文档库 最新最全的文档下载
当前位置:文档库 › 人工神经网络复习题

人工神经网络复习题

人工神经网络复习题
人工神经网络复习题

1、人工神经网络:在对人脑神经网络基本认识的基础上,用数理方法从信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,就称为人工神经网络。

2、自适应:自适应性是指一个系统能改变自身的性能以适应环境变化的能力。

3、自学习:当外界环境发生变化时,经过一段时间的训练或感知,神经网络能通过调整网络结构参数,使得对给定输入能产生期望的输出。

4、自组织:神经系统能在外部刺激下按一定规则调整神经元之间的突触连接,逐渐构建起神经网络,这一构建过程称为网络的自组织。

5、泛化能力:BP 网络训练后将所提取的样本对中的非线性映射关系存储在权值矩阵中,在其后的工作阶段,当向网络输入训练时未曾见过的非样本数据时,网络也能完成由输入空间向输出空间的正确映射。

6、模式:模式是对某些感兴趣的客体的定量描述或结构描述,模式类是具有某些共同特征的模式的集合

7、分类:分类是在类别知识等导师信号的指导下,将待识别的输入模式分配到各自的模式类中去。

8、聚类:无导师指导的分类称为聚类,聚类的目的是将相似的模式样本划归一类,而将不相似的分离开,其结果实现了模式样本的类内相似性和类间分离性。

9、死节点:在训练过程中,某个节点从未获胜过且远离其他获胜节点,因此它们的权向量从未得到过调整。

10、网络吸引子:若网络的状态)(f T WX X -=,则成称X 为网络的吸引子。

11、人工神经网络发展阶段及标志:可分为四个时期:启蒙时期开始于1890年W.James 关于人脑结构与功能的研究,结束于1969年Minsky 和Papert 出版的《感知器》一书;低潮时期开始于1969年,结束于1982年Hopfield 发表的著名的文章《神经网络和物理系统》;复兴时期开始于J.J.Hopfield 的突破性研究论文,结束与1986年 D.E.Rumelhart 和J.L.McClelland 领导的研究小组编写出版的《并行分布式处理》一书。高潮时期以1987年首届国际神经网络学术会议为开端,迅速在全世界范围内掀起人工神经网络的研究应用热潮。

12、神经网络的基本特征:结构上的特征是处理单元的高度并行性与分布性,这种特征使神经网络在信息处理方面具有信息的分布存储与并行计算、存储与处理一体化的特点。而这些特点必然给神经网络带来较快的处理速度和较强的容错能力。能力方面的特征是神经网络的自学习、自组织和自适应性。自适应性是指一个系统能改变自身的性能以适应环境变化的能力,它包含自学习和自组织两层含义。自学习是指当外界环境发生变化时,经过一段时间的训练或感知,神经网络能通过调整网络结构参数,使得对给定输入能产生期望的输出。自组织是指神经系统能在外部刺激下按一定规则调整神经元之间的突触连接,逐渐构建起神经网络。

13、人脑神经元的基本结构与功能:神经元在结构上由细胞体、树突、轴突和突触四部分组成 功能:细胞体:处理信息的功能 树突:输入信息 轴突:输出信息 突触:传递信息的节点

14、人脑信息传递过程:

突触前 突触间隙 突触后

神经 电脉冲 神经递质产生 神经递质释

递质与受体结合 电生理反应

15、BP 网络的主要能力是什么?

答:1、非线性映射能力2、泛化能力3、容错能力

16、BP 算法的缺陷及改进方案

BP 算法的缺陷

①易形成局部极小而得不到全局最优;

②训练次数多,使得学习效率低,收敛速度慢;

③隐节点的选取缺乏理论指导;

④训练时学习新样本有遗忘旧样本的趋势。

改进方案:

1 增加动量项

2 自适应调节学习率

3 引入陡度因子

17、对输入、输出数据进行尺度变换的主要原因是什么?

①网络的各个输入数据常常具有不同的物理意义和不同的量纲,如某输入分量在510

1~0?范围内变化,而另一输入分量则在5-101~0?范围内变化。尺度变换使所有分量都在1~0或

1~1-之间变化,从而使网络训练一开始就给各输入分量以同等重要的地位;②BP 网的神经元均采用Sigmoid 转移函数,变换后可防止因净输入的绝对值过大而使神经元输出饱和,继而使权值调整进入误差曲面的平坦区;③Sigmoid 转移函数的输出在1~0或1~1-之间,作为教师信号的期望输出数据如不进行变换处理,势必使数值大的分量绝对误差大,数值小的分量的绝对误差小,网络训练时只针对输出的总误差调整权值,其结果是在总误差中占份额小的输出分量相对误差较大,对输出分量进行尺度变换后这个问题可迎刃而解。

18、BP 网络初始值的设计的原则和方法?

