文档库 最新最全的文档下载
当前位置:文档库 › 107508-概率统计随机过程课件-第十三章马尔可夫链(习题课)

107508-概率统计随机过程课件-第十三章马尔可夫链(习题课)

107508-概率统计随机过程课件-第十三章马尔可夫链(习题课)
107508-概率统计随机过程课件-第十三章马尔可夫链(习题课)

第十三章马尔可夫链(习题课)

习题十三

1. 已知齐次马尔可夫链的转移概率矩阵

?

?=03131P 323132????????

?31310

问此马尔可夫链有几个状态?求二步转移概率矩阵.

解 因为转移概率矩阵是三阶的, 故此马尔可夫链的状态有三个;

二步转移概率矩阵

2)

2()2()(P p P ij ==

?

?=0313*******????????

?31310

?

?031313

23132?????????31310

??=929293949594????????

?

939292 .

2. 在一串贝努利试验中,事件A 在

每次试验中发生的概率为p ,令

?

??=发生次试验第不发生次试验第A n A n X n ,1,0 , ,3,2,1=n (1) },2,1,{ =n X n 是否齐次马尔可夫链?

(2) 写出状态空间和转移概率矩阵; (3) 求n 步转移概率矩阵.

解 (1) 根据题设条件

知道 ,,,,2

1

n

X X X 是相互独立的, 所以 },2,1,{ =n X n 是马尔可夫链, 又转移概率

???=======++1

,0,}{}|{1

1j p j q j X P i X j X P n n n

与n 无关,

故},2,1,{ =n X n 是齐次马尔可夫链; (2) 状态空间}1,0{=S ,

一步转移概率矩阵

)(ij p P = ?

?=q q ??

??

p p , ?

??========++1,0,}{}|{1

1j p j q j X P i X j X P p n n n ij . (3) n 步移概率矩阵

n

n ij

n P p

P

==)()()

( ?

?=q q ??

??

p p . 3. 从次品率)10(<

X 表示前n 次抽查出的次品数,

(1) },2,1,{ =n X n 是否齐次马尔可夫链?

(2) 写出状态空间和转移概率矩阵; (3)如果这批产品共有100个,其中混杂了3个次品,作有放回抽样,求在抽查出2个次品的条件下,再抽查2次,共查出3个次品的概率. 解 (1)根据题意知,

},2,1,{ =n X n 是齐次马尔可夫链; (2) 状态空间},,,2,1,0{ n S =, p 是次品率,p q -=1是正品率,

根据题意知 ????

???+>+==<====+1

,01

,,,0}|{1

i j i j p i j q i j i X j X P p

n n ij

, ,,,2,1,0,n j i = ;

(3)次品率03.0=p , 所求概率为

)

2(232}2|3{p X X P n n ===+

∑+∞

==0

32k k k p p ++?+?++=000q p p q

0582.097.003.022=??==pq .

4. 独立重复地掷一颗匀称的骰子,

以n

X 表示前n 次掷出的最小点数, (1) },2,1,{ =n X n 是否齐次马尔可夫链?

(2) 写出状态空间和转移概率矩阵; (3)求}3|3,3{21===++n n n X X X P ; (4)求}1{2=X P .

解 (1) 根据题意知,

},2,1,{ =n X n 是齐次马尔可夫链;

(2)状态空间 }6,5,4,3,2,1{,=S , }|{1i X j X P p n

n ij ===+

?

??≥=====+2,01

,1}1|{1

1j j X j X P p n n j ,

????

?????≥======+3,02

,6

5

1,61

}2|{1

2j j j X j X P p n n j

????

?????≥======+4,03

,6

4

2,1,61

}3|{1

3j j j X j X P p n n j ,

????

?????=======+6,5,04

,6

3

3,2,1,61

}4|{1

4j j j X j X P p n n j ,

????

