文档库 最新最全的文档下载
当前位置:文档库 › 考博必看--电力系统分析上册(诸骏伟)-课程总结

考博必看--电力系统分析上册(诸骏伟)-课程总结

考博必看--电力系统分析上册(诸骏伟)-课程总结
考博必看--电力系统分析上册(诸骏伟)-课程总结

第一章能量管理系统

1.EMS的含义和作用

1).EMS 是以计算机为基础的现代电力系统的综合自动化系统,是预测、计划、控制和

培训的工具。

2).EMS 主要针对发电和输电系统,用于大区级电网和省级电网的调度中心。

3).EMS 涉及计算机硬软件的各个方面。它最终是通过EMS 应用软件来实现对电力系统

的监视、控制和管理。

2.EMS的主要内容

数据收集级(SCADA) ,能量管理级(GMS&OPS) 包括实时发电控制,系统负荷预测,发

电计划(火电调度计划),机组经济组合,水电计划(水火电协调计划),交换功率计划,燃料调度计划,机组检修计划. 网络分析级(NAS)包括实时网络状态分析,网络

结线分析,母线负荷预测,潮流,网络等值,网络状态监视,预想故障分析,安全约束调度,无功优化,最优潮流,短路电流计算,电压稳定分析,暂态分析.培训模拟级。

3.现有EMS存在的问题

1).EMS已得到了广泛的应用,但目前只停留在分布式独立计算分析阶段,多数高级应用

软件都需要人工调用,然后由调度员进行综合决策。2).在电网事故状态下,没有良好的事故分析、定位和恢复手段.3)电力改革使得情况更加复杂。

4.EMS的发展趋势

针对现有的EMS存在的问题,需加入决策系统,增强、扩充了网络分析功能,未来向着调度机器人的方向发展。

第二章电力系统潮流计算

1.潮流计算的定义

2.各种潮流计算的模型和算法的特点、适用范围以及相互之间的区别和联系。

(一) 高斯——塞德尔迭代法

该算法具有存储量小,程序设计简单的优点。

但收敛速度慢,阶梯式逼近时台阶的高度越来越小,以至于迭代次数过多。

算法特点:

1)在系统病态的情况下(重负荷节点负电抗支路较长辐射型线路长短线路接在同一节点上,且长短线路的比值很大),收敛困难。计算速度缓慢每次迭代速度很快,但由于结构松散耦合,节点间相互影响太小,造成迭代次数增加,收敛缓慢。

2)程序编制简便灵活

(二)、牛顿——拉夫逊迭代法(N_L)算法特点

1)平方收敛,开始时收敛比较慢,在几次迭代后,收敛得非常快,其迭代次数和系统的规模关系不大,如果程序设计良好,每次迭代的计算量仅与节点数成正比。

2)对初值很敏感,有时需要其他算法为其提供初值。

3)对函数的平滑性敏感,所处理的函数越接近线性,收敛性越好,为改善功率方程的非线性,实用中可以通过限制修正量的幅度来达到目的。但幅度不能太小。

4)对以节点导纳矩阵为基础的G_S法呈病态的系统,N_L法一般都能可靠收敛。牛顿迭代法有明显的几何解释:收敛速度:平方收敛收敛性:局部收敛

(三)、PQ分解法潮流

N_L法的J阵在每次迭代的过程中都要发生变化,需要重新形成和求解,这占据了N_L法的大部分计算时间,这也是N_L法速度不能提高的原因。

可能性:N_L法可以简化成为定雅可比矩阵法,如果固定的迭代矩阵构造得当,定雅可比矩阵法可以收敛,但只有线性收敛速度。

算法特点

1)用两个阶数几乎减半的方程组代替原方程组,显著减少了内存量和计算量

2)迭代矩阵为常数阵,只需形成求解一次,大大缩短每次迭代所需时间

3)迭代矩阵对称,可上(下)三角存储,减少内存量和计算量

4)基于以上原因,该算法内存需要量为N_L法的60%,每次迭代所需时间为N_L

法的1/5。5)线性收敛,收敛次数多于N_L法,但总的计算速度任能大幅度提高。

6)对R/X过大的病态条件以及线路特别重载的情况下,可能不收敛,一般适用于110kv及以上的电网。

7)由于算法的精确程度取决于 ,P-Q分解法的近似处理只影响计算过程,并不影响结果的精度。

3.影响潮流收敛性的因素以及如何改善潮流计算的收敛性。

(如果计算潮流不收敛,应该采用何种方法改进)

云杰的答案:主要是看潮流方程组本身是否有解,当方程组有解或者无实数解,或者方程组

有解但是算法不够完善时,潮流计算将不收敛。

采用的方法是用数学规划来求解潮流方程的解——即非线性规划潮流计算。

这样:1 从原理上保证计算过程不发散。

2 有解——目标函数趋近于0

3 无解——目标函数停留在不为0的正值上。

(如果计算潮流不收敛,应该采用何种方法改进)

第三章电力系统状态估计

1 状态估计的定义

环境噪声使理想的运动方程无法精确求解。测量系统的随机误差,使测量向量不能直接通过理想的测量方程求出状态真值。只有通过统计学的方法加以处理以求出对状态向量的估计值。这种方法,称为状态估计。

2.状态估计的作用和步骤作用:降低量测系统投资,少装测点;计算出未测量的电气量;利用量测系统的冗余信息,提高量测数据的精度

(独立测量量的数目与状态量数目之比,成为冗余度)。状态估计的流程

3、状态估计与潮流计算的关系

?潮流计算是状态估计的一个特例

?状态估计用于处理实时数据,或者有冗余的矛盾方程的场合

?潮流计算用于无冗余矛盾方程的场合

?两者的求解算法不同

?在线应用中,潮流计算在状态估计的基础上进行,也就是说,由状态估计提供经过加工

处理过的熟数据,作为潮流计算的原始数据。

4各种状态估计模型和算法的特点

1)基本加权最小二乘法的估计质量和收敛性最好,是状态估计的经典解法和理论基础,适合各种类型的量测系统。缺点是使用内存多,计算量大,计算时间长,不适用于大型电力系统的实时状态估计。

2)快速解耦法估计质量和收敛性能在实用精度范围内与基本加权最小二乘法相近,而在计算速度和内存耗量方面优于基本加权最小二乘法,很实用,缺点是使用内存较多,程序也比较复杂。

3)仅用支路量测量的唯支路法计算速度快,内存省,对于纯支路量测系统可以得到满意的估计结果,且运行经验丰富,缺点是不能处理注入型量测量。

4)递推状态估计使用内存最少,对注入型量测量具有一定的适应能力,程序简单。缺点是收敛速度慢,计算时间长,估计质量差。

5) 数学规划法的计算速度慢,但其受不良数据的影响较小。 正交变换的特点:变换后矩阵的范数不变。判断增加哪些测量点,可以取得最佳的估计效果;提高状态估计的数值稳定性。 5 相关的概念和定义

1)通常测量错误数据分为两类:一类是稳定的错数(属设备和维修问题);另一类是在一次采样周期中随机出现的错误数据(即下一次采样不一定还是那几个错误数据)。状态估计现场安装后一段时间主要是消除第一类错数,或者是设备损坏,或者是符号相反。随着状态估计使用时间加长和维护工作的完善,第一类错数逐步减少,正常运行中往往开关状态错误(测量错或无测量)是引起这一类错数的主要原因。第二类错数是由测量与传送系统质量以及受到干扰而产生的。