答:原则:使每个神经元一开始都工作在其转移函数变化最大的位置。

方法:①使初始权值足够小;②使初始值为+1和-1的权值数相等。应用中对隐层权值可采用第一种方法,而对输出层可采用第二种办法。

19、胜者为王学习规则的三个步骤。①向量归一化 首先将自组织网络中的当前输入模式向

量X 和竞争层中各神经元对应的内星向量),,2,1j m j W ???=(全部进行归一化处理,得到^

X 和),,2,1(^j m j W =。②寻找获胜神经元 当网络得到一个输入模式向量^X 时,竞争层的所有神经元对应的内星权向量),,2,1(^j m j W =均与^X 进行相似性比较,将与^X 最相似的内星权向量判为竞争获胜神经元,其权向量记为^*j W 。测量相似性的方法是对j ^W 和^X 计算欧式距离(或夹角余弦):}{min X ^

^},,2,1{^^*j m j j W X W -=-∈ (可补充)③网络输出与权值调整 胜者为王竞争学习算法规定,获胜神经元输出为1,其余输出为零。

20、SOM 网权值初始化的原则和一般方法有哪些?

答:SOM 网的权值一般初始化为较小的随机数,这样做的目的是使权向量充分分散在样本空间。但在某些应用中,样本整体上相对集中于高维空间的某个局部区域,权向量的初始位置却随机的分散于样本空间的广阔区域,训练时必然是离整个样本群最近的权向量被不断调

整,并逐渐进入全体样本的中心位置,而其他权向量因初始位置远离样本群而永远得不到调整。如此训练的结果可能使全部样本聚为一类。解决这类问题的思路是尽量使权值的初始位置与输入样本的大致分布区域充分重合。根据上述思路,一中简单易行的方法是从训练集中随机抽取m 个输入样本作为初始权值,即:k

ram j X 0=)(W ),,2,1(m j =

式中,ram k 是输入样本的顺序随机数,}2,1{k ram P ,∈。因为任何ram k X 一定是输入空间

某个模式类的成员,各个权向量按上式初始化后从训练一开始就分别接近了输入空间的各模式类,占据了十分有利的“地形”。另外一种可行的办法是先计算出全体样本的中心向量:

∑==P 1

p p X P 1X 在该中心向量基础上叠加小随机数作为权向量初始值,也可将权向量的初始位置确定在样本群中。

21、SOM 网的局限性

①隐层神经元数目难以确定,因此隐层神经元往往未能充分利用,某些距离学习向量远的神经元不能获胜,从而成为死节点;

②聚类网络的学习速率需要人为确定,学习终止往往需要人为控制,影响学习进度; ③隐层的聚类结果与初始权值有关。

22、正则化RBF 网络与广义RBF 网络的不同:

①径向基函数的个数M 与样本的个数P 不相等,且M 常常远小于P 。

②径向基函数的中心不再限制在数据点上,而是由训练算法确定。

③各径向基函数的扩展常数不再统一,其值由训练算法确定。

④输出函数的线性中包含阈值参数,用于补偿基函数在样本集上的平均值与目标值之间的差别。

23、BP 网络与RBF 网络的不同

①RBF 网络只有一个隐层,而BP 网络的隐层可以是一层也可以是多层的。

②BP 网络的隐层和输出层其神经元模型是一样的;而RBF 网络的隐层神经元和输出层神经元不仅模型不同,而且在网络中起到的作用也不一样。

③RBF 网络的隐层是非线性的,输出层是线性的。然而,当用BP 网络解决模式分类问题时,它的隐层和输出层通常选为非线性的。当用BP 网络解决非线性回归问题时,通常选择线性输出层。

④RBF 网络的基函数计算的是输入向量和中心的欧氏距离,而BP 网络隐单元的激励函数计算的是输入单元和连接权值间的内积。

⑤RBF 网络使用局部指数衰减的非线性函数(如高斯函数)对非线性输入输出映射进行局部逼近。BP 网络的隐节点采用输入模式与权向量的内积作为激活函数的自变量,而激活函数则采用Sigmoid 函数或硬限幅函数,因此BP 网络是对非线性映射的全局逼近。RBF 网络最显著的特点是隐节点采用输入模式与中心向量的距离(如欧式距离)作为函数的自变量,并用径向基函数(如Gauss 函数)作为激活函数。径向基函数关于N 维空间的的一个中心点具有径向对称性,而且神经元的输入离该中心越远,神经元的激活程度就越低。隐层节点的这个特性常被称为“局部特性”。

24、支持向量机的基本思想/方法是什么?

