文档库 最新最全的文档下载
当前位置:文档库 › 酶催化反应研究进展

酶催化反应研究进展

酶催化反应研究进展
酶催化反应研究进展

1 绪论

酶作为生物催化剂,具有专一性、高效性、反应条件温和等优点,是一种具有特殊三维空间构象的蛋白质,它们在体内几乎参与了所有的转变过程, 催化生物分子的转化。同时, 它们也催化许多体内存在的物质发生变化, 使人体正常的新陈代谢得以运行。因此受到人们的普遍关注。近年来, 特别是随着生化技术的进展, 酶催化反应越来越多地被有机化学家作为一种手段应用于有机合成, 特别是催化不对称合成反应。光学活性化合物或天然产物的合成, 已应用于医药、农药、食品添加剂、香料、日用化学品等精细有机合成领域。酶催化不会污染环境, 经济可行, 符合绿色化学的方向, 具有广阔的前景。

2 酶催化与有机合成反应

对于酶催化反应在有机合成中的应用, 有机合成工作者做了大量工作。随着科技进步的日新月异, 酶催化反应越来越多地被有机化学家作为一种手段用于

有机合成特别是不对称合成反应, 进行光学活性化合物或天然产物的合成时, 能为天然或非天然产物的合成提供丰富的手性源, 其应用前景将是难以估量的。2.1 不同反应体系中的酶促反应

2.1.1 有机介质中的酶促反应

酶在有机介质中不但能保持其活性,还表现出一些特殊性质,并具有如下优越性:有利于疏水性底物的反应;产物和酶易于回收;可改变反应平衡移动的方向;可控制底物专一性;可防止由水引起的副反应;可扩大反应pH值的适应性;可提高酶稳定性;可避免微生物污染等。在保证必需含水量;选择合适的酶及酶形式;选择合适的溶剂;选择最佳pH值;选择合适的反应体系的条件下,则在有机介质中酶可显示很高的催化活性。目前在有机介质中已成功用酶进行了氧化、、脱氢、脱氨、还原、羟基化、甲基化、环氧化、酯化、酰胺化、磷酸化、开环反应、异构化、侧链切除、缩合及卤化等反应。

过去人们认为酶在有机介质不稳定,但研究发现大多数酶在低水有机介质中比在水介质中更稳定。一是表现在热稳定性提高。在有机介质中,在不同温度下保温脉酶,发现热处理导致酶活性增加,而且酶在温度远超过其在水溶液中最适

温度的情况下也不失活。例如猪胰脂肪酶在醇和醋中进行催化反应,在100℃高温下,其半衰期长达26h,其活性比在20℃时还高。又如胰凝乳蛋白酶在60℃水中,几分钟就产生不可逆失活;而在100℃辛烷中,其半衰期长达几小时。Gyunwald等报道,在低水有机溶剂体系中,酶的稳定性与含水量密切相关,一般在低于临界含水量范围内,酶很稳定;含水量超出临界含水量后,酶稳定性随含水量的增加而急剧降低。二是表现在储存稳定性提高。如胰凝乳蛋白酶,20℃时在水中半衰期只有几天,而在辛烷中,可放置6个月仍保留全部活性。在单相共溶体系有机溶剂对酶活性影响分两方面。一方面有机溶剂直接作用于酶,破坏维持酶活性构象的氢键和疏水作用力,或破坏酶周围水化层,使酶变性或失活。如不少酶活性随有机溶剂浓度升高而降低。另一方面有些酶活性会随有机溶剂浓度升高而增大,在某一浓度(最适浓度)达最大值;若浓度再升高,则活性下降。某些有机介质可使某些限制酶的专一性发生改变,使专一性降低,且发现其星号活力比原专一性活力弱。不同的有机介质对同一种限制酶专一性影响不同。同一种有机介质对不同的限制酶的专一性影响亦不同。酶既可催化一个化学反应的正向反应进行,亦可催化其逆向反应进行,反应平衡点的移动取决于反应条件。有机介质能改变某些酶的反应平衡方向。

目前有机介质中酶催化反应研究已取得了较大进展,但还存在许多基本问题有待解决,如有机介质中酶催化的动力学和作用机理等。有机介质中酶催化反应研究已冲破传统观念的束缚,正在飞速发展,并已开始由论研究逐步走向生产实践。

