文档库 最新最全的文档下载
当前位置:文档库 › 解结构单元

解结构单元

解结构单元
解结构单元

难点33 列方程法求结构单元

列方程法是已知化学式求有机物结构的常用方法,但不是惟一方法。 ●难点磁场

请试做下列题目,然后自我界定学习本篇是否需要。

A 分子中只具有以下a 、b 、c 三种结构单元,A 的化学式为:C 1134H 1146 (三价基团) …C ≡C … (二价基团) …C(CH 3)3 (一价基团)

(a) (b)

(c)

试通过计算确定A 分子中的上述结构单元数。

●案例探究

[例题]某烃B 分子式是C 1398H 1278。它是由4种基团组成,这四种基团分别是: (3价);b. ... (2)

); a.

c. …C ≡C …(2价);

d.(CH 3)3C ……(1价)

已知该分子结构式中没有芳环连接芳环,脂基连接脂基的情况,试求B 分子中含有这4种基团各几个。

命题意图:考查学生由化学式推导有机物结构组成的能力。

错解分析:不清楚所给结构单元化学式的代数和即为有机物的分子式,不清楚结构单元彼此相连时的数量关系而无解。

解题思路:设B 分子中,四种基团数目按所列次序分别为x 、y 、z 、w 个。则:

解得:x =94,y =33,z =126,w =96

答案:4种基团个数按题中所列顺序分别是:94,33,126,96 ●锦囊妙计

列方程的依据主要有:

1.根据C、H、O等原子个数守恒。

2.不饱和度。

3.结构余价的相等关系。

●歼灭难点训练

1.(★★★)合成相对分子质量在2000~50000范围内具有确定结构的有机化合物是一个新的研究领域。1993年报导合成了两种烃A和B,其分子式分别是C1134H1146和C1398H1278。

B结构跟A相似,但分子中多了一些结构为的结构单元。

B分子比A分子多了____________个这样的结构单元(填数字)。

2.(★★★★)将例题中的“B分子式为C1398H1278”改为“C分子式为:C1318H1238”,其余同例题,试求之。

3.(★★★★)下面是一个四肽,它可以看作是4个氨基酸缩合掉3个水分子而得。

今有一个“多肽”,其分子式是C55H70O19N10,已知将它彻底水解后只得到下列四种氨基酸:

试问:(1)该多肽是____________(填汉字)肽。

(2)该多肽水解后有____________(填数字)个谷氨酸。

(3)该多肽水解后有____________(填数字)个苯丙氨酸。

4.(★★★★★)现有一种“十二肽”,分子式为C x H y N z O d(z>12),将它彻底水解只得到下列氨基酸:

(1)将一个该“十二肽”分子彻底水解后,有____________个赖氨酸生成;

(2)将一个该“十二肽”分子彻底水解后,有____________个天门冬氨酸生成。

附:参考答案

难点磁场

提示:设A分子中a、b、c三种结构单元数分别是x,y,z,则

答案:a: 94 b:93 c:96

歼灭难点训练

1.提示:从所包含的C原子入手,可得所求结构单元数:(1398-1134)÷8=33。

所隐含的H原子入手,亦可得出所求结构

单元数:(1278-1146)÷4=33。

答案:33

2.提示:设A分子中,四种基团数目按所列顺序分别为x、y、z、w个,则:

答案:x=94,y=23,z=116,w=96

3.提示:设甘氨酸C2H5O2N、丙氨酸C3H7O2N,苯丙氨酸C9H11O2N及谷氨酸

C 5H 9O 4N 分别为a 、b 、c 、d 个。由于C 55H 70O 19N 10+9H 2O=C 55H 88O 28N 10,所以

答案:(1)十

(2)4

(3)3

4.提示:本题除可用列方程法外,还可用下法解决。

(1)赖氨酸与其他三种氨基酸不同,分子内多1个氨基。该肽分子中若没有赖氨酸的结构单元,则其N 原子数为12。肽分子中每含有1个赖氨酸结构单元其分子式中就增加1个N 原子。故该十二肽水解可得赖氨酸个数为:z -12。