2)几个概念

? 不良数据检测:判断某次量测采样中是否存在不良数据。

? 不良数据辨识:通过检测确知量测采样中存在不良数据后,确定不良数据具体侧点位置。 ? 不良数据估计:不仅能确定不良数据具体侧点位置,还能给出不良数据估计值。不良数据辨识定量化。

? 状态估计修正:根据不良数据估计值,对原来受不良数据影响的状态估计进行修正,从而排除不良数据的影响,获得可靠状态估计。

3)不同水平的检测与辨识

? 量测量的极限检查:超出正常运行条件下的可能范围,而系统又没有事故或异常。 ? 量测量的突变检查:在平稳负荷条件下,某一量测量超过正常变化速率或发生突变,随后下一采样时刻又恢复了。

? 量测量的相关检查:一个量测量变化后,检查与其紧密相关的数据是否也相应变化。 ? 状态估计中的检测与辨识。

4)不良数据辨识

? 不良数据的估计辨识法

? 应该说量测系统辨识不良数据的最大能力不会超过冗余度K ,而且由于不良数据分布的不均匀性先破坏了局部可观测性,实际上辨识能力远远低于这一数量。假设在一次测量中包含p 个不良数据,而且由一可靠的检测系统检测出S 个可疑数据,这里不妨用p 和S 分别表示不良数据和可疑数据的集合与数量,检测功能可表示

为:S p ∈,K S p <≤;

前一式表示不良数据已包含在可疑数据中,后一式表示这些不良数据可辨识。

第四章 电力系统静态安全分析

1.静态安全分析的定义

凡用来判断在发生预想事故后系统是否会发生过负荷或电压越限的功能称为静态安全分析。

2.电力系统各种运行状态的定义及其相互转换关系

安全正常状态(secure normal state )、不安全正常状态(insecure normal state )、紧急状态(emergency state )和恢复状态(restorative state )。正常状态时负荷约束与运行约束均被满足的状态。不安全正常状态指系统存在安全隐患的状态。而紧急状态指对运行约束有重大破坏的状态。恢复状态是指负荷约束被破坏的状态。

关系:

3.安全性和可靠性的区别和联系

方法一:1)在系统规划设计或历史统计方面,系统保证对负荷持续供电的能力,称为可靠性。它涉及到较长的时间段,是一个长时期持续供电的平均值概念,为此必须考虑众多可能的运行状态及各种故障;

2).统运行方面,当系统发生故障时,保证对负荷持续供电的能力,称为安全性。

它涉及到系统的当前现状和突然发生的故障,因此是一个时变的或瞬时性的问题。

方法二:把事故下互联系统持续供电的保证程度,也称为系统的可靠性。认为应从下列两方面来评价所谓的可靠性:

充裕性(或充裕度adequacy):指在规定的(一般指列于检修计划之内的)或未被规定的发电、输电元件开断情况下,系统保证充分满足所有用户总电能需量的能力;这时不应出现主要设备违反容量定额与电压限值的越限现象。安全性(或安全度security):指在突发性故障引起的扰动下系统保证避免发生不可控连锁跳闸,或保证避免引起广泛波及性供电中断的能力。

充裕性和安全性虽然都涉及系统供电持续性的中断,但是充裕性是指一个或少量输、配电点因供电能力不够充裕而引起的供电中断;安全性则是指众多的输、配电点因受到广泛波及性的跳闸而引起的大面积供电中断。在安全性的这一概念下,偶尔或个别的负荷供电中断,有时是可以接受的,这主要取决于负荷本身的重要程度。

4.电力系统安全分析的内容和流程

5.各种静态等值的原理和特点

(1)Ward等值:

这种配合方法特别适用于在线应用。缺陷:1)等值网可能有一个解答,但求解的方法不能使它收敛;2)等值网可能收敛到一个物理上不合理的解答上;3)等值网可能收敛到一个所需的解答上,但迭代次数要多于为简化网;4)等值网解答的准确度可能是难以接受的。(2)Ward等值改进:

1).并联支路的处理(在等值过程中最好不要考虑外部系统的并联支路。而这些并联支路的作用可以在边界的等值注人中,与外部系统的运行状态一并考虑)。

2).保留外部系统中的部分PV节点(当内部系统出现事故后,就从这些电压不变的PV节点向内部系统提供适当的无功功率支援)。(3)REI等值:把外部网中的节点注入功率加以归并,移到外部的一个或少数几个节点上、原来的外部网络就变成了无源网络,然后再对外部的无源网络进行等值。

6.故障组的定义故障组由若干具有某种共同特征的故障组成,一个故障可以定义到多个故障组中。使用故障组的优点在于,使用者可以按需要研究其最关心或对当前系统运行威胁最大的故障,从而提高预想故障分析的效率,省去大量无实际意义的计算。

7.预想事故分析的步骤

预想故障分析的关键在于减少分析的故障数和加快分析速度。目前的通用算法一般分为两步:故障快速扫描(或故障筛选)和故障的详细分析。故障扫描是对故障集合中的故障进行预处理,将其分为两大类,一类是无需潮流计算即可确定为不会产生越限的“无害”故障,一类是需要通过潮流计算才判断其危险程度的“有害”故障。故障的详细分析是指对故障扫描筛选后的“有害”故障进行潮流分析,以准确判别故障后的系统潮流分布及其危害程度。采用的算法为交流潮流分析。为提高潮流计算的速度,预想故障分析的潮流中大量利用稀疏向量技术、部分因子表修正技术以及子网潮流法,以加快计算过程,提高计算效率,同时对潮流算法进行了实用化改进,以提高收敛性。

第五章电力系统复杂故障分析

1.相分量法和序分量法各自的特点,以及相互的区别和联系

相分量是客观存在的。相分量法能够准确地反映电力网络的所有实际问题,故障处理方法直观实用。由于相坐标空间里元件参数存在耦合的问题,相分量计算方法的计算量比较大,同时复杂的耦合关系也使得相分量法在网络处理上不同于单相的情况,比采用单相网络的分析计算技术要困难得多。方便的系统运行描述和准确地系统参数仿真是相分量法最大的优势。

序分量是相分量经过数学变换得到的。序分量法通过坐标变换使在相坐标空间存在三相耦合关系的对称元件在序分量坐标空间得到解耦,在完全由对称元件组成的系统中,耦合的三相网络可以等效成三个独立的序分量对称网络,在网络分析方面与三个单相网络相同,可以使用单相网络分析的方法进行处理,并且能够大幅度简化计算。序分量法因为模型简单、算法组织性强和计算速度快而得到了更广泛的认同,在更多的实用化的电力系统分析计算软件包中得到了应用。

序分量法中,最为经典的就是对称分量法。对称分量法可以十分方便地通过序网连接方式的改变来仿真单一不对称简单故障,但是对于任意复杂故障,序网的边界条件不易实现,同时序网的连接方式随故障的不同而变化,不利于程序的实现。相分量法能够轻松地处理任意的复杂故障,程序实现也极其方便。对于一些不对称的情况和不对称元件,都会使元件在序分量坐标空间的解耦失效,从而不能实现序网的分离。序分量法的应用因此遭到严重影响,即使简单故障的分析也不能采用序分量法计算。相分量法却可以直接计算不对称元件组成的系统,而无需做任何处理。