答:支持向量机的主要思想是建立一个最优决策超平面,使得该平面两侧距平面最近的两类样本之间的距离最大化,从而对分类问题提供良好的泛化能力。对于非线性可分模式分类问

题,根据Cover 定理:将复杂的模式分类问题非线性的投射到高维特征空间可能是线性可分的,因此只要变换是非线性的且特征空间的维数足够高,则原始模式空间能变换为一个新的高维特征空间,使得在特征空间中模式以较高的概率为线性可分的。此时,应用支持向量机算法在特征空间建立分类超平面,即可解决非线性可分的模式识别问题。

25、cover 定理:将复杂的模式分类问题非线性的投射到高维空间比投射到低维空间更可能是线性可分的。

26、画图并说明权值调整的通用学习规则。

答:通用学习规则可表达为:权向量j W 在t 时刻的调整量)

(t W j ?与t 时刻的输入向量)

(t X 和学习信号r 的乘积成正比。用数学表达式为: )()](),(),([r W j t X t d t X t W j j η=?

式中,η为正数,称为学习常数,其值决定了学习速率。基于离散时间调整时,下一时刻的权向量应为:

)()](),(X )(W [)(W )1(W j j j t X t d t t r t t j ,η+=+(补充图)

27、BP 算法的误差曲线存在平坦区,利用图形、相关公式说明造成平坦区的原因、平坦区造成的问题、如何改进进而快速度过平坦区。

答:造成平坦区的原因:造成这种情况的原因与各节点的净输入过大有关。平坦区造成的问题:会使训练次数大大增加,从而影响了收敛速度。如何改进进而快速度过平坦区:①自适应调节学习率②引入陡度因子

28、批训练BP 算法步骤

29、SOM 神经网络学习算法

⑴初始化 对输出层各权向量赋予小随机数并进行归一化处理,得到j ^

W ,;,,m 2,1j =建立初始优胜邻域)0(N *j ;学习率η赋初始值。

⑵接受输入 从训练集中选取一个输入模式并进行归一化处理,得到^p X ,。

,,P}2,1{p ∈ ⑶寻找获胜节点 计算^p X 与j ^

W 的点积,m 2,1j ,, =,从中选出点积最大的获胜节点*j ;如果输入模式未经归一化,应计算欧式距离,从中找出距离最小的获胜节点。

⑷定义优胜邻域)(t *N j 以*j 为中心确定t 时刻的权值调整域,一般初始邻域)(0*N j 较

大,训练过程中)(t *N j 随训练时间逐渐收缩。

⑸调整权值 对优胜邻域)(t *N j 内的所有节点调整权值:

)]t (w )[,()t (w )1t (w ij ij ij -+=+p i x N t η ;2,1i n ,,

= )(t *N j j ∈ 30、K-means 聚类算法确定数据中心

(1)初始化 选择M 个互不相同向量作为初始聚类中心:

),0(,),0(),0(21M c c c 选择时可

采用对各聚类中心向量赋小随机数的方法。

(2) 计算输入空间各样本点与聚类中心点的欧式距离:

(k c -X j p ;,,2,1P p = M j ,,2,1 = (3)相似匹配 令*

j 代表竞争获胜隐节点的下标,对每一个输入样本p X 根据其与聚类中心的最小欧式距离确定其归类)(*p X j ,即当有如下等式时: )(m in )(*k c X X j j p j

p -= P p ,,2,1 = p X 被归为第*j 类,从而将全部样本划分M 个子集,),(,),(),(21k U k U k U M 每个子集构成一个以聚类中心为典型代表的聚类域。

(4)更新各类的聚类中心 可采用两种调整方法,一种方法是对各聚类域中的样本取均值,令)(k U j 表示第j 个聚类域,j N 为第j 个聚类域中的样本数,则:

∑∈=+)(j 1

)1(c k U X l j X N k

另一种方法是采用竞争学习规则进行调整,即

??

???≠=-+=+*),(*)],([)()1(j j k c j j k c X k c k c j j p j j η 式中,η是学习率,且10<<η。可以看出,当1=η时,该竞争规则即为Winner-Take-All 规则。

(5)将k 值加1,转到第(2)步。重复上述过程直到k c 的改变量小于要求的值。 各聚类中心确定后,可根据各中心之间的距离确定对应径向基函数的扩展常数。令: i j i

j c c d -=min 则扩展常数取:j j d λδ= 式中,λ为重叠系数。 31、结合cover 定理,从模式可分性观点论述RBF 处理线性不可分问题的原理。