(2)天门冬氨酸与其他三种氨基酸不同,分子内多1个羧基。该肽分子中若没有天门冬氨酸的结构单元,则其O 原子数为:12+1=13。肽分子中每含有1个天门冬氨酸结构单元,其分子式中就增加2个O 原子。故该十二肽水解可得天门冬氨酸个数为:

2

13

-d 。 答案:(1)z -12 (2)

2

13

-d

力法求解超静定结构的步骤

第七章力法 本章主要内容 1)超静定结构的超静定次数 2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分)) 3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架) 4)力法的对称性利用问题,对称结构的有关概念四点结论 5)超静定结构的位移计算和最后内力图的校核 §7-1超静定结构概述 一、静力解答特征: 静定结构:由平衡条件求出支反力及内力; 超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。 二、几何组成特征:(结合例题说明) 静定结构:无多余联系的几何不变体 超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。 多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。 多余求知力:多余联系中产生的力称为 三、超静定结构的类型(五种) 超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构 四、超静定结构的解法 综合考虑三个方面的条件: 1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程; 2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。即结构的变形必须 符合支承约束条件(边界条件)和各部分之间的变形连续条件。 3、物理条件:即变形或位移与内力之间的物理关系。 精确方法: 力法(柔度法):以多余未知力为基本未知量 位移法(刚度法):以位移为基本未知量。 力法与位移法的联合应用: 力法与位移法的混合使用:混合法 近似方法:

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为sss.f2, 并更名为sss.hkl)文件; 对CCD 收录的数据, 检查是否有同名的p4p和hkl(设为sss.hkl)文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从total reflections项中,记下总点数;从R merge项中,记下Rint=?.???? % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRA V AIS和SYMM项中,记下BRA V AIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如sss.hkl),?单击Project Open,?最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开sss.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP ?? C)。?(单位已设为

晶体结构习题与解答

第三章晶体结构习题与解答 3-1 名词解释 (a)萤石型和反萤石型 (b)类质同晶和同质多晶 (c)二八面体型与三八面体型 (d)同晶取代与阳离子交换 (e)尖晶石与反尖晶石 答:(a)萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中, 若A2+分布在四面体空隙、而B3+分布于八面体空 隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分 布于四面体空隙另一半分布于八面体空隙,通式为 B(AB)O4,称为反尖晶石。 3-2 (a)在氧离子面心立方密堆积的晶胞中,画出 适合氧离子位置的间隙类型及位置,八面体间隙位 置数与氧离子数之比为若干四面体间隙位置数与氧 离子数之比又为若干 (b)在氧离子面心立方密堆积结构中,对于获得稳 定结构各需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a)参见2-5题解答。 (b)对于氧离子紧密堆积的晶体,获得稳定的结构 所需电价离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO; (2)填满所有的四面体空隙,1价阳离子,Li2O; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO。

晶体晶胞结构讲解

物质结构要点 1、核外电子排布式 外围核外电子排布式价电子排布式 价电子定义:1、对于主族元素,最外层电子 2、第四周期,包括3d与4S 电子 电子排布图 熟练记忆 Sc Fe Cr Cu 2、S能级只有一个原子轨道向空间伸展方向只有1种球形 P能级有三个原子轨道向空间伸展方向有3种纺锤形 d能级有五个原子轨道向空间伸展方向有5种 一个电子在空间就有一种运动状态 例1:N 电子云在空间的伸展方向有4种 N原子有5个原子轨道 电子在空间的运动状态有7种 未成对电子有3个 ------------------------结合核外电子排布式分析 例2 3、区的划分 按构造原理最后填入电子的能级符号 如Cu最后填入3d与4s 故为ds区 Ti 最后填入能级为3d 故为d区 4、第一电离能:同周期从左到右电离能逐渐增大趋势(反常情况:S2与P3 半满或全 满较稳定,比后面一个元素电离能较大) 例3、比较C、N、O、F第一电离能的大小 --------------- F >N>O>C