?????=======+6,05

,6

2

4,3,2,1,61

}5|{1

5j j j X j X P p n n j ,

6,,2,1,6

1

}6|{16 ==

===+j X j X P p n n j ;

(3) }3|3,3{2

1===++n n n X X X P

}3|3{1===+n n X X P }3,3|3{12===?++n n n X X X P

}3|3{1===+n n X X P }3|3{12==?++n n X X P

9

4

64643333=?=?=p p ;

(4) }|1{}{}1{126

1

12

i X X P i X P X

P i ==?===∑=

361161611616

2

=?+?=∑=i . 5.设齐次马尔可夫链},2,1,0,{ =n X n 的

转移概率矩阵为

?

?=03131P 323132????????

?31310 ,

且初始

,3

1

}{)0(0===j X P p j 3,2,1=j ,

(1) 求}3,2,1{321===X X X P ; (2) 求}3{2=X P ; (3) 求平稳分布.

解 (1)}3,2,1{321===X X X P

}

1,2|3{}1|2{}1{123121=======X X X P X X P X P

}2|3{}1|2{}1{23121======X X P X X P X P

23121}1{p p X P ??==

23

1203

110}|1{}{p p j X X P j X P j ??====∑= 23123

1

10

}{p p p j X

P j j ??==∑=

81

4)03131(313132=++??=

; (2)

}3{2=X P }|3{}{03

120j X X P j X P j ====∑=

)

2(33

1

}{j j p j X

P ∑===

277

)939292(31=++= ;

(3)平稳分布),,(321p p p 满足方程组

031

313211p p p p ++=,

32

31323212p p p p ++=,

31

3103213p p p p ++=,

1321=++p p p

解之得

4

1

,42,41321===p p p .

例6.具有三状态:0,1,2的一

维随机游动,以j t X =)(表示时刻t 粒子处在状态),2,1,0(=j j 过程

},,,),({210 t t t t t X =的一步转移概率矩阵

??=0q q P q p 0 ???

?

?p p 0 , (1) 求粒子从状态1经二步、经三

步转移回到状态1 的转移概率;

(2) 求过程的平稳分布.

解 (1)}1)(|1)({2

)2(11

===+n

n t X t X P p

pq pq qp p p

k k k

2012

1=++==∑=,

??==222)

2(q q q P P pq pq pq 2 ?????

?+22

2

p pq p p ,

?

?+++==2333223)

3(2pq q pq q p q q P P q p pq pq qp pq 222

2++ ??????++323

2222p q p p q p p 于是

pq t X t X P p n n ====+}1)(|1)({3)

3(11,

(2) 平稳分布),,(210p p p 满足方程组 02100p q p q p p ++=, q p p p p p 21010++=, p p p p p p 21020++=,

1210=++p p p ,

解之得

pq q p -=120 , pq

pq

p -=11

,pq p p -=122 . 例7.设同型产品装在两个盒内,盒

1内有8个一等品和2个二等品,盒2内有6个一等品和4个二等品.作有放回地随机抽查,每次抽查一个,第一次在盒1内取.取到一等品,继续在盒式内取;取到二等品,继续在2盒内取.以n X 表示第n 次取到产品的等级数,则},2,1,{ =n X n 是齐次马尔可夫链.

(1) 写出状态空间和转移概率矩阵;

(2) 恰第3、5、8次取到一等品的概率为多少?

(3) 求过程的平稳分布

解(1)根据题意, 状态空间}2,1{=S

5

4108}1|1{111

==

===+n n X X P p

, 51102}1|2{112=====+n n X X P p , 5

3106}2|1{121==

===+n n X X P p ,

5

2

104}2|2{1

22=====+n n X X P p , 转移概率矩阵

??=535

4P ??

???

?

5251 ; (2) 54}1{1==X P ,5

1

}2{1

==X P , }1,1,1{853===X X X P

}

1,1|1{}1|1{}1{358353=======X X X P X X P X P }1|1{}1|1{}1{58353

======X X P X X P X

P

)

3(11)2(113}1{p p X P ==

)

3(11)2(112

1

131

}|1{}{p p i X X P i X

P i ∑=====

)3(11)2(112

1

)2(11

}{p p p i X

P i i ∑===,

??==251825192)

2(P P ?????

?257256,

??==125

93125

943)

3(P P

?????