(1)cover 定理 将复杂的模式分类问题非线性的投射到高维空间比投射到低维空间更可能是线性可分的。

(2)RBF 神经元模型 )()(1∑=-=

P p p p X X w X F ? (3)RBF 的拓扑结构

dist y n X1

X2 X3

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

人工智能习题作业神经计算I习题答案

第五章 神经网络课后习题及答案 一、选择题: 1. 在BP算法中,设y=f(xi)为xi的平滑函数,想知道xi对y增大变化的情况, 我们可求 ,然后进行下列的哪一项? ( B ) A 取最小 B 取最大 C 取积分 D 取平均值 2. 对于反向传播学习,无论是在识别单个概念的学习或识别两个概念的学习中,都涉及到下列的哪一个操作? ( A ) A 权值的修正 B 调整语义结构 C 调整阀值 D 重构人工神经元 3. 根据Hopfield网络学习的特点,能实现联想记忆和执行线性和非线性规划等求解问题其应用没有涉及到下列的哪一个内容? ( D ) A 模糊推理模型 B 非线性辨认 C 自适应控制模型 D 图象识别 4. 对于神经网络的二级推理产生式规则由三个层次构成,它不含下列的哪一个层次? ( C ) A 输入层 B 输出层 C 中间层 D 隐层 5. 人工神经网络借用了生理神经元功能的一些描述方式,它涉及到下列的哪一些内容? ( ABC ) A 模拟神经元 B 处理单元为节点 C 加权有向图 D 生理神经元连接而成

6. 在应用和研究中采用的神经网络模型有许多种,下列的哪一些是具有代表性的? ( ABD ) A 反向传递(BP) B Hopfield网 C 自适应共振 D 双向联想存储器 7. 下列的哪一些内容与反向传播学习算法有关? ( ABCD ) A 选取比率参数 B 误差是否满足要求 C 计算权值梯度 D 权值学习修正 8. 构造初始网络后,要用某种学习算法调整它的权值矩阵,使NN在功能上满足样例集给定的输入一输出对应关系,并由此产生推理,该矩阵必须满足下列的哪一个性质? ( A ) A 收敛性 B 对称性 C 满秩性 D 稀疏性 9. 在人工神经元的功能描述中,往往会用一激发函数来表示输出,常用的一般非线性函数有下列的哪一些项? ( ABD ) A 阀值型 B 分段线性强饱和型 C 离散型 D S i gm oid型 10. 基于神经网络的推理,其应用中必须涉及到下列的哪一些内容? ( ACD ) A NN的结构模型 B NN的推理规则 C NN的学习算法 D 从NN到可解释的推理网 二、填空题: 1. 前馈网络是一种具有很强学习能力的系统,结构简单,易于编程。前馈网络通

人工智能期末试题及答案完整版

xx学校 2012—2013学年度第二学期期末试卷 考试课程:《人工智能》考核类型:考试A卷 考试形式:开卷出卷教师: 考试专业:考试班级: 一单项选择题(每小题2分,共10分) 1.首次提出“人工智能”是在(D )年 A.1946 B.1960 C.1916 D.1956 2. 人工智能应用研究的两个最重要最广泛领域为:B A.专家系统、自动规划 B. 专家系统、机器学习 C. 机器学习、智能控制 D. 机器学习、自然语言理解 3. 下列不是知识表示法的是 A 。 A:计算机表示法B:“与/或”图表示法 C:状态空间表示法D:产生式规则表示法 4. 下列关于不确定性知识描述错误的是 C 。 A:不确定性知识是不可以精确表示的 B:专家知识通常属于不确定性知识 C:不确定性知识是经过处理过的知识 D:不确定性知识的事实与结论的关系不是简单的“是”或“不是”。 5. 下图是一个迷宫,S0是入口,S g是出口,把入口作为初始节点,出口作为目标节点,通道作为分支,画出从入口S0出发,寻找出口Sg的状态树。根据深度优先搜索方法搜索的路径是 C 。 A:s0-s4-s5-s6-s9-sg B:s0-s4-s1-s2-s3-s6-s9-sg C:s0-s4-s1-s2-s3-s5-s6-s8-s9-sg D:s0-s4-s7-s5-s6-s9-sg 二填空题(每空2分,共20分) 1.目前人工智能的主要学派有三家:符号主义、进化主义和连接主义。 2. 问题的状态空间包含三种说明的集合,初始状态集合S 、操作符集合F以及目标