例4、某元素的全部电离能(电子伏特)如下: 回答下列各问: (1)I6到I7间,为什么有一个很大的差值?这能说明什么问题? _________________________ (2)I4和I5间,电离能为什么有一个较大的差值_________________________________ (3)此元素原子的电子层有 __________________层。最外层电子构型为 ______________ 5、电负性:同周期从左到右电负性逐渐增大(无反常)------------F> O >N >C 6、对角线规则:某些主族元素与右下方的主族元素的性质有 些相似,被称为“对角线规则”如:锂和镁在空气中燃烧 的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱 7、共价键:按原子轨道重叠形式分为:σ键和π键 (具有方向性和饱和性) 单键 -------- 1个σ键 双键------1个σ键和1个π键 三键---------1个σ键和2个π键 8、等电子体:原子总数相等,价电子总数相等----------具有相似的化学键特征 例5、N2 CO CN-- C22-互为等电子体 CO2 CS2 N2O SCN-- CNO-- N3- 互为等电子体 从元素上下左右去找等电子体,左右找时及时加减电荷,保证价电子相等。9、应用VSEPR理论判断下表中分子或离子的构型。

晶体结构

第二章晶体结构及常见晶体结构类型 1、名词解释 (a)晶体与晶体常数(b)类质同晶和同质多晶(c)二八面体型与三八面体型(d)同晶取代与阳离子交换(e)尖晶石与反尖晶石(f)晶胞与晶胞参数(g)配位数与配位体(h)同质多晶与多晶转变(i)位移性转变与重建性转变(j)晶体场理论与配位场理论 解:(a)晶体是内部质点在三维空间成周期性重复排列的固体。或晶体是具格子构造的固体。晶体常数:晶轴轴率或轴单位,轴角。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。(c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构。 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体 结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 (f)任何晶体都对应一种布拉菲格子,因此任何晶体都可划分出与此种布拉菲格子平行六面体相对应的部分,这一部分晶体就称为晶胞。晶胞是能够反映晶体

(整理)力法求解超静定结构的步骤:.

第八章力法 本章主要内容 1)超静定结构的超静定次数 2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分)) 3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架) 4)力法的对称性利用问题,对称结构的有关概念四点结论 5)超静定结构的位移计算和最后内力图的校核 6) §8-1超静定结构概述 一、静力解答特征: 静定结构:由平衡条件求出支反力及内力; 超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。 二、几何组成特征:(结合例题说明) 静定结构:无多余联系的几何不变体 超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。 多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。 多余求知力:多余联系中产生的力称为 三、超静定结构的类型(五种) 超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构 四、超静定结构的解法 综合考虑三个方面的条件: 1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程; 2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。即结构的变形必须 符合支承约束条件(边界条件)和各部分之间的变形连续条件。 3、物理条件:即变形或位移与内力之间的物理关系。 精确方法: 力法(柔度法):以多余未知力为基本未知量 位移法(刚度法):以位移为基本未知量。 力法与位移法的联合应用: 力法与位移法的混合使用:混合法 近似方法:

整理晶体结构解析步骤

晶体结构解析步骤Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意:1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BA T批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP 或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数(建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa,(INS文件中, TREF为直接法,PATT为Pattersion法) 15. XP,(进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins) 17. FMOL, (不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H, ) (读取各参数,屏幕上显示各原子的键合情况) 18. MPLN/N, (机器认为最好取向) 19. PROJ, (随意转动,直至你认为最理想取向)

静定结构受力分析和特性静定结构的定义静定结构是没有

第二节静定结构受力分析和特性 一、静定结构的定义 静定结构是没有多余约束的几何不变体系。在任意荷载作用下,其全部支座反力和内力都可由静力平衡条件确定,即满足静力平衡条件的静定结构的反力和内力的解答是唯一的。但必须指出,静定结构任意截面上的应力和应变却不能仅由静力平衡条件确定,还需要附加其他条件和假设才能求解。 二、计算静定结构反力和内力的基本方法 在静定结构的受力分析中不涉及结构材料的性质,将整个结构或结构中的任一杆件都作为刚体看待。静定结构受力分析的基本方法有以下三种。 (一)数解法 将受力结构的整体及结构中的某个或某些隔离体作为计算对象,根据静力平衡条件建立力系的平衡方程,再由平衡方程求解结构的支座反力和内力。 (二)图解法 静力平衡条件也可用力系图解法中的闭合力多边形和闭合索多边形来代替。其中闭合力多边形相当于静力投影平衡方程,闭合索多边形相当于力矩平衡方程。据此即可用图解法确定静定结构的支座反力和内力。 (三)基于刚体系虚位移原理的方法 受力处于平衡的刚体系,要求该力系在满足刚体系约束条件的微小的虚位移上所做的虚功总和等于零。据此,如欲求静定结构上某约束力(反力或内力)时,可去除相应的约束,使所得的机构沿该约束力方向产生微小的虚位移,然后由虚位移原理即可求出该约束力。 三、直杆弯矩图的叠加法 绘制线弹性结构中直杆段的弯矩图,采用直杆弯矩图的叠加法。直杆弯矩图的叠加法可叙述为:任一直杆,如果已知两端的弯矩,则杆件的弯矩图等于在两端弯矩坐标的连线上再叠加将该杆作为简支梁在荷载作用下的弯矩图,如图2-1所示。作弯矩图时,弯矩值坐标绘在杆件受拉一边,弯矩图中不要标明正、负号。