2.1.2 反胶束体系中的酶促反应

反胶束(团) ( 10~ 100nm )是表面活性剂溶解在非极性溶剂中形成的、围绕一个极性核的纳米级聚集体,是一种低水含量的油包水(W /O )微乳液。反胶束溶液是透明的、热力学稳定的体系。反胶束极性内核中的水与常态水物理性质不同,它的黏度较高,而酸度与极性比常态水低。所以“水池”中的水可溶解某些原本不溶的物质,如脂肪酶等生物活性物质。反胶束体系作为酶反应介质,具有组成灵活、热力学稳定、界面积大、可通过相调节来实现产物回收等优点。近年来,研究最多的是酶的催化反应。

用脂肪酶催化酯水解具有反应条件温和、高效、专一、节约能源和不污染环

境等优点,但脂肪酶催化反应的底物油脂与水及酶互不溶解,使反应很难发生。而在含微量水的反胶束中, 则可解决油水两相反应的困难。许琼明等采用通过实验优化出的卵磷脂/胆固醇/环己烷反胶束体系,研究了胆甾醇酯酶对维生素E醋

酸酯具有催化活性及胆甾醇酯酶发挥水解活性的最佳反应条件。李光吉等考察了脂肪酶Novozym 435作生物催化剂时,丁二酸二辛基磺酸钠( AOT) /异辛烷反相胶

束体系有利于它催化葡甘聚糖( KGM )与乙酸乙烯酯的酯交换反应。Pastoriza- Ca llegoM J等报道了在十二烷基硫酸钠( SDS) /丁醇/水反胶团体系中,可发生邻甲基重氮苯四氟硼酸盐的脱重氮基反应。该反应主要发生在反胶团体系的界面区域,而在丁醇/水二元混合体系中不发生反应。体系中SDS浓度增加,反胶团聚集数

也随之增加。

反胶团酶催化技术总的来说还比较年轻,其理论及应用都存在某些不足。工业化应用的最大障碍仍然是酶活性和稳定性不能令人满意。此外,缺乏适宜的反应器型式以实现酶的重复利用和产物的同步分离也是一个重要限制因素。寻找新的更为优良的表面活性剂将是一个非常有吸引力的研究方向。反胶束的优良特性决定了随着研究的深入,反胶团酶催化技术将在食品、药物、农业、环保、材料等各个领域发挥其独特的作用。

2.1.3 超临界流体中的酶促反应

超临界流体(SCF)是一种温度和压力都处于临界点以上,性质介于液体和气

体之间的流体。SCF有近似于气体的流动行为,粘度小、传质系数大,有与液相相近的溶解能力和传热系数。同时,它们又具有区别于气态和液态的明显特征:可以得到处于气态和液态之间的任一密度;在临界点附近,压力的微小变化可导致密度的巨大变化。由于粘度、介电常数、扩散系数、溶解度都与密度相关,因此可方便地通过调节压力来控制SCF的物化物质。

Hammond等首先提出了酶催化反应在超临界流体中进行的可行性,作为一

种非水溶剂, 超临界流体应用于酶催化反应具有以下优越性。一是非水相催化为非均相反应,常被内外扩散所限制,超临界流体固有的高扩散系数、低粘度和低表面张力能加速传质控制反应;二是压力对超临界流体溶解性能的影响十分显著,可凭借压力的变化来改变底物和产物的溶解度,简化产物分离和回收过程;三是超临界流体可与其他气体混溶,得到任意浓度,使得氧化和氢化反应易于控制;

四是很多超临界流体的临界温度均小于100℃,不会使产物热分解,温和的温度适合酶反应,甚至可用于含热敏型酶的反应之中;五是因为超临界流体在常压下是气体,所以不存在反应产物中溶剂残留的问题。