2.序分量法的原理

电压和电流的序分量只是一种坐标变换。对于任意的3×3可逆矩阵T,都可以定义

分别称V S、I S为电压和电流的序分量。

对于三相对称元件,如果可逆矩阵T ,使得四个矩阵元素的满足Y S =T -1

YT 为对角矩阵,则该元件就可以在此序分量空间中解耦。式(4-5)将变为

由于系数矩阵的四个元素都是对角阵,就可以将方程写成三组,独立求解。这就是序分量法的原理。

求变换矩阵T 使Y S =T -1YT 为对角阵。矩阵都可以通过特征向量所组成的矩阵对角化。显然根据不同的特征向量可以构造不同的变换矩阵,也就对应了不同的序分量法。(当

x k1=x k2=1时,利用x k3=α=e j120o 和x k3=α2=e j240o ,构成两个不同的特征向量,就是对

称分量法的变换矩阵。当x k1=x k2=1时,利用x k3=-1/2和x k3=3/2,构成两个不同的特征向量,就是克拉克法的变换矩阵)。3.对称分量法的特点(相对于其他序分量法)

对称分量法可以十分方便地通过序网连接方式的改变来仿真单一不对称简单故障,但是对于任意复杂故障,序网的边界条件不易实现,同时序网的连接方式随故障的不同而变化,不利于程序的实现,没有相分量法方便。由于对称分量法是序分量法的一种,具有与其他序分量法相同的特点,所以只需要写出对称分量法的序网,其他序分量法就可以直接使用.而且由于它能够较好地处理发电机的问题,所以在序分量法中表现出更好的适应性。4.序分量法和相分量法在进行复杂故障分析时的流程。

复杂故障分析的实质是通用复合序网和两端口网络方程的综合运用。

电力系统分析课程总结

电力系统分析课程总结报告 学院(部):电气学院 专业班级:电气工程 学生姓名: ** 指导教师: **** 2014年 6 月 28 日

目录 1电力系统概述和基本概念 (1) 1.1电力系统概述 (1) 1.2电力系统中性点的接地方式 (3) 2电力系统元件参数和等值电路 (3) 2.1电力线路参数和等值电路 (4) 2.2变压器、电抗器的参数和等值电路 (4) 2.3发电机和负荷的参数及等值电路 ......................................................5 2.4电力网络的等值电路 .....................................................................5 3简单电力网络潮流的分析与计算 .............................................................. 6 3.1电力线路和变压器的功率损耗和电压降落 .......................................... 6 3.2开式网络的潮流计算 .................................................................... 7 3.3环形网络的潮流分布 .................................................................... 7 4电力系统潮流的计算机算法 ................................................................... 7 4.1电力网络的数学模型 ..................................................................... 8 4.2等值变压器模型及其应用 .. (8) 4.3节点导纳矩阵的形成和修改 (8) 4.4功率方程和变量及节点分类 (9) 4.5高斯-塞德尔法潮流计算 (9) 4.6牛顿-拉夫逊法潮流计算 (9) 4.7P-Q 分解法潮流计算 (9) 5电力系统有功功率的平衡和频率调整 (10) 5.1电力系统中有功功率的平衡 (10) 5.2电力系统的频率调整 (11) 6电力系统的无功功率平衡和电压调整 (11) 6.1电力系统中无功功率的平衡 (12) 6.2电力系统的电压管理 (12) 6.3电力系统的几种调压方式 (13) 6.4电力线路导线截面的选择 (13) 7电力系统各元件的序参数和等值电路 (14) ???????????????????????????大电流接地方式中性点接地方式小电流接地方式(需要断路器遮断单 相接地故障电 流(单相接地电弧能够瞬间熄灭的)

(蔡中杰)电力系统分析课程设计

广东工业大学华立学院 课程设计(论文) 课程名称电力系统分析 题目名称电力系统短路计算 学生学部(系)机械电气学部电气工程系专业班级09电气工程及其自动化(5)班 学号 12030905002 学生姓名蔡中杰 指导教师罗洪霞 2012年 6 月 18 日

广东工业大学华立学院 课程设计(论文)任务书 一、课程设计(论文)的内容 1、掌握比较复杂的电网进行电力系统三相短路起始次暂态电流的计算,短路后指定时刻短 路电流周期分量的计算。 2、给短路点处赋予平均额定电压及基准容量,求解等值网络数值并根据电力系统网络画出 等值网络。 3、不对称短路时短路点故障相电流和非故障相电压的计算。 4、对称和不对称短路后任意支路故障电流和节点电压的计算。 5、书写课程设计说明书(电子版),并打印纸质版上交。 二、课程设计(论文)的要求与数据 二、课程设计(论文)应完成的工作 1、按照规范的格式,独立完成课程设计说明书的撰写; 2、完成电力系统三相短路电流、对称短路电流、不对称短路电流的计算三相短路起始次暂 态电流的计算,短路后指定时刻短路电流周期分量的计算。 3、完成计算的手算过程 4、运用计算机的计法。

四、课程设计(论文)进程安排 五、应收集的资料及主要参考文献 [1] 科技创新报导[J].武昌:华中科技大学出版社,2010年第9期 [2] 何仰赞.电力系统分析题解[M].武汉:华中科技大学出版社2008.7 [3] 蒋春敏.电力系统结构与分析计算[M].北京:中国水利水电出版社,2011.2 [4] 戈东方.电力工程电气设计手册[M].北京:中国电力出版社,1998.12 [5] 李梅兰、卢文鹏. 电力系统分析 [M] 北京:中国电力出版社,2010.12. 发出任务书日期: 2012 年 6 月 1 日指导教师签名: 计划完成日期: 2012 年 6 月 20 日教学单位责任人签章:

考博必看--电力系统分析上册(诸骏伟)-课程总结

第一章能量管理系统 1.EMS的含义和作用 1).EMS 是以计算机为基础的现代电力系统的综合自动化系统,是预测、计划、控制和 培训的工具。 2).EMS 主要针对发电和输电系统,用于大区级电网和省级电网的调度中心。 3).EMS 涉及计算机硬软件的各个方面。它最终是通过EMS 应用软件来实现对电力系统 的监视、控制和管理。 2.EMS的主要内容 数据收集级(SCADA) ,能量管理级(GMS&OPS) 包括实时发电控制,系统负荷预测,发 电计划(火电调度计划),机组经济组合,水电计划(水火电协调计划),交换功率计划,燃料调度计划,机组检修计划. 网络分析级(NAS)包括实时网络状态分析,网络 结线分析,母线负荷预测,潮流,网络等值,网络状态监视,预想故障分析,安全约束调度,无功优化,最优潮流,短路电流计算,电压稳定分析,暂态分析.培训模拟级。 3.现有EMS存在的问题 1).EMS已得到了广泛的应用,但目前只停留在分布式独立计算分析阶段,多数高级应用 软件都需要人工调用,然后由调度员进行综合决策。2).在电网事故状态下,没有良好的事故分析、定位和恢复手段.3)电力改革使得情况更加复杂。 4.EMS的发展趋势 针对现有的EMS存在的问题,需加入决策系统,增强、扩充了网络分析功能,未来向着调度机器人的方向发展。 第二章电力系统潮流计算 1.潮流计算的定义 2.各种潮流计算的模型和算法的特点、适用范围以及相互之间的区别和联系。