手机的工作原理

精品考试资料 学资学习网 手机的工作原理 一、手机的电路结构手机的结构可分为三部分,即射频处理部分、逻辑/音频部分以及输入输出接口部分主要电路组成: 1 射频部分一般指手机射频接收与射频发射部分,主要电路包括:天线、天线开关、接收滤波、高频放大、接收本振、混频、中频、发射本振、功放控制、功放等。 1.1 发送部分发部分包括带通滤波、中频、发射本振、射频功率放大器、发射滤波器、天线开关、天线等。 1.2 接收部分包括天线、天线开关、高频滤波、高频放大、混频、中频滤波和中频放大等电路。 对接收信号进行一级处理,最后得到推动听筒发声的音频信号。 解调大都在中频处理集成电路(IC)内完成,解调后得到频率相同的模拟同相/正交信号,然后进入逻辑/音频处理部分进行后级的处理。2逻辑/音频部分包括逻辑处理和音频处理两个方面的内容。 2.1 音频处理部分 2.1.1发送音频处理过程来自送话器的话音信号经音频放大集成模块放大后进行A/D 变换、话音编码、信道编码、调制,最后送到射频发射部分进行下一步的处理。 2. 1.2接收音频处理过程从中频输出的RXI RXQ信号送到调制解调器进行解

调,之后进行信道解码、D/A 变换,再送到音频放大集成模块进行放大。最后,用放大的音频信号去推动听筒发声。 2.2 逻辑处理部分手机射频、音频部分及外围的显示、听音、送语、插卡等部分均是在逻辑控制的统一指挥下完成其各自功能。 1 / 6 顺着前面讲的三种线中控制线的流向进行分析,可以弄清逻辑部分怎样对各部分进行功能控制。 3 输入输出部分在维修中主要指:显示、按键、振铃、听音、送话、卡座等部分,有时也称界面部分 二、手机的电路工作原理手机之所以能相互通信,是因为它是由三部分协调工作的结果,这三部分分别为射频部分、逻辑部分和电源部分,要了解手机的工作原理其实只要了解这三部分是如何工作的就可以了。 1. 射频部分通常射频部分,又是由接受信号部分和发送信号部分组成。接收: 从天线接收的935-960MHz 的射频信号,经U 400、SW363,将发射信号的接收信号分开,使收发互不干扰。 从U400 的第四脚输入第五脚输出,进入接收前端回路。 U400的工作状态受第三脚电位的控制,而第三脚电位又受到来自CPU 的TXON RXON信号的控制。 经过天线开关的射频信号首先经过带通滤波器FL451的滤波,再送入高频

结构力学静定结构与超静定结构建筑类

结构力学静定结构与超静定结构建筑类 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

1、静定与超静定结构的概念:无多余约束的几何不变体系是静定结构 静定结构:由静力平衡方程可求出所有内力和约束力的体系 有多余约束的几何不变体系是超静定结构 超静定结构:由静力平衡方程不能求出所有内力和约束力的体系. 瞬变体系不能作为结构:瞬变体系的主要特性为: 1.可发生微量位移,但不能继续运动 2.在变形位置上会产生很大内力 3.在原位置上,一般外力不能平衡 4.在特定荷载下,可以平衡,会产生静不定力 5.可产生初内力. 常变体系是一种机构而不是结构 2、静定结构的内力分析方法 几何特性:无多余联系的几何不变体系 静力特征:仅由静力平衡条件可求全部反力内力 求解一般原则:从几何组成入手,选择合适的隔 离体,使得一个隔离体上未知力的个数不超过三个,如果力系为平面汇交力系,则不应超过两个。一般按照几何组成的相反顺序分析。 一、单跨梁的内力分析 弯矩、剪力、荷载集度之间的微分关系 1.无荷载分布段(q=0),Q图为水平线,M图为斜直线。 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线,且凸向与荷载指向相同。 3.集中力作用处,Q图有突变,且突变量等于力值; M图有尖点,且指向与荷载相同。