状态集合G 。 3、启发式搜索中,利用一些线索来帮助足迹选择搜索方向,这些线索称为启发式(Heuristic)信息。 4、计算智能是人工智能研究的新内容,涉及神经计算、模糊计算和进化计算等。 5、不确定性推理主要有两种不确定性,即关于结论的不确定性和关于证据的不确 定性。 三名称解释(每词4分,共20分) 人工智能专家系统遗传算法机器学习数据挖掘 答:(1)人工智能 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等 (2)专家系统 专家系统是一个含有大量的某个领域专家水平的知识与经验智能计算机程序系统,能够利用人类专家的知识和解决问题的方法来处理该领域问题.简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统 (3)遗传算法 遗传算法是一种以“电子束搜索”特点抑制搜索空间的计算量爆炸的搜索方法,它能以解空间的多点充分搜索,运用基因算法,反复交叉,以突变方式的操作,模拟事物内部多样性和对环境变化的高度适应性,其特点是操作性强,并能同时避免陷入局部极小点,使问题快速地全局收敛,是一类能将多个信息全局利用的自律分散系统。运用遗传算法(GA)等进化方法制成的可进化硬件(EHW),可产生超出现有模型的技术综合及设计者能力的新颖电路,特别是GA独特的全局优化性能,使其自学习、自适应、自组织、自进化能力获得更充分的发挥,为在无人空间场所进行自动综合、扩展大规模并行处理(MPP)以及实时、灵活地配置、调用基于EPGA的函数级EHW,解决多维空间中不确定性的复杂问题开通了航向 (4)机器学习 机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎 (5)数据挖掘 数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的

人工智能习题&答案-第4章-计算智能1-神经计算-模糊计算

第四章计算智能(1):神经计算模糊计算4-1 计算智能的含义是什么?它涉及哪些研究分支? 贝兹德克认为计算智能取决于制造者提供的数值数据,而不依赖于知识。计算智能是智力的低层认知。 主要的研究领域为神经计算,模糊计算,进化计算,人工生命。 4-2 试述计算智能(CI)、人工智能(AI)和生物智能(BI)的关系。 计算智能是智力的低层认知,主要取决于数值数据而不依赖于知识。人工智能是在计算智能的基础上引入知识而产生的智力中层认知。生物智能,尤其是人类智能,则是最高层的智能。即CI包含AI包含BI 4-3 人工神经网络为什么具有诱人的发展前景和潜在的广泛应用领域? 人工神经网络具有如下至关重要的特性: (1) 并行分布处理 适于实时和动态处理 (2)非线性映射 给处理非线性问题带来新的希望 (3) 通过训练进行学习 一个经过适当训练的神经网络具有归纳全部数据的能力,能够解决那些由数学模型或描述规则难以处理的问题 (4) 适应与集成 神经网络的强适应和信息融合能力使得它可以同时输入大量不同的控制信号,实现信息集成和融合,适于复杂,大规模和多变量系统 (5) 硬件实现 一些超大规模集成是电路实现硬件已经问世,使得神经网络成为具有快速和大规模处理能力的网络。 4-4 简述生物神经元及人工神经网络的结构和主要学习算法。

生物神经元 大多数神经元由一个细胞体(cell body或soma)和突(process)两部分组成。突分两类,即轴突(axon)和树突(dendrite),轴突是个突出部分,长度可达1m,把本神经元的输出发送至其它相连接的神经元。树突也是突出部分,但一般较短,且分枝很多,与其它神经元的轴突相连,以接收来自其它神经元的生物信号。 轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其它神经元发送信息。对某些突触的刺激促使神经元触发(fire)。只有神经元所有输入的总效应达到阈值电平,它才能开始工作。此时,神经元就产生一个全强度的输出窄脉冲,从细胞体经轴突进入轴突分枝。这时的神经元就称为被触发。突触把经过一个神经元轴突的脉冲转化为下一个神经元的兴奋或抑制。学习就发生在突触附近。 每个人脑大约含有10^11-10^12个神经元,每一神经元又约有10^3-10^4个突触。神经元通过突触形成的网络,传递神经元间的兴奋与抑制。大脑的全部神经元构成极其复杂的拓扑网络群体,用于实现记忆与思维。 人工神经网络的结构 人工神经网络由神经元模型构成。每个神经元具有单一输出,并且能够与其它神经元连接,存在许多输出连接方法,每种连接方法对应于一个连接权系数。 人工神经网络的结构分为2类, (1)递归(反馈)网络 有些神经元的输出被反馈至同层或前层神经元。信号能够从正向和反向流通。Hopfield网络,Elmman网络和Jordan网络是代表。 (2) 前馈网络 具有递阶分层结构,由一些同层神经元间不存在互连的层级组成。从输入层至输出层的信号通过单向连接流通,神经元从一层连接至下一层,不存在同层神经元之间的连接。多层感知器(MLP),学习矢量量化网络(LVQ),小脑模型连接控制网络(CMAC)和数据处理方法网络(GMDH)是代表。 人工神经网络的主要学习算法 (1) 指导式(有师)学习 根据期望和实际的网络输出之间的差来调整神经元连接的强度或权。包括Delta规则,广义Delta规则,反向传播算法及LVQ算法。 (2) 非指导(无导师)学习 训练过程中,神经网络能自动地适应连接权,以便按相似特征把输入模式分组聚集。包括