(一) 高斯——塞德尔迭代法 该算法具有存储量小,程序设计简单的优点。 但收敛速度慢,阶梯式逼近时台阶的高度越来越小,以至于迭代次数过多。 算法特点: 1)在系统病态的情况下(重负荷节点负电抗支路较长辐射型线路长短线路接在同一节点上,且长短线路的比值很大),收敛困难。计算速度缓慢每次迭代速度很快,但由于结构松散耦合,节点间相互影响太小,造成迭代次数增加,收敛缓慢。 2)程序编制简便灵活 (二)、牛顿——拉夫逊迭代法(N_L)算法特点 1)平方收敛,开始时收敛比较慢,在几次迭代后,收敛得非常快,其迭代次数和系统的规模关系不大,如果程序设计良好,每次迭代的计算量仅与节点数成正比。 2)对初值很敏感,有时需要其他算法为其提供初值。 3)对函数的平滑性敏感,所处理的函数越接近线性,收敛性越好,为改善功率方程的非线性,实用中可以通过限制修正量的幅度来达到目的。但幅度不能太小。 4)对以节点导纳矩阵为基础的G_S法呈病态的系统,N_L法一般都能可靠收敛。牛顿迭代法有明显的几何解释:收敛速度:平方收敛收敛性:局部收敛 (三)、PQ分解法潮流 N_L法的J阵在每次迭代的过程中都要发生变化,需要重新形成和求解,这占据了N_L法的大部分计算时间,这也是N_L法速度不能提高的原因。 可能性:N_L法可以简化成为定雅可比矩阵法,如果固定的迭代矩阵构造得当,定雅可比矩阵法可以收敛,但只有线性收敛速度。 算法特点 1)用两个阶数几乎减半的方程组代替原方程组,显著减少了内存量和计算量 2)迭代矩阵为常数阵,只需形成求解一次,大大缩短每次迭代所需时间 3)迭代矩阵对称,可上(下)三角存储,减少内存量和计算量 4)基于以上原因,该算法内存需要量为N_L法的60%,每次迭代所需时间为N_L 法的1/5。5)线性收敛,收敛次数多于N_L法,但总的计算速度任能大幅度提高。 6)对R/X过大的病态条件以及线路特别重载的情况下,可能不收敛,一般适用于110kv及以上的电网。 7)由于算法的精确程度取决于 ,P-Q分解法的近似处理只影响计算过程,并不影响结果的精度。 3.影响潮流收敛性的因素以及如何改善潮流计算的收敛性。 (如果计算潮流不收敛,应该采用何种方法改进) 云杰的答案:主要是看潮流方程组本身是否有解,当方程组有解或者无实数解,或者方程组

最新电力系统分析总结(复习资料)