4.集中力偶作用处,M图有突变,且突变量等于力偶值; Q图无变化。 内力计算的关键在于:正确区分基本 部分和附属部分. 熟练掌握单跨梁的 计算. 单体刚架(联合结构)的支座反力(约 束力)计算 方法:切断约束,取一个刚片为隔离 体,假定约束力的方向,由隔离体的平衡建立三个平衡方程。 四.刚架弯矩图的绘制做法:拆成单个杆,求出杆两端的弯矩,按与单跨梁相同的方法画弯矩图. 分段定点连线 六.由做出的剪力图作轴力图 做法: 逐个杆作轴力图,利用结点的平衡条件,由已知的杆端剪力和求杆端轴力,再由杆端轴力画轴力图.注意:轴力图画在杆件那一侧均可,必须注明符号和控制点竖标.

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

静定结构的一般性质

1.静定结构的一般性质 一. 温度的改变、支座移动和制造误差等因素在静定结构中不引起内力 由于静定结构随着温度的改变、支座移动和制造误差等因素的改变,只引起结构形状的改变,因此不引起内力。 二. 静定结构的局部平衡特性 在荷载作用下,如果仅靠静定结构中的某以局部就可以与荷载维持平衡,则其余部分的内力必为零。 事实上,多跨静定粱的基本部分上的荷载不影响附属部分;桁架中的零杆的判断,都是静定结构的局部平衡特性的具体体现。 当然,局部平衡可以是几何不变体,也可以是几何可变体。 三. 静定结构的荷载等效性 当静定结构的一个内部几何不变部分上的荷载作等效变换时,其余部分的内力不变。 四. 静定结构的构造变换特性 当静定结构的一个内部几何不变部分作构造变换时,其余部分的内力不变。 2.什么是简支梁的包络图和绝对最大弯矩? 连接各截面内力最大值的曲线称为内力包络图 弯矩的包络图中最高的竖距称为绝对最大弯矩 3.结构失稳几点认识 结构的失稳存在两种基本形式,一般来说,完善体系是分支失稳,非完善体系是极值点失稳 分支点失稳形式的特征是存在不同平衡路径的交叉,在交叉点处出现平衡形式的二重性。极值点失稳形式的特征是虽然只存在一个平衡路径,但平衡路径上出现极值点。 结构失稳问题只有根据大扰度理论才能得出精神的结论,但从实用的观点看,小扰度理论也有其优点。也别是在分支点失稳问题中通常也能得出临界荷载的正确值,但也应该注意它的某些结论的局限性。 4.什么是极限弯矩?什么是极限塑性铰和极限状态? 荷载到达最大值时节点能承担的弯矩称为极限弯矩 当截面弯矩达到极限弯矩时这种截面为塑性铰 整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,此特定状态称为该功能的极限状态 5.基本定理可破坏荷载F P+恒不小于可接受荷载F P- 唯一性定理极限荷载值是唯一确定的 上限定理可破坏荷载是极限荷载的上限;或者说,极限荷载是可破坏荷载中的极小者 下限定理可接受荷载是极限荷载的下限;或者说,极限荷载是可接受荷载中的极大者5.超静定结构的特性 多余约束的存在及其影响各杆刚度改变对内力分布的影响 温度和沉陷等变形因素的影响