人工神经网络的发展及应用

人工神经网络的发展及应用 西安邮电学院电信系樊宏西北电力设计院王勇日期:2005 1-21 1 人工神经网络的发展 1.1 人工神经网络基本理论 1.1.1 神经生物学基础生物神经系统可以简略地认为是以神经元为信号的处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞,即神经元(neuron) 。 (1)神经元具有信号的输人、整合、输出三种主要功能作用行为,结构如图1 所示: (2)突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。 (3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.1.2 建模方法神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型;②神 经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后冉与真实对象作比较(仿真处理方法)。1.1.3 概

念人工神经网络用物理町实现系统采模仿人脑神经系统的结构和功能,是一门新兴的前沿交义学科,其概念以T.Kohonen.Pr 的论述 最具代表性:人工神经网络就是由简单的处理单元(通常为适应性神经元,模型见图2)组成的并行互联网络,它的组织能够模拟生物神 经系统对真实世界物体所作出的交互反应。 1.2 人工神经网络的发展 人工神经网络的研究始于40 年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的较为曲折的道路。1943 年,心理学家W.S.Mcculloch 和数理逻辑学家W.Pitts 提出了M—P 模型, 这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949 年,心理学家D. O. Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络。1969 年,美国著名人工智能学者M.Minsky 和S.Papert 编写了影响很大的Perceptron 一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知能也不过如此,在这之后近10 年,神经网络研究进入了一个缓慢发展的萧条期。美国生物物理学家J.J.Hopfield 于1982年、1984 年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

神经网络在数据挖掘中的应用

神经网络在数据挖掘中的应用

————————————————————————————————作者:————————————————————————————————日期: ?

神经网络在数据挖掘中的应用 摘要:给出了数据挖掘方法的研究现状,通过分析当前一些数据挖掘方法的局限性,介绍一种基于关系数据库的数据挖掘方法——神经网络方法,目前,在数据挖掘中最常用的神经网络是BP网络。在本文最后,也提出了神经网络方法在数据挖掘中存在的一些问题. 关键词:BP算法;神经网络;数据挖掘 1.引言 在“数据爆炸但知识贫乏”的网络时代,人们希望能够对其进行更高层次的分析,以便更好地利用这些数据。数据挖掘技术应运而生。并显示出强大的生命力。和传统的数据分析不同的是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所得到的信息具有先未知,有效性和实用性三个特征。它是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的规律表示出来。数据挖掘在自身发展的过程中,吸收了数理统计、数据库和人工智能中的大量技术。作为近年来来一门处理数据的新兴技术,数据挖掘的目标主要是为了帮助决策者寻找数据间潜在的关联(Relation),特征(Pattern)、趋势(Trend)等,发现被忽略的要素,对预测未来和决策行为十分有用。 数据挖掘技术在商业方面应用较早,目前已经成为电子商务中的关键技术。并且由于数据挖掘在开发信息资源方面的优越性,已逐步推广到保险、医疗、制造业和电信等各个行业的应用。 数据挖掘(Data Mining)是数据库中知识发现的核心,形成了一种全新的应用领域。数据挖掘是从大量的、有噪声的、随机的数据中,识别有效的、新颖的、有潜在应用价值及完全可理解模式的非凡过程。从而对科学研究、商业决策和企业管理提供帮助。 数据挖掘是一个高级的处理过程,它从数据集中识别出以模式来表示的知识。它的核心技术是人工智能、机器学习、统计等,但一个DM系统不是多项技术的简单组合,而是一个完整的整体,它还需要其它辅助技术的支持,才能完成数据采集、预处理、数据分析、结果表述这一系列的高级处理过程。所谓高级处理过程是指一个多步骤的处理过程,多步骤之间相互影响、反复调整,形成一种螺旋式上升过程。最后将分析结果呈现在用户面前。根据功能,整个DM系统可以大致分为三级结构。 神经网络具有自适应和学习功能,网络不断检验预测结果与实际情况是否相符。把与实际情况不符合的输入输出数据对作为新的样本,神经网络对新样本进行动态学习并动态改变网络结构和参数,这样使网络适应环境或预测对象本身结构和参数的变化,从而使预测网络模型有更强的适应性,从而得到更符合实际情况的知识和规则,辅助决策者进行更好地决策。而在ANN的

《人工神经网络原理与应用》试题

1 / 1 《人工神经网络原理与应用》试题 试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。 试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )试论述神经网络系统建模的几种基本方法。利用BP 网络对以下非线性系统进行辨识。 非线性系统 )(5.1) 1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 首先利用[-1,1]区间的随机信号u(k),样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。 试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。 试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。 谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。《人工神经网络原理与应用》试题 试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。 试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )试论述神经网络系统建模的几种基本方法。利用BP 网络对以下非线性系统进行辨识。 非线性系统 )(5.1) 1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 首先利用[-1,1]区间的随机信号u(k), 样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。 试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。 试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。 谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

