ====+∞()lim (),()lim (),()lim (),()lim (). 4. 设随机变量X 服从分布N(μ,σ2),其数学期望和标准差分别是( )。 (A) μ,σ; (B) μ,σ 2; (C) σ, μ; (D)σ2,μ 5. 设?θ 是总体参数θ的无偏估计量,则有( )。 (A)D θ =θ?(); (B)E θ=θ?(); (C)θ=θ?; (D)2D θ =θ?() 三、计算题(本大题共7小题,每小题7分,共49分。要求解题有过程) 1.设两事件A 与B 互斥,且()()0.3,0.8P A P A B ==,求()P B 。 2.袋内装有4个白球,5个黑球,今从中任取两个球,求两个球均为白球的概率;

《概率论与数理统计》期末考试试题及解答(DOC)

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(的概率密 度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤==- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体12~(12,4),,,,n X N X X X L 为简单随机样本,求样本均值与总体均值之 差的绝对值大于1的概率. 解:由于~(12,4)X N , ~(0,1)X N 7.3 设总体~(0,0.09),X N 从中抽取10n =的简单随机样本,求1021 1.44i i P X =?? >???? ∑. 解:由于~(0,0.09),X N 所以~(0,0.09),i X N 故 ~(0,1)0.3 i i X X N σ --= 所以 10 2 21 () ~(10)0.3i i X χ=∑ 所以{}1010222 11 1.441.44()160.10.3 0.09i i i i X P X P P χ==????>=>=>=????????∑∑ 7.4 设总体2 ~(,),X N μσ12,,,n X X X L 为简单随机样本, X 为样本均值,2 S 为样 本方差,问2 X U n μσ?? -= ??? 服从什么分布? 解: 2 22X X X U n μσ????-=== ???,由于2 ~(,)X N μσ, ~(0,1)X N ,故2 2 ~(1)X U χ??=。 7.6 设总体2~(,),X N μσ2 ~(,)Y N μσ且相互独立,从,X Y 中分别抽取 1210,15n n ==的简单随机样本,它们的样本方差分别为22 12,S S ,求2212(40)P S S ->。 解: 22 22211 2 1 2 22(40)(4)4S P S S P S S P S ?? ->=>=> ??? 由于2~(,),X N μσ2 ~(,)Y N μσ且相互独立

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于2,则B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关 系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .

2. 设}4 B =x ≤ x ≤ A S:则 x x = x < 3 1: }, { 2: { }, ≤ = {≤< 5 0: (1)= A,(2) ?B = AB,(3)=B A, (4)B A?= ,(5)B A= 。 §1 .3 概率的定义和性质 1.已知6.0 A P ?B = P A B P,则 ( ,5.0 ( ) ) ,8.0 (= ) = (1) =) (AB P, (2)() P)= , (B A (3)) P?= . (B A 2. 已知, 3.0 P A P则 =AB ( (= ) ,7.0 ) P= . A ) (B §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。 2. 已知,2/1 A P =B A P则 = A P B | ( | ) ,3/1 ) ) ,4/1 ( (=

概率论与数理统计期末复习题1-3

概率与数理统计期末复习题一一、填空题 1.设随机变量X的概率密度为 ? ? ? ? ? ≤ > = - .0 ,0 , 3 1 ) ( 3 1 x x e x f x ,则数学期 = +-) (X e X E 。 2.设随机变量X,Y相互独立,且服从正态分布N(-1,1),则Z=2X-Y的概率密度。 3.进行三次独立试验,在每次试验中事件A出现的概率相等,已知A至少出现一次的概率等于64 37 ,则事件A在一次试验 中出现的概率P(A)= . 4.设X,Y是随机变量,D(X)=9,D(Y)=16,相关系数 2 1 = XY ρ ,则D(X+Y)= . 5. 口袋中装有2个白球,3个红球,从中随机地一次取出3个球,则取出的3个球中至多有2个红球的概率为 . 6. 已知随机变量X服从参数为λ的泊松分布,且 2 1 }0 {= = X P , = <}2 {X P . 二、已知随机变量X的概率密度为 ? ? ?< < = 其他 ,0 1 , 2 ) ( x x x f .求Y= 3lnX的分布函数. 三、玻璃杯成箱出售,每箱装有10只玻璃杯.假设各箱含0只,1只和2只次品的概率分别为0.9,0.06,0.04.一顾客要买一箱玻璃杯,售货员随意取出一箱,顾客开箱随机取出3只,若这3只都不是次品,则买下该箱杯子,否则退回.求(1)该顾客买下该箱玻璃杯的概率;(2)在顾客已买下的一箱中,确实没有次品的概率. 四、设随机变量(X,Y)的概率密度为 ?? ? ? ? - ≤ ≤ ≤ ≤ = 其他 ,0 6 6 0,1 , 3 1 ) , ( x y x y x f , 求 ( 1)边缘密度 ) ( ), (y f x f Y X; (2)协方差cov(X,Y),并问X 与Y 是否不相关? 五、已知一批产品的某一数量指标X服从正态分布 ) 6.0, (2 μ N ,问样本容量n为多少,才能使样本均值与总体均值的差的 绝对值小于0.1的概率达到0.95. [ 96 .1 ) 975 .0(Φ= , 6456 .1 ) 95 .0(Φ= , 29 .1 ) 90 .0(Φ= ]。 六、使用归工艺生产的机械零件,从中抽查25个,测量其直径,计算得直径的样本方差为6.27.现改用新工艺生产, 从中抽查25个零件,测量其直径,计算得直径的样本方差为 4.40. 设两种工艺条件下生产的零件直径都服从正态分布,问新工艺生产的零 件直径的方差是否比旧工艺生产的零件直径的方差显著地小( 05 .0 =α)? 七、设总体X的的概率密度为 ?? ? ? ? < < - =- - 其它 ,0 1 0, 1 1 ) ; (1 2 x x x fθ θ θ θ 其中 1 > θ,是未知参数,) , , , ( 2 1n x x x 是总体X的样本观察值. 求(1) θ的矩估计量; (2) θ的极大似然估计量Lθ ,并问L θ 是 θ的无偏估计吗? 八、设随机向量(X,Y)的概率密度为 ? ? ?≤ ≤ ≤ ≤ = 其它 ,0 1 0,1 , 8 ) ; ( y x y xy y x f