1、有发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成的整体,称为电力系统 2、按电压等级的高低,电力网可分为:1低压电网(<1kv)2中低电网(11000kv) 3、负荷的分类:1.按物理性能分:有功负荷、无功负荷 2.按电力生产与销售过程分:发电负荷、供电负荷、和用电负荷 3.按用户性质分:工业、农业、交通运输业和人民生活用电负荷 4.按负荷对供电的可靠性分:一级、二级、三级负荷 4、我国电力系统常用的4种接地方式:1.中性点接地 2.中性点经消弧线圈接地3.中性点直接接地 4.中性点经电阻的电抗接地小电流接地方式:(1.2)优点:①可靠性能高②单相接地时,不易造成人身或轻微轻微的人身和设备安全事故缺点:经济性差、容易引起谐振,危及电网的安全运行。大接地电流方式:(3.4)优点:①能快速的切除故障、安全性能好②经济性好。缺点:系统供电可靠性差(任何一处故障全跳) 5、消弧线圈的工作原理:在单相接地时,可以线圈的电流Il补偿接地点的容性电流消除接地的不利影响补偿方式:①全补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,Il< Ik时,Ie为纯容性,易产生谐振过电压③过补偿:Il>Ik时,Ie为纯感性,一般都采用过电压法。 6、架空线路的组成:①导线、②避雷线、③杆塔、④绝缘子、⑤金具 7、电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数,如I、V、P等。 8、分裂导线用在什么场合,有什么用处?一般用在大于350kv的架空线路中。可避免电晕的产生和增大传输容量。 9、导线是用来反映的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 10、三绕组变压器的绕组排列方式:①中、高、低②低、中、高排列原则:①高压绕组电压高,故绝缘要求也高,一般在最外层、②升压变压器一般采用:---- 1、标么值:是指实际有名值与基准值得的比值。优点:可以用来简化计算缺点:同一实际值可能对应着多个不同的标么值。基准值的选取:①基准值的单位应与有名值的单位相同、②所选取的基准值物理量之间应符合电路的基本关系、③P33 12、短路:指一切不正常的相与相之间的或相与地面之间的通路。形式: ①三相电路、②单相短路接地、③两相短路、④两相短路接地。 13、短路计算的任务; ①在选择电气设备时,要保证电气设备要有足够的动稳定性和热稳定性,这都要以短路计算为依据。②为了合理地配置各种继电保护装,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含一些电流计算的内容。 14、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出无穷大的功率的电源。特点:①电源频率和电压保持不变、②电源的内阻为零。 15、短路要做的假设:①由无穷大电源供电、②短路前处于稳态、③电路三相对称。16、短路电流实际上包括两个分量:①是周期性分量,即稳态短路电流,它是短路电流中的强迫分量,其幅值Im取决于电源电动势的幅值和电路参数。 ②是非周期分量,它是短路电流中的自由分量,按指数形式衰减。17、 短路冲击电流:是指短路电流中最大可能的瞬时值,同非周期分量有关。18、对称分量法:是将一组不对称的三相量看成三组不同的对称三相量之和。三相量为:①正序分量:各相量的绝对值相等、相互之间有120°的相位,且与系统在正常对称运行下的相序相同。Ib1=Ia1?e-j120、Ic1= Ia1?ej120; ②负序分量:各相量的绝对值相等,相互之间有120°的相位差但与正常运行时的相许相反,以A相为基准相,有Ib2=Ia2?ej120、Ic2=Ia2?ej-120;③零序分量:各相量的绝对值相等,相位相同,也即Ia0=Ib0=Ic0。19、力系统元件的序参数:同步发电机的负序和零序阻抗:正序电抗、负序电抗、零序电抗。20、电网中各发电机之间合并的条件:①发电机的特性(类型、参数等)是否大致相同,②发电机到短路点的电气距离是否大致相等。 21、短路功率主要用来校验断路器的切断能力。22、不对称故障:①纵向故障:指的是网络中的两个相邻节点k和k′之间出现不正常的断开或三相阻抗不相等的情况。②横向故障:23、非全相断线:是指一相断线和两相断线的非全线断线形式。非全相断线的运行是在故障口出现了某种不对称状态,系统的其余某部分的参数还是三相对称的,可以运用对称分量法进行分析。 24、潮流计算的几个量:①电压降落:指供电支路首末端电压的相位差; ②电压损耗:指供电支路首末端两端电压的数量差,即为(U1-U2);③电压偏移:指电网中某点的实际电压U与其额定电压UN之差,有时用百分数表示,即:电压偏移=(U-Un)/Un*100% ; ④电压调整:指线路末端在空载时的电压U20与负载时的电压U2的数量差。由于输电线路的电容效应,特别是超高压输电线路的电容效应,在空载时线路末端电压值上升较大。25、电源输出的功率由两部分组成:①一部分与负荷和线路阻抗有关、②第二部分与负荷无关,只与两端电源的电压差和线路阻抗有关,称为循环功率。 26、通过对负荷节点的功率流向的分析会发现:①有的负荷只需要单方向提供电力就能满足负荷供电的要求,②而有的负荷必须从两个方向或两个以上方向同时同时提供电力才能满足负荷的供电要求。这种必须同时从两个方向或以上提供电力才能满足负荷供电要求的负荷节点,称为功率分点。27、闭式网络中电压最低点的判断:功率分点就是整个电力网电压的最低点。①在较高电压级的电网中,由于X>>R,此时电压最低点往往是无功功率分点。②在较低电压级的电网中,由于R>>X,此时电压最低点往往是有功功率分点。28、潮流计算的主要内容:①电流和分布的计算、②节点电压和电压损耗的计算、③功率损耗的计算。29、对每个节点i来讲,通常有四个变量:①发电机发出的有功功率和无功功率、②电压幅值和相位30、根据电力系统的实际运行条件,一般将节点分为以下三种类型:①PQ节点:这类节点P和Q是给定的,节点电压(幅值、相位)是待求量。电力系统中的绝大多数节点属于这一类型。②PU 节点:这类节点是P和U是给定的,节点的Q和电压的相位待求。③平衡节点:平衡节点只有一个,它的电压幅值U和相位已给定,P和Q为待求量。31、 ①平衡节点:在潮流分布算出之,网络中的功率损耗是未知的。因此网络中至少有一个节点的P不能给定,这个节点承担了系统的有功功率平衡,故称为平衡节点。②基准节点:必须选定一个节点,指定电压相位为0,作为计算各点电压相位的参考。这个节点称为基准节点。习惯上把基准节点和平衡节点选为同一点,称为平衡节点。32、高斯—塞得尔潮流计算步骤:P130 功率因数:cos@=Pmax/Sn 33、每一次选代中,对于PU节点,必须作以下几项计算:①修正节点电压、②计算节点无功功率、③无功功率超限检查。 34、几种常见的无功功率电源:①同步发电机、②同步调相机及同步电动机、③并联电容器、④静止无功功率补偿器svc、⑤高压输电线的充电功率。 35、中枢点电压的调节方式:①逆调压:对于中枢点至各负荷点的供电线路较长,各负荷变化规律大致相同,且负荷波动较大的网络中,在最大负荷时,线路上电压损耗增大,适当提高中枢电压以抵偿增大的电压损耗防止负荷点的电压过低;在最小负荷时,线路上电压损耗减小,适当降低中枢点电压以防止负荷点的电压过高。这种在最大负荷时提高中枢电压,在最负荷时降低中枢点电压的调压方式i,称为逆调压。②顺调压:对于负荷变化较小哦,线路不长的网络,在允许电压偏移范围内,最大负荷时,电压可以低一些;最小负荷时,电压可以搞一些,这种方式称为顺调节。③恒调压:对于负荷变动较小,供电线路上电压损耗也较小的电力网络,无论是最大负荷还是最小负荷,只要中枢点电压维持在允许电压偏移范围内的某一个或较小范围内,就是可以保证各负荷点的电压质量。36、变压器的分接头:一般设在高压和中压绕组上。对于6300kv?A 及以下的变压器中,高压侧有三个分接头。每个分接头可使电压变化5%,各分接头电压分别为:0.95Un、Un、1.05Un。对于容量为8000kv?A 及以上的变压器,高压侧有5个分接头。各分接头电压分别为:0.95Un、0.975Un、Un、1.025Un、1.05Un,记为:Un(+/-)2*2.5% 37绕组变压器:三绕组变压器除高压侧有分接头外,一般中压侧也有分接头可供选择。首先根据低压侧母线的调压要求,在高—低压绕组之间进行计算,选取高压侧的分接头电压,即变比Uth/Un;然后根据中压侧母线的调压要求及选取的高压侧分接头电压Uth在高—中压侧绕组之间进行计算,选取中压侧的分接头电压Utm。确定变比为Uth/Utm/Un1 38、频率的一次调整:当负荷波动时,将引起频率的变化。这时发电机组的出力在调速器的作用下,也将作适当的调整;负荷从系统中吸收的实际功率也将作一定调整,从而在新的频率下,达到新的功率平衡。 39、频率的二次调整:一次调整是由调速器来调节,其结果是发电机增加的输入功率小于实际增加的负荷功率,此时频率仍旧小于fn。为了使系统稳定运行在fn下,此时用自动调频装置去调整,使发电机的静态曲线向上平移,直至系统发电机组的输入功率能符合负荷功率的增长的需要使系统频率运行于fn 上。序参数:对称的三相电路中流过不同序列的电流时,所遇到的阻抗是不同的,然而同一相序的电压和电流间仍符合欧姆定律。40、降低网损的技术措施:①提高用户处的功率因数,避免无功功率还距离传送;②在闭式网络中实行功率经济分布;③组织变压器经济运行; ④合理组织各发电厂经济运行; ⑤合理选择导线的截面积;⑥调整用户的负荷曲线,调峰节电。⑦合理安排检修计划;⑧适当提高电力网的运行电压水平。41、等微增率准则:就是运行的发电机组按微增率相等的原则来分配负荷,这样就是使系统总的燃料消耗 为最小,从而是最经济的。42、提高电力系统静态稳定性的措施:①减小元件 的电抗、②采用自动调节励磁装置、③改善系统的结构和采用中间补偿设备。 1、有发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成 的整体,称为电力系统2、按电压等级的高低,电力网可分为:1低压电网 (<1kv)2中低电网(11000kv)3、负荷的分类:1.按物理性能 分:有功负荷、无功负荷 2.按电力生产与销售过程分:发电负荷、供电负荷、 和用电负荷 3.按用户性质分:工业、农业、交通运输业和人民生活用电负荷 4. 按负荷对供电的可靠性分:一级、二级、三级负荷4、我国电力系统常用 的4种接地方式:1.中性点接地 2.中性点经消弧线圈接地3.中性点直接接地 4. 中性点经电阻的电抗接地小电流接地方式:(1.2)优点:①可靠性能 高②单相接地时,不易造成人身或轻微轻微的人身和设备安全事故缺点:经济 性差、容易引起谐振,危及电网的安全运行。大接地电流方式:(3.4)优 点:①能快速的切除故障、安全性能好②经济性好。缺点:系统供电可靠性 差(任何一处故障全跳)5、消弧线圈的工作原理:在单相接地时,可 以线圈的电流Il补偿接地点的容性电流消除接地的不利影响补偿方式:①全 补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,Il< Ik时,Ie为纯容 性,易产生谐振过电压③过补偿:Il>Ik时,Ie为纯感性,一般都采用过电压法。 6、架空线路的组成:①导线、②避雷线、③杆塔、④绝缘子、⑤金具 7、 电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络 参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数, 如I、V、P等。8、分裂导线用在什么场合,有什么用处?一般用在大于 350kv的架空线路中。可避免电晕的产生和增大传输容量。9、导线是用来反映 的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 10、三绕组变压器的绕组排列方式:①中、高、低②低、中、高排列原 则:①高压绕组电压高,故绝缘要求也高,一般在最外层、②升压变压器一般 采用:---- 1、标么值:是指实际有名值与基准值得的比值。优点:可以用来简 化计算缺点:同一实际值可能对应着多个不同的标么值。基准值的选取:①基 准值的单位应与有名值的单位相同、②所选取的基准值物理量之间应符合电路的 基本关系、③P33 12、短路:指一切不正常的相与相之间的或相与地面之间的通路。形式: ①三相电路、②单相短路接地、③两相短路、④两相短路接地。 13、短路计算的任务; ①在选择电气设备时,要保证电气设备要有足够的动 稳定性和热稳定性,这都要以短路计算为依据。②为了合理地配置各种继电保护 装,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的 主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优 设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含 一些电流计算的内容。 14、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出 无穷大的功率的电源。特点:①电源频率和电压保持不变、②电源的内阻为零。 15、短路要做的假设:①由无穷大电源供电、②短路前处于稳态、③电路三相对 称。16、短路电流实际上包括两个分量:①是周期性分量,即稳态短路电流, 它是短路电流中的强迫分量,其幅值Im取决于电源电动势的幅值和电路参数。 ②是非周期分量,它是短路电流中的自由分量,按指数形式衰减。17、 短路冲击电流:是指短路电流中最大可能的瞬时值,同非周期分量有 关。18、对称分量法:是将一组不对称的三相量看成三组不同的对称三相量之 和。三相量为:①正序分量:各相量的绝对值相等、相互之间有120°的相位, 且与系统在正常对称运行下的相序相同。Ib1=Ia1?e-j120、Ic1= Ia1?ej120; ②负 序分量:各相量的绝对值相等,相互之间有120°的相位差但与正常运行时的相 许相反,以A相为基准相,有Ib2=Ia2?ej120、Ic2=Ia2?ej-120;③零序分量:各 相量的绝对值相等,相位相同,也即Ia0=Ib0=Ic0。