?1253212531,

}1,1,1{853===X X X P

)

3(11

)2(112

1)2(11}{p p p i X P i i ∑===

752.076.0)72.02.076.08.0(???+?=

429783.0= ;

(3) 平稳分布),(21p p 满足方程组

5354211p p p +=,

5

25121

2p p p +=, 121=+p p ,

解之得 43

1=p , 412=p .

107509-概率统计随机过程课件-第十三章马尔可夫链第一节第二节(上)

第十三章 马尔可夫链 马尔可夫过程是一类特殊的随 机过程, 马尔可夫链是离散状态的马尔可夫过程,最初是由俄国数学家马尔可夫1896年提出和研究的. 应用十分广泛,其应用领域涉及 计算机,通信,自动控制,随机服务,可靠性,生物学,经济,管理,教育,气象,物理,化学等等. 第一节 马尔可夫链的定义 一.定义 定义 1 设随机过程} ),({T t t X ∈的状态空间S 是有限集或可列集,对任意正整数n ,对于T 内任意1+n 个参数121+<

如果条件概率 })(,,)(,)(|)({221111n n n n j t X j t X j t X j t X P =???===++})(|)({11n n n n j t X j t X P ===++,(13.1) 恒成立,则称此过程为马尔可夫链. 式(13.1)称为马尔可夫性,或称无后效性. 马氏性的直观含义可以解释如下: 将n t 看作为现在时刻,那末,121,,,-???n t t t 就是过去时刻,而1+n t 则是将来时刻.于是,(13.1)式是说,当已知系统现时情况的条件下,系统将来的发展变化与系统的过去无关.我们称之为无后效性. 许多实际问题都具有这种无后 效性. 例如 生物基因遗传从这一代 到下一代的转移中仅依赖于这一代而与以往各代无关. 再如,每当评估一个复杂的计 算机系统的性能时,就要充分利用系统在各个时刻的状态演变所具有

的通常概率特性:即系统下一个将到达的状态,仅依赖于目前所处的状态,而与以往处过的状态无关. 此外,诸如某公司的经营状况 等等也常常具有或近似具有无后效性. 二. 马尔可夫链的分类 状态空间S 是离散的(有限集或可列集),参数集T 可为离散或连续的两类. 三.离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链 },,,,,),({210??????=n t t t t t t X 中, 条件概率 )(})(|)({1m ij m m t p i t X j t X P ===+ 称为)(t X 在时刻(参数)m t 由状态i 一 步转移到状态j 的一步转移概率, 简称转移概率.

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:31

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 、随机过程的基本概念及定义 、随机过程的数学描述 、基于MATLAB的随机过程分析方法三、马尔可夫过程 马尔可夫过程的概念 马尔可夫过程的数学描述 四、马尔可夫过程的应用 马尔可夫模型在通信系统中的应用 马尔可夫模型在语音处理的应用 马尔可夫模型的其他应用 五、结论 参考文献

二、随机过程 、随机过程的基本概念及定义 自然界变换的过程通常可以分为两大类——确定过程和随机过程。如果每次试验所得到的观测过程都相同,且都是时间t的一个确定函数,具有确定的变换规律,那么这样的过程就是确定过程。反之,如果每次试验所得到观测过程都不相同,是时间t的不同函数,没有为确定的变换规律,这样的过程称为随机过程。 、随机过程的数学描述 设随机试验E的样本空间Ω,T是一个数集(T∈(-∞,∞)),如果对于每一个t ∈T,都有一个定义在样本空间Ω上的随机变量 X(w,t),w∈Ω,则称依赖于t的一族随机变量{X(w,t),t∈T}为随机过程或随机函数,简记为{X(t),t∈T }或X(t),其中t称为参数,T称为参数集。当T={0,1,2,…},T={1,2,…},T={…,-2,-1,0,1,2,…}时,{X(w,t)t∈T}称为随机序列或时间序列。 、基于MATLAB的典型随机过程的仿真 信号处理仿真分析中都需要模拟产生各种随机序列,通常都是先产生白噪声序列,然后经过变换得到相关的随机序列,MATLAB有许多产生各种分布白噪声的函数。

第2章 随机过程习题及答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5) =≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x ) () (2 - 6)?=???F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

最新随机过程练习(第二章)