位移法解超静定结构

结构力学自测题(第六单元) 位移法解超静定结构 姓名 学号 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、图 示 结 构 ,?D 和 ?B 为 位 移 法 基 本 未 知 量 ,有 M i l ql AB B =-682?// 。 ( ) l D 2、图 a 中 Z 1, Z 2 为 位 移 法 的 基 本 未 知 量 , i = 常 数 , 图 b 是 Z Z 2110== , 时 的 弯 矩 图 , 即 M 2 图 。 ( ) a b l ( ) ( ) 3、图 示 超 静 定 结 构 , ?D 为 D 点 转 角 (顺 时 针 为 正), 杆 长 均 为 l , i 为 常 数 。 此 结 构 可 写 出 位 移 法 方 程 111202 i ql D ?+=/ 。 ( ) 二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、位 移 法 中 ,将 铰 接 端 的 角 位 移 、滑 动 支 承 端 的 线 位 移 作 为 基 本 未 知 量 : A. 绝 对 不 可 ; B. 必 须; C. 可 以 ,但 不 必 ; D. 一 定 条 件 下 可 以 。 ( ) 2、AB 杆 变 形 如 图 中 虚 线 所 示 , 则 A 端 的 杆 端 弯 矩 为 : A.M i i i l AB A B AB =--426???/ ; B.M i i i l AB A B AB =++426???/ ; C.M i i i l AB A B AB =-+-426???/ ; D.M i i i l AB A B AB =--+426?? ?/。 ( ) ?A B 3、图 示 连 续 梁 , 已 知 P , l ,?B , ?C , 则 : A . M i i BC B C =+44?? ; B . M i i BC B C =+42?? ; C . M i Pl BC B =+48?/ ; D . M i Pl BC B =-48?/ 。 ( ) 4、图 示 刚 架 , 各 杆 线 刚 度 i 相 同 , 则 结 点 A 的 转 角 大 小 为 : ( ) A . m o / (9i ) ; B . m o / (8i ) ; C . m o / (11i ) ; D . m o / (4i ) 。 5、图 示 结 构 , 其 弯 矩 大 小 为 : ( ) A . M AC =Ph /4, M BD =Ph /4 ; B . M A C =Ph /2, M B D =Ph /4 ; C . M AC =Ph /4, M B D =Ph /2 ; D . M AC =Ph /2, M BD =Ph /2 。 2 6、图 示 两 端 固 定 梁 , 设 AB 线 刚 度 为 i , 当 A 、B 两 端 截 面 同 时 发 生 图 示 单 位 转 角 时 , 则 杆 件 A 端 的 杆 端 弯 矩 为 : A. I ; B. 2i ; C. 4i ; D. 6i ( ) ( )i A B A =1 ?B =1 ? 7、图 示 刚 架 用 位 移 法 计 算 时 , 自 由 项 R P 1 的 值 是 : A. 10 ; B. 26 ; C. -10 ; D. 14 。 ( ) 4m 6kN/m 8、用 位 移 法 求 解 图 示 结 构 时 , 独 立 的 结 点 角 位 移 和 线 位 移 未 知 数 数 目 分 别 为 : A . 3 , 3 ; B . 4 , 3 ; C . 4 , 2 ; D . 3 , 2 。 ( ) 三、填 充 题 ( 将 答 案 写 在 空 格 内 ) 1、位 移 法 可 解 超 静 定 结 构 , 解 静 定 结 构 , 位 移 法 的 典 型 方 程 体 现 了 ________________________条 件 。 2、图 b 为 图 a 用 位 移 法 求 解 时 的 基 本 体 系 和 基 本 未 知 量 Z Z 12 , , 其 位 移 法 典 型 方 程 中 的 自 由 项, R 1 P = , R 2 P = 。 a b ( ) ( ) 3、图 示 刚 架 ,各 杆 线 刚 度 i 相 同 ,不 计 轴 向 变 形 ,用 位 移 法 求 得 M AD =???????? ,M BA =___________ 。 4、图 示 刚 架 ,欲 使 ?A =π/180,则 M 0 须 等 于 。 5、图 示 刚 架 ,已 求 得 B 点 转 角 ?B = 0.717/ i ( 顺 时 针 ) , C 点 水 平 位 移 ?C = 7.579/ i (→) , 则 M AB = , M DC = ___________ 。 6、图 示 排 架 ,Q BA =_______ , Q DC =_______ , Q FE = _________ 。 EA=EA=