19、力系统元件的序参数: 同步发电机的负序和零序阻抗:正序电抗、负序电抗、零序电抗。20、电网中 各发电机之间合并的条件:①发电机的特性(类型、参数等)是否大致相同,② 发电机到短路点的电气距离是否大致相等。 21、短路功率主要用来校验断路器的切断能力。22、不对称故 障:①纵向故障:指的是网络中的两个相邻节点k和k′之间出现不正常的断开 或三相阻抗不相等的情况。②横向故障:23、非全相断线:是指一相断线和两 相断线的非全线断线形式。非全相断线的运行是在故障口出现了某种不对称状 态,系统的其余某部分的参数还是三相对称的,可以运用对称分量法进行分析。 24、潮流计算的几个量:①电压降落:指供电支路首末端电压的相位差; ②电压损耗:指供电支路首末端两端电压的数量差,即为(U1-U2);③电压偏 移:指电网中某点的实际电压U与其额定电压UN之差,有时用百分数表示, 即:电压偏移=(U-Un)/Un*100% ; ④电压调整:指线路末端在空载时的电压 U20与负载时的电压U2的数量差。由于输电线路的电容效应,特别是超高压输 电线路的电容效应,在空载时线路末端电压值上升较大。25、电源输出的 功率由两部分组成:①一部分与负荷和线路阻抗有关、②第二部分与负荷无关, 只与两端电源的电压差和线路阻抗有关,称为循环功率。 26、通过对负荷节点的功率流向的分析会发现:①有的负荷只需要单方向 提供电力就能满足负荷供电的要求,②而有的负荷必须从两个方向或两个以上方 向同时同时提供电力才能满足负荷的供电要求。这种必须同时从两个方向或以上 提供电力才能满足负荷供电要求的负荷节点,称为功率分点。27、闭式网络中 电压最低点的判断:功率分点就是整个电力网电压的最低点。①在较高电压级的 电网中,由于X>>R,此时电压最低点往往是无功功率分点。②在较低电压级的 电网中,由于R>>X,此时电压最低点往往是有功功率分点。28、潮流计算的 主要内容:①电流和分布的计算、②节点电压和电压损耗的计算、③功率损耗的 计算。29、对每个节点i来讲,通常有四个变量:①发电机发出的有功 功率和无功功率、②电压幅值和相位30、根据电力系统的实际运行条件, 一般将节点分为以下三种类型:①PQ节点:这类节点P和Q是给定的,节点电 压(幅值、相位)是待求量。电力系统中的绝大多数节点属于这一类型。②PU 节点:这类节点是P和U是给定的,节点的Q和电压的相位待求。③平衡节点: 平衡节点只有一个,它的电压幅值U和相位已给定,P和Q为待求量。31、 ①平衡节点:在潮流分布算出之,网络中的功率损耗是未知的。因此 网络中至少有一个节点的P不能给定,这个节点承担了系统的有功功率平衡, 故称为平衡节点。②基准节点:必须选定一个节点,指定电压相位为0,作为计 算各点电压相位的参考。这个节点称为基准节点。习惯上把基准节点和平衡节点 选为同一点,称为平衡节点。32、高斯—塞得尔潮流计算步骤:P130 功 率因数:cos@=Pmax/Sn 33、每一次选代中,对于PU节点,必须作以下几项 计算:①修正节点电压、②计算节点无功功率、③无功功率超限检查。 34、几种常见的无功功率电源:①同步发电机、②同步调相机及同步电动 机、③并联电容器、④静止无功功率补偿器svc、⑤高压输电线的充电功率。 35、中枢点电压的调节方式:①逆调压:对于中枢点至各负荷点的供电线 路较长,各负荷变化规律大致相同,且负荷波动较大的网络中,在最大负荷时, 线路上电压损耗增大,适当提高中枢电压以抵偿增大的电压损耗防止负荷点的电 压过低;在最小负荷时,线路上电压损耗减小,适当降低中枢点电压以防止负荷 点的电压过高。这种在最大负荷时提高中枢电压,在最负荷时降低中枢点电压的 调压方式i,称为逆调压。②顺调压:对于负荷变化较小哦,线路不长的网络, 在允许电压偏移范围内,最大负荷时,电压可以低一些;最小负荷时,电压可以 搞一些,这种方式称为顺调节。③恒调压:对于负荷变动较小,供电线路上电压 损耗也较小的电力网络,无论是最大负荷还是最小负荷,只要中枢点电压维持在 允许电压偏移范围内的某一个或较小范围内,就是可以保证各负荷点的电压质 量。36、变压器的分接头:一般设在高压和中压绕组上。对于6300kv?A 及以 下的变压器中,高压侧有三个分接头。每个分接头可使电压变化5%,各分接头 电压分别为:0.95Un、Un、1.05Un。对于容量为8000kv?A 及以上的变压器, 高压侧有5个分接头。各分接头电压分别为:0.95Un、0.975Un、Un、1.025Un、 1.05Un,记为:Un(+/-)2* 2.5% 37绕组变压器:三绕组变压器除高压侧有分 接头外,一般中压侧也有分接头可供选择。首先根据低压侧母线的调压要求,在 高—低压绕组之间进行计算,选取高压侧的分接头电压,即变比Uth/Un;然后根 据中压侧母线的调压要求及选取的高压侧分接头电压Uth在高—中压侧绕组之 间进行计算,选取中压侧的分接头电压Utm。确定变比为Uth/Utm/Un1 38、频率的一次调整:当负荷波动时,将引起频率的变化。这时发电机组 的出力在调速器的作用下,也将作适当的调整;负荷从系统中吸收的实际功率也 将作一定调整,从而在新的频率下,达到新的功率平衡。 39、频率的二次调整:一次调整是由调速器来调节,其结果是发电机增加 的输入功率小于实际增加的负荷功率,此时频率仍旧小于fn。为了使系统稳定 运行在fn下,此时用自动调频装置去调整,使发电机的静态曲线向上平移,直 至系统发电机组的输入功率能符合负荷功率的增长的需要使系统频率运行于fn 上。序参数:对称的三相电路中流过不同序列的电流时,所遇到的阻抗是不 同的,然而同一相序的电压和电流间仍符合欧姆定律。40、降低网损的 技术措施:①提高用户处的功率因数,避免无功功率还距离传送;②在闭式网络 中实行功率经济分布;③组织变压器经济运行; ④合理组织各发电厂经济运行; ⑤合理选择导线的截面积;⑥调整用户的负荷曲线,调峰节电。⑦合理安排检修 计划;⑧适当提高电力网的运行电压水平。41、等微增率准则:就是 运行的发电机组按微增率相等的原则来分配负荷,这样就是使系统总的燃料消耗 为最小,从而是最经济的。42、提高电力系统静态稳定性的措施:①减小元件 的电抗、②采用自动调节励磁装置、③改善系统的结构和采用中间补偿设备。 1、有发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成 的整体,称为电力系统2、按电压等级的高低,电力网可分为:1低压电网 (<1kv)2中低电网(11000kv)3、负荷的分类:1.按物理性能 分:有功负荷、无功负荷 2.按电力生产与销售过程分:发电负荷、供电负荷、 和用电负荷 3.按用户性质分:工业、农业、交通运输业和人民生活用电负荷 4. 按负荷对供电的可靠性分:一级、二级、三级负荷4、我国电力系统常用 的4种接地方式:1.中性点接地 2.中性点经消弧线圈接地3.中性点直接接地 4. 中性点经电阻的电抗接地小电流接地方式:(1.2)优点:①可靠性能 高②单相接地时,不易造成人身或轻微轻微的人身和设备安全事故缺点:经济 性差、容易引起谐振,危及电网的安全运行。大接地电流方式:(3.4)优 点:①能快速的切除故障、安全性能好②经济性好。缺点:系统供电可靠性 差(任何一处故障全跳)5、消弧线圈的工作原理:在单相接地时,可 以线圈的电流Il补偿接地点的容性电流消除接地的不利影响补偿方式:①全 补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,Il< Ik时,Ie为纯容 性,易产生谐振过电压③过补偿:Il>Ik时,Ie为纯感性,一般都采用过电压法。 6、架空线路的组成:①导线、②避雷线、③杆塔、④绝缘子、⑤金具 7、 电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络 参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数, 如I、V、P等。8、分裂导线用在什么场合,有什么用处?一般用在大于 350kv的架空线路中。可避免电晕的产生和增大传输容量。9、导线是用来反映 的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 10、三绕组变压器的绕组排列方式:①中、高、低②低、中、高排列原 则:①高压绕组电压高,故绝缘要求也高,一般在最外层、②升压变压器一般 采用:---- 1、标么值:是指实际有名值与基准值得的比值。优点:可以用来简 化计算缺点:同一实际值可能对应着多个不同的标么值。基准值的选取:①基 准值的单位应与有名值的单位相同、②所选取的基准值物理量之间应符合电路的 基本关系、③P33 12、短路:指一切不正常的相与相之间的或相与地面之间的通路。形式: ①三相电路、②单相短路接地、③两相短路、④两相短路接地。 13、短路计算的任务; ①在选择电气设备时,要保证电气设备要有足够的动 稳定性和热稳定性,这都要以短路计算为依据。②为了合理地配置各种继电保护 装,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的 主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优 设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含 一些电流计算的内容。 14、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出 无穷大的功率的电源。特点:①电源频率和电压保持不变、②电源的内阻为零。 15、短路要做的假设:①由无穷大电源供电、②短路前处于稳态、③电路三相对 称。16、短路电流实际上包括两个分量:①是周期性分量,即稳态短路电流, 它是短路电流中的强迫分量,其幅值Im取决于电源电动势的幅值和电路参数。 ②是非周期分量,它是短路电流中的自由分量,按指数形式衰减。17、 短路冲击电流:是指短路电流中最大可能的瞬时值,同非周期分量有 关。18、对称分量法:是将一组不对称的三相量看成三组不同的对称三相量之 和。三相量为:①正序分量:各相量的绝对值相等、相互之间有120°的相位, 且与系统在正常对称运行下的相序相同。Ib1=Ia1?e-j120、Ic1= Ia1?ej120; ②负 序分量:各相量的绝对值相等,相互之间有120°的相位差但与正常运行时的相 许相反,以A相为基准相,有Ib2=Ia2?ej120、Ic2=Ia2?ej-120;③零序分量:各 相量的绝对值相等,相位相同,也即Ia0=Ib0=Ic0。19、力系统元件的序参数: 同步发电机的负序和零序阻抗:正序电抗、负序电抗、零序电抗。20、电网中 各发电机之间合并的条件:①发电机的特性(类型、参数等)是否大致相同,② 发电机到短路点的电气距离是否大致相等。 21、短路功率主要用来校验断路器的切断能力。22、不对称故 障:①纵向故障:指的是网络中的两个相邻节点k和k′之间出现不正常的断开 或三相阻抗不相等的情况。②横向故障:23、非全相断线:是指一相断线和两 相断线的非全线断线形式。非全相断线的运行是在故障口出现了某种不对称状 态,系统的其余某部分的参数还是三相对称的,可以运用对称分量法进行分析。 24、潮流计算的几个量:①电压降落:指供电支路首末端电压的相位差; ②电压损耗:指供电支路首末端两端电压的数量差,即为(U1-U2);③电压偏 移:指电网中某点的实际电压U与其额定电压UN之差,有时用百分数表示, 即:电压偏移=(U-Un)/Un*100% ; ④电压调整:指线路末端在空载时的电压 U20与负载时的电压U2的数量差。由于输电线路的电容效应,特别是超高压输 电线路的电容效应,在空载时线路末端电压值上升较大。25、电源输出的 功率由两部分组成:①一部分与负荷和线路阻抗有关、②第二部分与负荷无关, 只与两端电源的电压差和线路阻抗有关,称为循环功率。 26、通过对负荷节点的功率流向的分析会发现:①有的负荷只需要单方向 提供电力就能满足负荷供电的要求,②而有的负荷必须从两个方向或两个以上方 向同时同时提供电力才能满足负荷的供电要求。这种必须同时从两个方向或以上 提供电力才能满足负荷供电要求的负荷节点,称为功率分点。27、闭式网络中 电压最低点的判断:功率分点就是整个电力网电压的最低点。①在较高电压级的 电网中,由于X>>R,此时电压最低点往往是无功功率分点。②在较低电压级的 电网中,由于R>>X,此时电压最低点往往是有功功率分点。28、潮流计算的 主要内容:①电流和分布的计算、②节点电压和电压损耗的计算、③功率损耗的 计算。29、对每个节点i来讲,通常有四个变量:①发电机发出的有功 功率和无功功率、②电压幅值和相位30、根据电力系统的实际运行条件, 一般将节点分为以下三种类型:①PQ节点:这类节点P和Q是给定的,节点电 压(幅值、相位)是待求量。电力系统中的绝大多数节点属于这一类型。②PU 节点:这类节点是P和U是给定的,节点的Q和电压的相位待求。③平衡节点: 平衡节点只有一个,它的电压幅值U和相位已给定,P和Q为待求量。31、 ①平衡节点:在潮流分布算出之,网络中的功率损耗是未知的。因此 网络中至少有一个节点的P不能给定,这个节点承担了系统的有功功率平衡, 故称为平衡节点。②基准节点:必须选定一个节点,指定电压相位为0,作为计 算各点电压相位的参考。这个节点称为基准节点。习惯上把基准节点和平衡节点 选为同一点,称为平衡节点。32、高斯—塞得尔潮流计算步骤:P130 功 率因数:cos@=Pmax/Sn 33、每一次选代中,对于PU节点,必须作以下几项 计算:①修正节点电压、②计算节点无功功率、③无功功率超限检查。 34、几种常见的无功功率电源:①同步发电机、②同步调相机及同步电动 机、③并联电容器、④静止无功功率补偿器svc、⑤高压输电线的充电功率。 35、中枢点电压的调节方式:①逆调压:对于中枢点至各负荷点的供电线 路较长,各负荷变化规律大致相同,且负荷波动较大的网络中,在最大负荷时, 线路上电压损耗增大,适当提高中枢电压以抵偿增大的电压损耗防止负荷点的电 压过低;在最小负荷时,线路上电压损耗减小,适当降低中枢点电压以防止负荷 点的电压过高。这种在最大负荷时提高中枢电压,在最负荷时降低中枢点电压的 调压方式i,称为逆调压。②顺调压:对于负荷变化较小哦,线路不长的网络, 在允许电压偏移范围内,最大负荷时,电压可以低一些;最小负荷时,电压可以 精品文档