随机变量巩固练习―――重点:“函数的函数”相关运算 定理 1 设X 为连续型一维随机变量,其概率密度函数为()X f x ,则对于Y =g(X)的概率密度函数,有下列结果: (1)若g(x)是严格单调可微函数,则Y=g(X)的概率密度函数为 (())'(),()0, X Y f h y h y y I f y y I ?∈?=???? 其中h(y)是y=g(x)的反函数. (2)若g(x)不是严格单调可微函数,则将g(x)在其定义与上分成若干个单调分支,在每个单调分支上应用(1)的结果得Y=g(X)的概率密度函数为 1122(())'()(())'(),()0, X X Y f h y h y f h y h y y I f y y I ?++∈?=???? 其中I 是在每个单调分支上按照(1)确定的y 的取值公共部分。 练习1 设~[,],tan 22X U Y X ππ-=,试求Y 的概率密度函数()Y f y . 练习2 设 随机变量X 在(0,1)区间内服从均匀分布,试求 (1)X Y e =的概率密度函数 (2)2ln Y X =-的概率密度函数

随机过程巩固练习 1 设随机过程(),(0,),X t Vt b t b =+∈∞为常数,V 为服从正态分布N(0,1)的随机变量。求:X(t)的一维概率密度函数、均值和相关函数。 2 设随机变量Y 具有概率密度函数f(y),令 (),0,0Yt X t e t Y -=>> 求随机过程X(t)的一维概率密度函数、均值和相关函数。 3 设有随机过程()cos()sin()X t A wt B Wt = +,其中w 为常数,A ,B 是相互独立的且服从正态分布2(0,)N σ的随机变量。求随机过程的均值和相关函数。 4 已知随机过程X(t)的均值函数()X m t 和协方差函数12(,),()X B t t t ?为普通函数,令()()()Y t X t t ?=+,求随机过程Y(t)的均值和协方差函数。 5 设随机过程()cos()X t A wt =+Θ,其中,A w 为常数,随机变量Θ服从(,)ππ-上 的均匀分布。令2()()Y t X t = ,求(,)Y R t t s + 6 设X(t)为实随机变量,x 为任意实数,令 1,()()0,()X t x Y t X t x ≤?=?>? 证明随机过程 Y(t)的均值函数和相关函数分别是X(t)的一维和二维分布函数。

随机过程习题第2章

2.1 设)(t ξ是一马尔可夫过程,又设k n n n t t t t t ++<<<<<<ΛΛ121。试证明: )/(),,/(1/1,,/11++++++=n n t t k n n n t t t x x f x x x f n n k n n n ΛΛ 即一个马尔可夫过程的反向也具有马尔可夫性。 证明:首先,由条件概率的定义式得 ) ,,(),,,(),,/(1,,1,,,1,,/111k n n t t k n n n t t t k n n n t t t x x f x x x f x x x f k n n k n n n k n n n ++++++++++++= ΛΛΛΛΛΛ 根据马尔可夫性将上式中的分子和分母展开,并化简得 ) () ()/()()/()/() ()/()/()/(),,/(11/112/1/1/12/1/1,,/11112111211+++++-+++++-+++++++++-+++++-++++== n t n t n n t t n t n n t t k n k n t t n t n n t t n n t t k n k n t t k n n n t t t x f x f x x f x f x x f x x f x f x x f x x f x x f x x x f n n n n n n n k n k n n n n n n k n k n k n n n ΛΛΛΛ 于是, )/() (),(),,/(1/11,1,,/1111++++++++++== n n t t n t n n t t k n n n t t t x x f x f x x f x x x f n n n n n k n n n ΛΛ 2.2 试证明对于任何一个马尔可夫过程,如“现在”的)(t ξ值为已知,则该过程的“过去”和“将来”是相互统计独立的,即如果有321t t t <<,其中2t 代表“现在”,1t 代表“过去”,3t 代表“将来”,若22)(x t =ξ为已知值。试证明: )/()/()/,(23/21/231/,2321231x x f x x f x x x f t t t t t t t = 证明:首先,由条件概率的定义式得 ) () ,,()/,(2321,,231/,2321231x f x x x f x x x f t t t t t t t = 然后,根据马尔可夫性将上式中的分子展开,并化简得 ) (),() /()() ()/()/()/,(221,23/2112/23/231/,22123211223231x f x x f x x f x f x f x x f x x f x x x f t t t t t t t t t t t t t t ==