静定结构课件

静定结构课件 静定结构课件 静定结构课件 概述 静定结构──无多余约束的几何不变结构,是实际结构的基础。因为静定结构撤销约束或不适当的更改约束配置可以使其变成可变体系,而增加约束又可以使其成为有多余约束的不变体系(即超静定结构)。因此,熟练掌握静定结构的组成规则,不仅可以正确地确定超静定结构中的多余约束数,而且可以正确地通过减少约束使超静定结构变成静定结构(而不是可变体系)。 从几何构造分析的角度看,结构必须是几何不变体系。根据多余约束n,几何不变体系又分为: 有多余约束(n>0)的几何不变体系——超静定结构; 无多余约束(n=0)的几何不变体系——静定结构。 从求解内力和反力的方法也可以认为: 静定结构:凡只需要利用静力平衡条件就能计算出结构的全部支座反力和杆件内力的结构。 受力分析

静定结构受力分析的基本方法 静定结构是没有多余约束的几何不变体系,其反力和内力只用静力平衡方程就能确定。这是静定结构的基本静力特征。 静定结构受力分析的基本方法是用截面法取隔离体,画受力图,对受力图建立平衡方程求反力和内力。求解时,应尽可能做到一个方程只含一个未知力,从而避免解联立方程。 分析对称结构时,应充分利用对称结构的`力学性能。对称结构在对称影响作用下,其反力、内力、位移均对称,在反对称影响作用下,其反力、内力、位移均反对称。这一结论对超静定结构也适用。 静定梁与静定刚架 梁、刚架以受弯变形为主,其内力一般有弯矩、剪力和轴力。 在梁与刚架的计算中,利用荷载、剪力、弯矩之间的微分关系并结合高等数学中所学的函数作图与导数关系的知识,可以毫无困难地判断出各段杆的弯矩图、剪力图的大致形状。任意一段直杆,只要知道了其杆端弯矩,就可以把它看成简支梁,用叠加法作出该段的弯矩图。采用分段叠加法,就可以作出弯矩图。 多跨静定粱是由几根单跨梁连接而成的主从结构。分析的关键是拆成单跨粱,将其分为基本部分和附属部分。先计算附

静定结构基本知识

静定结构基本知识

1.几何不变体系? 什么是几何可变体系? 答:体系受到荷载作用后,在不考虑体系材料应变的前提下,体系的位置或几何形状不产生变化,称它为几何不变体系。 在不考虑材料应变的前提下,即使荷载很小,也会引起几何形状的改变,这类体系称它为几何可变体系。 土建工程中只有几何不变体系才能作为结构使用。 2. 为什么要对体系进行几何组成分析? 答:在对结构进行分析计算时,必须先分析体系的几何组成,以确保体系的几何不变性,这种分析就是结构的几何组成分析。几何组成分析的目的是: (1)判别体系是否为几何不变体系,从而决定它能否作为结构所使用; (2)掌握几何不变体系的组成规则,便于设计出合理的结构; 2

(3)用以区分体系为静定结构或超静定结构,从而对它们采用不同的计算方法。 3.什么是刚体?什么是刚片? 答:在不考虑材料的应变时,杆系结构本身的变形与几何变形无关,所以,此时的某一杆件可视为刚体;同理,已经判明是几何不变的部分(如图2-2),也可看成是刚体。平面的刚体又称为刚片。 需要特别注意的是:所有结构的基础是地基(地球),几何组成分析的前提是地基为几何不变体系,所以地基是一个大刚片。 图2-2 4.什么是自由度? 答:体系在运动时,用以完全确定体系在平面内的位置所需的独立坐标的数目,称为自由度。 3

5.平面内一个点和一个刚片各有几个自由度? 答:一个动点在平面内的自由度是2。一个刚片在平面内的自由度是3。 6.什么是约束?工程中常见的约束有哪几种? 答:(1)能使体系减少自由度的装置称为约束。减少一个自由度的装置称为一个约束,减少若干个自由度的装置,就相当于若干个约束。 (3)工程中常见的约束有以下几种: 1)链杆 一根链杆可使刚片减少一个自由度,相当于一个约束。 2)铰支座 铰支座可使刚片减少两个自由度,相当于两个约束,亦即相当于两根链杆。 3)简单铰 凡连接两个刚片的铰称简单铰,一个简单 4