电力系统分析考点总结(吐血整理)

电力系统分析考点总结 第三章 理想同步电机 1,忽略磁路饱和,磁滞,涡流等影响,假设电机铁芯部分的导磁系数为常数;2,电机转子在结构上对于纵轴和横轴分别对称; 3,定子的a,b,b三相绕组的空间位置互差120度电角度,在结构上完全相同,他们均在气隙中长生正弦分布的磁动势; 4,电机空载,转子恒速旋转时,转子绕组的磁动势在定子绕组所感应的空载电势是时间的正弦函数; 5,定子和转子的槽和通风沟不影响定子和转子的电感,即认为电机的定子和转子具有光滑的表面。 假定正向的选择 定子回路中,定子电流的正方向即为由绕组中性点流向端点的方向,各相感应电势的正方向和相电流的相同,向外电路送出纵向相电流的极端相电压是正的。在转子方面,各个绕组感应电势的正方向与本绕组电流的正方向相同。向励磁绕组提供正向励磁电流的外加励磁电压是正的。两个阻尼回路的外加电压均为零。帕克变换 目的(为何进行):在磁链方程中许多电感系数都是随转子角a而周期变化。转子角a又是时间的函数,因此,一些自感系数和互感系数也是将随时间而周期变化。若将磁链方程式带入电磁方程式,则电磁方程将成为一组以时间的周期函数为系数的微分方程。这类方程组的求解是颇为困难的。为了解决这个困难,可以通过坐标变换,用一组新的变量代替原来的变量,将变系数的微分方程变换成为