人工神经网络作业-单层感知器

3.5单层感知器 # include # include # define N 100 int sgn(double x) //符号运算函数 { int y; if(x>0||x==0) y=1; else y=-1; return y; } void main() { double W[4]={0.0,0.0,0.0,0.0},X[6][4]={{-1,0.8,0.5,0},{-1,0.9,0.7,0.3},{-1,1,0.8,0.5}, {-1,0,0.2,0.3},{-1,0.2,0.1,1.3},{-1,0.2,0.7,0.8}}; int err,o[6],i,j,k,num,d[6]={1,1,1,-1,-1,-1}; double n,WX; n=1.0; k=0; do { k++; num=0; for(i=0;i<6;i++) { WX=0.0; for(j=0;j<4;j++) WX=WX+W[j]*X[i][j]; o[i]=sgn(WX); err=d[i]-o[i]; for(j=0;j<4;j++) W[j]=W[j]+n*err*X[i][j]; if(err==0) num++; } }while(num!=6); printf("调整后的权值矩阵为:\n"); for(j=0;j<4;j++) printf("%f\n",W[j]); printf("分类结果为:\n"); for(i=0;i<6;i++) printf("%d\n",o[i]);

} 3.6单次训练的结果 # include # include double Sig(double x) //单极性函数 { double y; y=1.0/(1.0+exp(-x)); return y; } void main() { double x[3]={-1,1,3},V[3][3]={{0,3,-1},{0,1,2},{0,-2,0}},W[3][3]={{0,2,3},{0,1,1},{0,0,-2}}; double d[3]={0,0.95,0.05},nety[3],neto[3],Y[3],O[3],dety[3],deto[3]; double D,yita; int i,j; yita=1.0; FILE *fp; fp=fopen("out.txt","w"); fprintf(fp,"初始W矩阵:\n"); for(i=0;i<3;i++) { for(j=1;j<3;j++) fprintf(fp,"%f ",W[i][j]); fprintf(fp,"\n"); } fprintf(fp,"初始V矩阵:\n"); for(i=0;i<3;i++) { for(j=1;j<3;j++) fprintf(fp,"%f ",V[i][j]);

人工神经网络及其应用实例_毕业论文

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

人工神经网络大作业

X X X X 大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010 年12 月22 日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1. 1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元, 通过广泛的突触联系形成的信息处理集团, 其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1) 神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站, 它构成各神经元之间广泛的联接。(3) 大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物, 其变化是先天遗传信息确定的总框架下有限的自组织过程。 1. 2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系, 这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法: ①神经生物学模型方法, 即根据微观神经生物学知识的积累, 把脑神经系统的结构及机理逐步解释清楚, 在此基础上建立脑功能模型。②神经计算模型方法, 即首先建立粗略近似的数学模型并研究该模型的动力学特性, 然后再与真实对象作比较(仿真处理方法)。 1. 3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能, 是一门新兴的前沿交叉学科, 其概念以T.Kohonen. Pr 的论述最具代表性: 人工神经网络就是由简单的处理单元(通常为适应性) 组成的并行互联网络, 它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1. 4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题: 模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1. 5理论局限性 (1) 受限于脑科学的已有研究成果由于生理试验的困难性, 目前对于人脑思维与记忆机制的认识尚很肤浅, 对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2) 尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网, 节点间互连强度构成的矩阵可通过某种学

神经网络作业20092676吴戈林电子0901班

神经网络原理及其应用——基于BP 人工神经网络的图像分割器 学校:东北大学 班级:电子信息工程0901班 姓名:吴戈林 学号:20092676 指导老师:王斐 时间:2012年12月

目录 人工神经网络 (3) 一、特点与优势 (3) 二、人工神经网络的主要研究方向 (4) 三、人工神经网络的应用分析 (4) 四、人工神经网络在图像分割中的应用 (6) 1.问题概述 (7) 2.基于BP 人工神经网络的图像分割器 (8) 2.1神经网络结构的确定 (8) 2. 2 神经网络结构的改进 (9) 2. 3 BP 神经网络的图像分割基本训练 (9) 2. 4 BP 神经网络的针对性训练 (10) 3.网络应用 (10) 4.结论 (11) 五、课程收获与感想 (11) 六、参考文献 (12)

人工神经网络 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。”这一定义是恰当的。人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。人工神经网络是在现代神经科学的基础上提出来的。它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。 一、特点与优势 人工神经网络的以下几个突出的优点使它近年来引起人们的极大关注: (1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。 人工神经网络的优越性,主要表现在三个方面: 第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。 第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。 第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