第二章 随机过程汇总

第 2 章 随机过程 2.1 引言 ?确定性信号是时间的确定函数,随机信号是时间的不确定函数。 ?通信中干扰是随机信号,通信中的有用信号也是随机信号。 ?描述随机信号的数学工具是随机过程,基本的思想是把概率论中的随机变量的概念推广到 时间函数。 2.2 随机过程的统计特性 一.随机过程的数学定义: ?设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t) 是第i 次试验的样本函数或实现,每次试验得到一个样本函数,所有可能出现的结果的总体就构成一随机过程,记作)(t g 。 随机过程举例:

二.随机过程基本特征 其一,它是一个时间函数; 其二,在固定的某一观察时刻1t ,)(1t g 是随机变量。 随机过程具有随机变量和时间函数的特点。 ● 随机过程)(t g 在任一时刻都是随机变量; ● 随机过程)(t g 是大量样本函数的集合。 三.随机过程的统计描述 设)(t g 表示随机过程,在任意给定的时刻T t ∈1, )(1t g 是一个一维随机变量。 1.一维分布函数:随机变量)(t g 小于或等于某一数值x 的概率,即 })({);(1x t g P t x P ≤= 2.2.1 2.一维概率密度函数:一维概率分布函数对x 的导数. x t x P t x p ??= ) ;(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的二维分布 })(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.3 4.二维分布密度定义为 2 12121221212) ,;,(),;,(x x t t x x P t t x x p ???= 2.2.4 四.随机过程的一维数字特征 设随机过程)(t g 的一维概率密度函数为),(1t x p . 1.数学期望(Expectation) dx t x xp t g E t g );()]([)(1?∞ ∞ -==μ 2.2.5 2.方差(Variance)

《随机过程》第二章题目与答案

第二章 一、填空题 1、随机过程若按状态空间与参数集分类可分为__、__、__、__四类. 2、__是随机过程{X(t),t∈T}在时刻t的平均值,__是随机过程在时刻t对均值m x(t)的偏离程度,而__和__则反映随机过程{X(t),t∈T}在时刻s和t 时的线性相关度. 3、若随机变量x服从(01)分布,即p k=p{x=k}=,k=0,1则其特征函数g(t)=__. 4、若随机变量X服从参数为的指数分布,则其特征函数g(t)=__. 5、若随机变量X服从退化分布,即p(X=c)=1,其中c为常数,则其特征函数g(t)=__. 二、计算题 1、已知Γ分布,X~Γ(α,β), 若 其中α,β>0,试求Γ分布的特征函数. 2、设随机变量X服从泊松分布,即p k=p(X=k)=,k=0,1,…,n,求其特征函数. 3、设随机过程X(t)=Y+Zt,t>0,其中Y,Z是相互独立的N(0,1)随机变量,求{ X(t),t>0}的一,二维概率密度族.

4、设随机过程:0),sin()cos( )(>+=t t Z t Y t X θθ,其中Y 、Z 是相互独立的随机变量,且EY=EZ=0,DY=DZ=δ2,求{X(t),t>0}的均值函数、协方差函数和方差函数. 5、设随机变量Y 具有概率密度f(y),令 )0,0(,)(>>=-Y t t X e Yt , 求随机过程X(t)的一维概率密度及EX(t),R x (t 1,t 2). 6、设随机过程Z t =,t 0,其中X 1,X 2,…,X n 是相互独立的,且服从 N(0, )的随机变量,ω1, ω2,…, ωn 是常数,求{Z t ,t }的均值函数m(t)和相关函 数R(s,t).