超临界流体溶剂对酶活性的影响大多是规律性的。一般来说,酶在疏水性溶剂中的活性较在亲水性溶剂中的活性要高。这是因为亲水性溶剂使得分配到酶中的水减少,因此导致酶附近的微环境被破坏。相反,疏水性溶剂更能保持酶附近的微环境。少量水的存在,能保持酶在SCF中的活性,但过多的水会使酶催化反应速率下降。温度和压力能影响物质在超临界流体中的溶解度,影响水在流体和固定化载体之间的分配,但最重要的是影响酶的活性。一般来讲,温度越高,物质在超临界流体中的溶解度越小,酶的活性越大,但温度过高会引起蛋白质变性,使酶失活。在超临界流体中加人少量共溶剂,能增加溶剂的极性而提高底物的溶解度,从而可能提高反应速率。共溶剂的添加对超临界流体中的酶催化反应固然有利,但如果共溶剂与水竞争酶的微环境,则可能对酶的结构稳定性不利或在其活性区产生位阻。因此共溶剂的添加仍需谨慎。相信随着对基础理论研究的不断深人,超临界流体中的酶催化技术将在应用化学、有机合成、食品工程、生物工程等众多领域中得到广泛的应用。

2.1.4 非水介质中酶促反应

目前许多非水介质中的酶催化反应已经成功地用于天然产物、药物等有机化合物的合成。蛋白水解酶或脂肪水解酶催化的逆反应可用于肽或酯的合成。另外,蛋白水解酶还可以催化非蛋白氨基酸底物参与的合成反应。

在有机溶剂中引起酶催化效率降低的原因有:酶与底物的扩散限制;酶在冷冻干燥过程中引起的部分失活;由于酶不溶于有机溶剂,酶颗粒的一些活性中心被相邻的酶分子遮住,不能与底物接触,妨碍了酶分子参加催化;在有机溶剂中酶的活性中心构象难以发生变化,不易与底物结合等。为解决这些问题,人们提出了一系列措施,如在制备酶的过程中加入冷冻干燥保护剂(lyoprotectant),用高聚物修饰酶,用表面活性剂与酶形成离子对复合物等。经研究发现,在冷冻干燥时加入酚或芳香胺等酶的天然底物,对酶有活化作用(HRP 是一种研究得比较透彻的过氧化物酶,它能够催化许多酚和芳香胺的氧化反应)。这说明酚或芳香胺所含有的疏水基团可能与酶的活性中心作用,进入酶的疏水袋,从而在冷冻干燥

过程中阻止酶的活性中心构象发生变化,以保持酶的催化活性。由此可以设想即使不加入酶的天然底物,只加入一般的含疏水性基团的小分子(苄醇、苯甲酸等) 也可以起到类似作用。反相胶束是由两亲分子在非极性溶剂中形成的一种有序组合体。在有机溶剂中,反相胶束的疏水基团与溶剂接触,而亲水性头部形成极性内核。水分子聚集在内核形成“小水池”,里面容纳酶分子,可以阻断溶剂分子对酶的作用,增加酶的稳定性。分散在有机相中的含酶水滴可以看作是一种微型反应器。酶被限制在含水的微环境中,有利于维持酶的天然构象,提高其催化活性。

非水介质中酶催化反应是目前酶工程的重要课题之一,已成功地用于许多有机合成反应及动力学拆分等领域。如何调节和控制酶的活性和稳定性是非水介质中酶催化反应的研究热点。固定化酶能显著提高酶的活性和稳定性,而添加剂的多样性也为酶的性质改造提供了广阔的发展空间。

2.2 模拟酶的研究

由于生物体内进行的生命活动恰是个完整绿色化的过程,其中酶和激素扮演着极其重要的角色,这就为人们实现绿色化学提供了开展工作的切入点——模拟酶研究与开发。生物无机化学中,有关生物活性配合物的模拟大致分为三个层次:(1)模拟物只含有与生物活性酶相同的金属离子——第一级近似。如超氧化物歧化酶(SOD)是以铜为辅基的蛋白质配合物,而铜的某些氨基酸或羟基配合物,可用作模拟物,它们具有定程度的SOD活性。尽管模拟物的作用机理、选择性及反应效率不同于原来的酶,但因可大量合成,仍有实用价值;(2)模拟活性中心结构。人们用三亚乙基四胺合成铁配合物来模拟过氧化氢酶。用该化合物来进行如催化机理的研究显得很方便。(3)整体模拟。活性中性必须处在一个特定的微环境和整体结构之中,所以高级模拟是包括微环境在内的整个活性部分。