概率论与数理统计期末考试题及答案

模拟试题 填空题(每空3分,共45 分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)= P( A U B)= 1 2、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B 9 发生且A不发生的概率相等,则A发生的概率为:_______________________ ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 I Ae x, X c 0 4、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A= 0, x>2

分布函数F(x)= ,概率P{—0.51} =5/ 9,贝U p = 若X与丫独立,则Z=max(X,Y)的分布律: 6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)= COV(2X-3Y , X)= 7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时, 丫"⑶; 8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1n X =—S X i为 n i 二 样本均值,则日的矩估计量为: 9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参 数a的置信度为95%的置信区间: 计算题(35分) 1、(12分)设连续型随机变量X的密度函数为:

概率统计期末试卷 答案

2013年下学期概率统计模拟卷参考答案 1. 设A, B, C 是三个随机事件. 事件:A 不发生, B , C 中至少有一个发生表示为(空1) . 2. 口袋中有3个黑球、2个红球, 从中任取一个, 放回后再放入同颜色的球1个. 设B i ={第i 次取到黑球},i =1,2,3,4. 则1234()P B B B B =(空2) . 解 用乘法公式得到 )|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P = .32a r b a r a r b r a r b a b r b b +++?++?+++?+= =3/70 3. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927 . 则每次试验成 功的概率为(空3) .. 解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是27 19,那么一次都没有成功的概率是278. 即278)1(3 = -p , 故 p =3 1 . 4. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 2 2 ()()2E X E Y ==, 则2 [()]E X Y +=(空4) . 解 2 2 2 [()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++ 42420.52 6.XY ρ=+=+??= 5. 设随机变量X 的方差为2, 用切比雪夫不等式估计{||}P X E X -()≥3=(空5) . 解 由切比雪夫不等式, 对于任意的正数ε, 有 2() {()}D X P X E X εε -≥≤, 所以 2 {||}9 P X E X -()≥3≤ . 6. 设总体X 的均值为0, 方差2σ存在但未知, 又12,X X 为来自总体X 的样本, 2 12()k X X -为2σ的无 偏估计. 则常数k =(空6) . 解 由于2 2 2 121122[()][(2)]E k X X kE X X X X -=-+ 22211222[()2()()]2k E X E X X E X k σσ=-+==, 所以k = 1 2 为2σ的无偏估计. 1. 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) P (A )=0或P (B )=0.. (D) 以上答案都不对.

概率论期中考试试卷及答案

1.将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 解: 把4个球随机放入5个盒子中共有45=625种等可能结果. (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P(A)=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有 30 2415=C C 种方法 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故 12572 625360)(= =B P 2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。 解: 设x,y 分别为两船到达码头的时刻。 由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω。设A 为“两船不碰面”,则表现为阴影部分。 222024,024024,024,2111 ()24576,()2322506.522 () ()0.8793 () x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===?+?===Ω={(x,y)}, A={(x,y)或},有所以, 3.设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求: (1) 该件商品是次品的概率。 (2) 该件次品是由第一厂家生产的概率。 解: 厦门大学概统课程期中试卷 ____学院___系___年级___专业 考试时间

概率统计期末复习题

期末模拟题 一. 填空 1.一个产品须经过两道工序,每道工序产生次品的概率分别为3.0和 2.0,则一个产品出厂后是次品的概率为 。 2.设随机变量的密度函数为???=-0 )(3x e x f λ 00<≥x x ,则=λ 。 3. 已知)9,1(~N X ,则X 的标准差为 。 4. 设随机变量X 服从参数为λ的泊松分布,且3 1}0{==X P ,则=λ 。 5. 设),2(~2σN X ,且2.0}42{=<

4. 掷一颗骰子600次,求“一点” 出现次数的均值为 。 (A )50 (B )100 (C )120 (D )150 5. 有γ个球,随机地放在n 个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为 。 (A ) γγn ! (B )γγn C r n ! (C )n n γ! (D) n n n C γ γ! 三. 计算 1. 某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。 2. 甲乙丙三个同学同时独立参加考试,不及格的概率分别为: 0.2 ,0.3,0.4, (1) 求恰有2位同学不及格的概率; (2) 若已知3位同学中有2位不及格,求其中1位是同学乙的概率. 3已知连续型随机变量X 的分布函数为2 20,0(),0x x F x A Be x -≤??=??+>?, 求: (1) 常数,A B 的值; (2) 随机变量X 的密度函数()f x ;(3) ) 2P X << 4. 已知X 服从]4,0[U ,且13+=X Y ,试求Y 的密度函数。 5.一种电子管的使用寿命X 的分布密度为:? ??=0/100)(2x x f 100100<≥x x , 设某种仪器内装有三个上述电子管,求:

相关文档
相关文档 最新文档