人工神经网络作业

西安建筑科技大学研究生课程考试试卷 考试科目:人工神经网络课程编码:071032 任课教师:谷立臣考试时间:2014.4.30 学号:1307841390 学生姓名:李宇峰

SOM神经网络在滚动轴承振动诊断中的应用 摘要:SOM网络是一种重要的无导师学习训练算法的神经网络,使用该算法进行训练后,可以将高维输入空间映射到二维空间上,并对故障现象进行自动分类,从而得出它们对应的故障原因。本文归纳和总结了SOM神经网络多参数诊断法的实施步骤,阐述了轴承故障与振动信号之间的关系以及神经网络的工作原理和实现过程,通过实验研究,提取了反映滚动轴承故障类型的振动信号的特征参数,以构建训练神经网络的特征向量,利用MA TLAB人工神经网络工具箱模拟和仿真SOM神经网络,然后用训练后的SOM神经网络对故障模式进行识别。 关键词:振动;滚动轴承;故障诊断;SOM神经网络 1故障轴承振动与信号的关系 故障滚动轴承在受载运转时,当缺陷部位与工作表面接触,都将产生一次冲击力。这种冲击力将激起轴承系统的振动,并通过适当的振动传递通道,以振动和声音的形式传出。信号传递过程,如图1所示。滚动轴承工作时,由传感器拾取的振动信号成分比较复杂,损伤引起的固有衰减振动只是其中的组成部分。当损伤微小时,往往被其他信号淹没而难以被发现。信号处理的目的就是突出这些损伤特征成分。 图1轴承振动信号传递过程 2 SOM神经网络的结构和学习算法 2.1神经网络结构 自组织特征映射神经网络是芬兰神经网络专家Kohnen于1981年提出的,网络结构由输入层和输出层组成。输入层为单层神经元排列,其作用是通过权向量将外界信息转到输出层神经元。输出层也叫竞争层,输出层的神经元同它周围的神经元侧向连接,成棋盘状平面。其神经元排列有多种形式,其最典型的是二维形式。在初始状态下,这些二维的处理单元阵列上没有这些信号特征的分布拓扑图。利用SOM模型的这一特性,可以从外界环境中按照某种测度或者是某种可有序化的拓扑空间来抽取特征或者是表达信号的、概念性的元素。自组织特征映射神经网络模型结构如图2所示。

神经网络大作业

神经网络的基本特征及其在战斗识别领域的应用前景简介 —神经网络原理及应用报告 课程名称:神经网络原理及应用 课程编号: 指导教师: 学院: 班级: 姓名: 学号: 日期:

神经网络的基本特征及其在战斗识别领域的应用前景简介 摘要:在未来的军事对抗上,对军事打击的物理距离越来越大,对打击的反应时间的要求越来越短,对打击的精度要求越来越高。在这种情况下,迅速且精确的敌我识别系统显得尤其重要。传统的战斗识别方式早已遇到了瓶颈,而神经网络因为它在信息、信号处理、模式识别方面有些独到之处,近年来受到各国军界的普遍重视。 关键词:军事,战斗识别,模式识别,敌我识别,神经网络 1 引言 众多科学家预言,21世纪将是“生物”世纪。这说明生物学的研究和应用已进入了空前繁荣的时代。神经网络系统理论就是近十多年来受其影响而得到飞速发展的一个世界科学研究的前沿领域。这股研究热潮必然会影响到军事技术的研究。在现代战争中,因为远程制导武器的广泛应用,绝大多数军事打击都不再依靠肉眼来辨析敌我,战场上的敌我识别变成了一个重要的问题。据统计,1991年的海湾战争期间,美军与友军之间的误伤比例高达24%;在伊拉克战争期间,共发生17起误伤事件,死18人,伤47人。两场战争的伤亡结果表明,单一的敌我识别武器已不能适应现代战争复杂的作战环境和作战要求。所以提高军队战斗识别的效率是现代军事科技研究中一个极其重要的课题。神经网络作为新的热门技术,必然受到军事研究学者们的青睐。本文只选取战斗识别这一领域,简要探讨神经网络技术在战斗识别领域中的应用前景,但求管中一窥,抛砖引玉。 2 神经网络简介 2.1 神经网络的历史 神经网络的研究可以追溯到上个世纪的1890年。但真正展开神经网络理论研究却始于本世纪40年代。1943年,有心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型——MP模型,从此开创了神经网络理论研究的新时代。MP模型以集体并行计算结构来描述神经网络及网络的运行机制,可完成有限的逻辑运算。 1949年,Hebb通过对大脑神经的细胞、人的学习行为和条件反射等一系列

相关文档
相关文档 最新文档