随着酶模拟化学的发展,对酶结构及作用机理的进一步了解,在化学家及生物学家共同协作下,不断改进合成手段和采用新技术,必将有更多更好的酶模型和模拟酶问世。随着生命科学与化学的相互交叉和渗透,模拟酶的研究成果已在生化分析中得到广泛应用。本文对具有模拟酶功能的几种主要体系做一综述,以期推动它们在生化分析、有机合成及酶学工程等领域的进一步深入研究与应用。

2.3 酶的化学修饰和固定化酶

目前已经发现和鉴定了约3700 多种酶, 但能大规模生产和应用的只有十多种。主要因为大多数自然酶脱离生理环境后不稳定, 而生产和应用的条件与生理环境差别很大。因此, 采用化学方法对酶进行修饰和改造是非常必要的。酶的化学修饰主要是修饰酶的功能基团, 如酶分子表面的氨基、羧基、羟基等可以和某些化学试剂反应, 使酶分子结构改变, 从而改善酶的性质。另外, 交联某些双功能化合物作为交联剂, 使酶发生分子内或分子间的交联反应, 维持和加固酶的活性结构, 改善酶的性能。固定化酶是被束缚在特定支持物上并能发挥催化作用的酶。固定化酶稳定性好,能反复使用,成本低,有利于实现生产连续化和自动化。

固定化酶主要采用两种方法。物理吸附固定化和共价结合固定化。利用不同方式固定化得到的酶的活性和稳定性有显著区别。物理吸附法通过氢键、电子亲和力等把酶固定在不溶性载体上,这些载体通常有硅藻土、陶瓷和微孔玻璃等,离子交换树脂作固定化酶的载体也有了一定的研究。交联法是利用双功能或多功能试剂,如戊二醛、重氮化苦基伯二胺等官能团化合物, 在酶分子间、分子与载体间、酶分子与惰性蛋白之间进行交联反应而固定化酶。包埋法是把聚合物单体和酶溶液或细胞悬浮液混合后, 再借助聚合促进剂进行聚合, 使酶或微生物细胞包埋于聚合物中达到固定化。固定化酶技术在化学合成特别是药物合成领域已经产生巨大的经济和社会效益, 这方面的深入研究具有很大的科学价值和广阔的

应用前景。

2.4手性合成中的酶催化

利用酶催化反应合成手性化合物,符合绿色化学和原子经济性的发展方向, 具有极大的学术意义和广阔的应用前景。以天然产物为手性源的合成; 以易得的手性试剂为起始物的手性合成, 特别是催化条件下的手性合成, 目前进展很快。非水介质中酶催化反应的发展提供了一种合成手性化合物的新方法。脂肪水解酶和蛋白水解酶等在有机溶剂中对某些手性化合物表现出高度的立体选择性,使它们在手性化合物的拆分及催化合成等方面显示出广阔的应用前景。我们相信, 酶催化将给手性合成带来无限的生机。

细胞工程习题 第九章

第九章复习题 一、从培养基、培养方法、培养设备上比较分析植物细胞培养与微生物细胞培养的异同。 1、植物细胞与微生物细胞对比: ①细菌、真菌、植物细胞都有细胞壁。 ②细菌无成形的细胞核,真菌、植物细胞有成形的细胞核。 ③细菌只有核糖体一种细胞器。 ④植物细胞比微生物细胞大(Ф10~200微米,30-100倍)。 ⑤植物细胞很少以单一细胞形式悬浮生长,通常以一定细胞数的非均相细胞团 方式存在。 ⑥植物细胞具有纤维素细胞壁和大的液泡,很容易被剪切力损伤。 ⑦植物细胞生长速度慢,操作周期长(2-3周甚至2-3个月)。 ⑧植物细胞培养基成分丰富而复杂,适合微生物生长,因此防止污染更困难。 ⑨植物细胞培养一般需要光照。 2、培养基对比: 植物细胞培养的培养基主要由碳源、氮源、无机盐、维生素、植物生长激素、有机酸和一些复合物质组成。目前应用广泛的基础培养基有:MS、B5、N6等 无机盐:大量元素N/S/P/K/Ca/Mg等、微量元素 有机物:糖类、氨基酸、维生素等 调节物质:激素 与微生物培养基相比:需要大量无机盐,多种维生素和激素,一般采用无机氮源,一般以蔗糖为碳源。 3、培养方法对比: 植物细胞:经酶解法或愈伤组织法得单细胞再进行培养;方法有看护培养、饲养层培养、固体培养、细胞悬液培养 微生物细胞:固体斜面培养、液体培养 4、培养设备: 植物细胞:细胞培养生物反应器,一般都有三部分组成:反应罐、控制系统、检测分析系统。 微生物细胞:传统微生物发酵罐 二、请分析限制植物细胞培养大规模生产有价值次级代谢产物的影响因素。 次级代谢产物(Secondary metabolites)是通过次级代谢合成的产物,大多是分子结构比较复杂的小分子化合物,例如抗生素、激素、生物碱、毒素等。影响因素: 1、生物因素 ①细胞株:稳定、高产、生长速度快的细胞株是细胞大规模培养生产代谢产物的前提。在进行植物细胞培养生产有价值的代谢产物时必须弄清楚产物的合成部位,也就是应该考虑到不同部位来源细胞的特性。 ②细胞凋亡:是植物细胞培养过程中不可避免的现象,保证充足的营养供给以及避免有害代谢产物的积累,可以减少细胞凋亡。 ③细胞团:细胞团的形成影响稳定的悬浮体系的维持,同时造成了培养物的显著异质性,细胞团表面与内部的细胞存在营养吸收和代谢产物分泌的差异。此外,