随机过程作业题及参考答案(第二章)

第二章 平稳过程 P103 2. 设随机过程()sin X t Ut =,其中U 是在[]02π,上均匀分布的随机变量。试证 (1)若t T ∈,而{}12T =,,,则(){}12X t t =,,, 是平稳过程; (2)若t T ∈,而[)0T =+∞,,则(){} 0X t t ≥,不是平稳过程。 证明: 由题意,U 的分布密度为:()1 0220u f u π π?<

随机过程习题第2章

设)(t ξ是一马尔可夫过程,又设k n n n t t t t t ++<<<<<< 121。试证明: )/(),,/(1/1,,/11++++++=n n t t k n n n t t t x x f x x x f n n k n n n 即一个马尔可夫过程的反向也具有马尔可夫性。 证明:首先,由条件概率的定义式得 ) ,,(),,,(),,/(1,,1,,,1,,/111k n n t t k n n n t t t k n n n t t t x x f x x x f x x x f k n n k n n n k n n n ++++++++++++= 根据马尔可夫性将上式中的分子和分母展开,并化简得 ) () ()/()()/()/() ()/()/()/(),,/(11/112/1/1/12/1/1,,/11112111211+++++-+++++-+++++++++-+++++-++++== n t n t n n t t n t n n t t k n k n t t n t n n t t n n t t k n k n t t k n n n t t t x f x f x x f x f x x f x x f x f x x f x x f x x f x x x f n n n n n n n k n k n n n n n n k n k n k n n n 于是, )/() (),(),,/(1/11,1,,/1111++++++++++== n n t t n t n n t t k n n n t t t x x f x f x x f x x x f n n n n n k n n n 试证明对于任何一个马尔可夫过程,如“现在”的)(t ξ值为已知,则该过程的“过去”和“将来”是相互统计独立的,即如果有321t t t <<,其中2t 代表“现在”,1t 代表“过去”,3t 代表“将来”,若22)(x t =ξ为已知值。试证明: )/()/()/,(23/21/231/,2321231x x f x x f x x x f t t t t t t t = 证明:首先,由条件概率的定义式得 ) () ,,()/,(2321,,231/,2321231x f x x x f x x x f t t t t t t t = 然后,根据马尔可夫性将上式中的分子展开,并化简得 ) (),() /()() ()/()/()/,(221,23/2112/23/231/,22123211223231x f x x f x x f x f x f x x f x x f x x x f t t t t t t t t t t t t t t ==

第二章随机过程基本概念.

2随机过程的基本概念 §2.1 基本概念 随机过程是指一族随机变量 . 对随机过程的统计分析称为随机过程论 , 它是随机数学中的一个重要分支,产生于本世纪的初期 . 其研究对象是随机现象 ,而它特别研究的是随“ 时间” 变化的“ 动态” 的随机现象 . 一随机过程的定义 1 定义设 E 为随机试验, S 为其样本空间,如果 (1对于每个参数 t ∈ T , X(e,t为建立在 S 上的随机变量, (2对每一个 e ∈ S , X(e,t为 t 的函数,那么称随机变量族 {X(e,t, t∈ T, e∈ S}为一个随机过程,简记为 {X(e,t, t∈ T}或 X(t。 ((((({} {} [](为随机序列。时,通常称 , 取可列集合当可以为无穷。 通常有三种形式: 参数一般表示时间或空间, 或有时也简写为一个轨道。 随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于 :上的二元单值函数。 为即若用映射来表示注意:

t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X R S T t e X t 21321, , , , 3, 2, 1, 0, 1, 2, 3, , 3, 2, 1, 0T , . 4, . 3, , 2, :, . 1=---==??×?′?′L L L 为一个随机过程。则令 掷一均匀硬币, 例 , ( (cos (}, {1 t e X t X R t T e t H e t t X T H S =??íì====p2 随机过程举例 例 2:用 X(t表示电话交换台在 (0, t 时间内接到的呼唤的次数 , 则 (1对于固定的时刻 t, X(t为随机变量 , 其样本空间为{0, 1, 2, …..}, 且对于不同的 t, 是不同的随机变量 . (2对于固定的样本点 n, X(t=n是一个 t 的函数 . (即:在多长时间内来 n 个人 ? 所以 {X(t,t>0}为一个随机过程 . 相位正弦波。为随机过程,称为随机则令例 (

相关文档
相关文档 最新文档