常系数微分方程,然后求解。

物理意义:采用派克变换,实现从a,b,c坐标系到d,q,o坐标系的转换,把观察者的立场从静止的定子上转到了转子,定子的三相绕组被两个同转子一起旋转的等效dd绕组和qq绕组所代替,变换后,磁链方程的系数变为常说,大大简化计算

同步电机基本方程的实用化中采用了哪些实用化假设?其实用化范围是什么?基本方程的实用化中采用了以下实用化假设(1)转子转速不变并等于额定转速。(2)电机纵轴向三个绕组只有一个公共磁通,而不存在只同两个绕组交链的漏磁通。为了便于实际应用,还可根据所研究问题的特点,对基本方程作进一步的简化。 (3)略去定子电势方程中的变压器电势,即认为ψd=ψq=0,这条假设适用于不计定子回路电磁暂态过程或者对定子电流中的非周期分量另行考虑的场合。(4)定子回路的电阻只在计算定子电流非周期分量衰减时予以计及,在其他计算中则略去不计。 上述四项假设主要用于一般的短路计算和电力系统的对称运行分析。 第四章 1.节点导纳矩阵的主要特点。(1,导纳矩阵的元素很容易根据网络接线图和支 路参数直观地求得,形成节点导纳矩阵的程序比较简单2,导纳矩阵是稀疏矩阵,它的对角线元素一般不为零,但在非对角线元素中则存在不少零元素。)节点导纳矩阵的修改 1,从网络的原有节点i引出一条导纳为yik的支路,同时增加一个节点k。由于节点数加一,导纳矩阵将增加一行一列。新增的对角线元素Ykk=Yik。新增的非对角元素中,只有Yik=Yki=-yik,其余的元素都为零。矩阵的原有部分,只有节点i的自导纳应增加△Yii=yik。 2,在网络的原有节点i,j之间增加一条导纳为yij的支路。由于只增加支路不增加节点,故导纳矩阵的阶次不变。因而只要对于节点i、j有关的元素分别增添以下的修改增量即可

电力系统分析试题答案(全)

2、停电有可能导致人员伤亡或主要生产设备损坏的用户的用电设备属于( )。 A 、一级负荷; B 、二级负荷; C 、三级负荷; D 、特级负荷。 4、衡量电能质量的技术指标是( )。 A 、电压偏移、频率偏移、网损率; B 、电压偏移、频率偏移、电压畸变率; C 、厂用电率、燃料消耗率、网损率; D 、厂用电率、网损率、电压畸变率 5、用于电能远距离输送的线路称为( )。 A 、配电线路; B 、直配线路; C 、输电线路; D 、输配电线路。 7、衡量电力系统运行经济性的主要指标是( )。 A 、燃料消耗率、厂用电率、网损率; B 、燃料消耗率、建设投资、网损率; C 、网损率、建设投资、电压畸变率; D 、网损率、占地面积、建设投资。 8、关于联合电力系统,下述说法中错误的是( )。 A 、联合电力系统可以更好地合理利用能源; B 、在满足负荷要求的情况下,联合电力系统的装机容量可以减少; C 、联合电力系统可以提高供电可靠性和电能质量; D 、联合电力系统不利于装设效率较高的大容量机组。 9、我国目前电力系统的最高电压等级是( )。 A 、交流500kv ,直流kv 500±; B 、交流750kv ,直流kv 500±; C 、交流500kv ,直流kv 800±;; D 、交流1000kv ,直流kv 800±。 10、用于连接220kv 和110kv 两个电压等级的降压变压器,其两侧绕组的额定电压应为( )。 A 、220kv 、110kv ; B 、220kv 、115kv ; C 、242Kv 、121Kv ; D 、220kv 、121kv 。 11、对于一级负荷比例比较大的电力用户,应采用的电力系统接线方式为( )。 A 、单电源双回路放射式; B 、双电源供电方式; C 、单回路放射式接线; D 、单回路放射式或单电源双回路放射式。 12、关于单电源环形供电网络,下述说法中正确的是( )。 A 、供电可靠性差、正常运行方式下电压质量好; B 、供电可靠性高、正常运行及线路检修(开环运行)情况下都有好的电压质量; C 、供电可靠性高、正常运行情况下具有较好的电压质量,但在线路检修时可能出现电压质量较差的情况; D 、供电可靠性高,但电压质量较差。 13、关于各种电压等级在输配电网络中的应用,下述说法中错误的是( )。 A 、交流500kv 通常用于区域电力系统的输电网络; B 、交流220kv 通常用于地方电力系统的输电网络; C 、交流35kv 及以下电压等级通常用于配电网络; D 、除10kv 电压等级用于配电网络外,10kv 以上的电压等级都只能用于输电网络。 14、110kv 及以上电力系统应采用的中性点运行方式为( )。 A 、直接接地; B 、不接地; C 、经消弧线圈接地; D 、不接地或经消弧线圈接地。 16、110kv 及以上电力系统中,架空输电线路全线架设避雷线的目的是( )。

相关文档
相关文档 最新文档