生化复习总结(经典大题):酶

第六章酶复习总结 酶的特点 酶和一般催化剂的共性 加快反应的速度,但不改变反应的平衡。 酶作为生物催化剂的特点 (1)易失活 (2)具有很高的催化效率 酶的催化效率可以用转换数(turnover number,TN)来表示,它的定义是在一定条件下,每个酶分子单位时间内(通常为1秒钟)转换底物的分子数。转换数高的可到四千万(如过氧化氢酶),低的不足1(如溶菌酶)。 (3)具有很高的专一性 (4)酶的活性受到调节控制 ①调节酶的浓度;②通过激素调节酶的活性;③反馈抑制调节酶的活性;④抑制剂和激活剂调节酶的活性;⑤其他调节方式如别构调节。 6.5.1 酶的活性部位 在整个酶分子中,只有一小部分区域的氨基酸残基参与对底物的结合与催化作用,这些特异的氨基酸残基比较集中的区域称为酶的活性部位(active site),或称为酶的活性中心(active center)。酶的活性部位是酶结合和催化底物的场所,是与酶活力直接相关的区域。酶活性部位的结构是酶作用机理的结构基础。 酶分子中与结合底物有关的部位称为结合部位,每一种酶具有一个或一个以上的结合部位,每一个结合部位至少结合一种底物,结合部位决定酶的专一性;酶分子中促使底物发生化学变化的部位称为催化部位,催化部位决定酶的催化能力以及酶促反应的性质。酶的结合部位与催化部位共同构成酶的活性部位,在功能上,二者缺一不可,在空间构成上,二者也是紧密连接在一起。 不同酶有不同的活性部位,活性部位的共同特点是: ①活性部位在酶分子整体结构中只占很小的部分,通常由数个氨基酸残基组成,活性部位体积虽小,却是酶最重要的部分。 ②酶的活性部位具有三维立体结构,酶活性部位的立体结构在形状、大小、电荷性质等方面与底物分子具有较好的互补性。参与组成酶活性部位的氨基酸残基在一级结构上可能相距很远,但是通过肽链的折叠,它们最终在酶的高级结构中相互靠近。 ③酶的活性部位的催化基团主要包括氨基酸侧链的化学功能团以及辅因子的化学功能团,某些酶的辅因子也可作为酶的催化基团,辅因子与酶协同作用,为催化过程提供了更多种类的功能基团。除催化基团外,酶的活性部位还有参与底物结合的结合基团。在活性部位之外,也可能具有某些对于维持酶活性部位的结构和功能必不可少的基团。这些对酶的催化功能来说必不可少的基团,称为必需基团,若必需基团被改变,酶的活力会严重下降,甚至完全丧失。 ④酶的活性部位具有柔性。在酶和底物结合的过程中,酶分子和底物分子的构象均发生一定的变化才形成互补结构。诱导契合假说被诸多实验结果证实,此外,酶的活性部位相比于整个酶分子更具柔性或称可运动性,容易在蛋白变性