晶体结构解析

晶体结构解析 1、挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2、选择用铜靶还是钼靶? 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3、用smart程序收集衍射数据:得到大约一千张倒易空间的衍射图像,300M大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4、用saint程序还原衍射数据:得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5、用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p或者raw文件。 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群 等信息; hkl文件:包含的是衍射点的强度 数据; pcf文件:记录了晶体物理特征, 分子式,空间群,衍射数据收集的条 件以及使用的相关软件等信息。 5.3 选择要解析的方法:直接法 (TREF)还是帕特深法(PATT)? 如果晶体中含有重原子如金属原 子,那就要用PATT法;如果晶体中 没有原子量差异特别大的原子,就用 TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内 容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的 指认,付利叶加氢或理论加氢,画图 等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16), goof=S=1+-0.2(1.00) C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol 出现一系列的Q峰信息。每次打开 xp后都要先输入此命令。 输入pick 进入Q峰之间连接的结构体系中。 根据化学经验(键长,键角以及连接 方式)和自己晶体的预测的结构,对 Q 峰进行取舍。 取舍完毕后,进行原子的命名。当闪 点在某个原子上时,从键盘上输入要 命名的原子的符号,然后回车;闪点 就会跳到下一个要命名的Q峰上。当 闪点在某个Q峰上时,如果直接回 车,会删掉此原子,用backspace可 以复原;如果直接敲空格键,闪点会 跳到下一个Q峰上。 敲“/”键,保存命名结果,退出;敲 “esc”键,不保存结果,退出。 输入pers 可以看棍球图,如果有错误的原子命 名,可以继续用pick命令进行修改。 输入proj 可以看到结构图,并可以旋转观看 输入grow 可以长出对称的单元。如果没有对称 的单元,则此命令无效。 输入fuse 删除grow出来的原子和其他操作长 出的原子,这些原子不能带入精修的 过程中。 输入sort /n 对原子进行排序,按照原子名称的 序号;如果输入sort $C $N则按照原 子种类进行排序。 输入file name.ins 保存所作的命名信息。会有提示询 问是否从name.res中拷贝信息,直接 回车。 注意:name指用xs解析时命名的作 业名,不能更改。 输入quit 退出程序,敲esc退出程序 5.5.2 用xl进行精修 点击xl 出现精修过程,看是否符合5.5中 的标准(可以关闭xl后,通过增加 ins中的ls的次数或者copy name.res to name.ins 命令进行反复精修,切记 每次xl精修后生成的是res文件,因 此要将res拷贝成ins再次进行精修 才有效)。 如果其他的条件不符合,则要修改 ins文件:加入 anis(对所有指令后的非氢原子进 行各向异性精修,anis n对指令后的 前n个原子进行各向异性精修,anis C对指令后的指定原子进行各向异 性精修) omit(忽略指定的衍射点,一般都 要用到omit 0 52)

习题及解答(晶体结构、缺陷)

习题 第二章晶体结构及常见晶体结构类型 1、名词解释 (a)晶体与晶体常数(b)类质同晶和同质多晶(c)二八面体型与三八面体型(d)同晶取代与阳离子交换(e)尖晶石与反尖晶石(f)晶胞与晶胞参数(g)配位数与配位体(h)同质多晶与多晶转变(i)位移性转变与重建性转变(j)晶体场理论与配位场理论 答:(a)晶体是内部质点在三维空间成周期性重复排列的固体。或晶体是具格子构造的固体。晶体常数:晶轴轴率或轴单位,轴角。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。(c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构。 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体 结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 (f)任何晶体都对应一种布拉菲格子,因此任何晶体都可划分出与此种布拉菲格子平行六面体相对应的部分,这一部分晶体就称为晶胞。晶胞是能够反映晶体结构特征的最小单位。表示晶体结构特征的参数(a、b、c,α(bc)∧、β(ac)∧、γ(ab)∧)称为晶胞常数,晶胞参数也即晶体常数。 (g):配位数:晶体结构中与一个离子直接相邻的异号离子数。配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。 (h)同质多晶:同一化学组成在不同外界条件下(温度、压力、pH值等),结晶成为两种以上不同结构晶体的现象。多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。 (i)位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。重建性转变:破坏原有原子间化学 键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。

相关文档