821《酶工程》复习大纲

《酶工程》复习大纲 一、考试基本要求 通过学习本课程,使学生掌握酶工程的基本原理、酶的生产方法、酶的提取与分离纯化、酶的改造方法、非水相酶催化、酶反应器以及酶的应用,根据需要通过人工操作,掌握酶的生产与应用的技术过程。通过课堂授课教案、结合专题内容评述。使学生对酶的的生产与应用一定的了解,并为以后的研究应用打下基础。 二、考试方式和考试时间 闭卷考试,总分,考试时间为小时。 三、参考书目(仅供参考) 1.郭勇编著,酶工程(第四版),,北京:科学出版社 2.袁勤生主编,酶与酶工程(第二版),,上海:华东理工大学出版社 3.罗贵民主编,酶工程(第版),,北京:化学工业出版社 四、试卷类型: 主要包括选择题、填空题、简答题、论述题等类型,并根据每年的考试要求做相应调整。 五、考试内容及要求 第一章绪论 酶的基本概念与发展史 酶催化作用特点 影响酶催化作用的因素 酶的分类与命名 酶活力的测定 酶的生产方法 酶工程发展简况 基本要求:掌握酶催化作用的特点、酶活力的测定方法和酶的分类命名方法;重点:酶的生产方法 第二章微生物发酵产酶

酶生物合成的基本理论 常用的产酶微生物 发酵工艺条件及其控制 产酶发酵动力学 固定化微生物细胞发酵产酶 固定化原生质体发酵产酶 基本要求:掌握酶生物合成的基本理论、微生物和固定化微生物发酵产酶的工艺流程 重点:微生物发酵产酶的发酵条件控制和产酶动力学 难点:酶生物合成的调节机制 第三章动植物细胞培养产酶 植物细胞培养产酶 动物细胞培养产酶 基本要求:掌握动植物细胞培养产酶的基本方法和工艺过程 重点:动植物细胞的特性及其培养特点 第四章酶的提取与分离纯化 酶的特性与分离提取方法的选择 酶分离提取的一般方法 酶分离提取的重点方法概述 典型酶的分离提取工艺流程 基本要求:掌握酶分离提取的种类与方法 重点:层析和电泳方法在酶分离提取中的应用 难点:不同分离提取方法的选择 第五章酶分子修饰 金属离子置换修饰 大分子结合修饰

酶催化作用综述

工业催化原理论文 论文题目:浅谈酶催化作用 课程名称:工业催化原理 学院:化学与化工学院 专业:化学工程与工艺 年级:化工122 学号:1208110201 学生姓名:邓元顺

浅论酶催化作用 摘要 酶作为催化剂使用已经有几个世纪的历史,但那时人们对酶的本性和功能并不了解。直到20世纪初,才证明所有的发酵过程均是由所用的酶促成的,故而酶也常被叫做酵素。现已证明,酶是由长链氨基酸构成的蛋白质。许多酶的初级结构已得到确定,而且影响酶催化功能的三维空间结构已被证明。尽管获得了不少信息,关于酶催化作用机理的一些基本细节仍不甚明朗,如今酶催化技术作为工业生物技术的核心,被誉为工业可持续发展最有希望的技术。 Abstracts Enzymes have been used for centuries, but it is not known to the nature and function of the enzyme. It was not until early twentieth Century that all of the fermentation processes were promoted by the enzymes that were used, and the enzyme was often called an enzyme. It has been proved that the enzyme is a protein composed of long chain amino acids. The primary structure of many enzymes has been determined, and the three-dimensional structure of the enzyme catalytic function has been demonstrated. In spite of a lot of information, some basic details about the mechanism of enzyme catalysis are still not very clear, and now the catalytic technology as the core of industrial biotechnology, known as the most promising technology for the sustainable development of industry. 关键词:酶,酶催化作用,

酶学习题07529

练习题 一.选择题 1.下面关于酶的描述,哪一项不正确: A.所有的酶都是蛋白质 B.酶是生物催化剂 C.酶具有专一性 D.酶是在细胞内合成的,但也可以在细胞外发挥催化功能 2.酶催化底物时将产生哪种效应 A.提高产物能量水平 B.降低反应的活化能 C.提高反应所需活化能 D.降低反应物的能量水平 3.酶催化的反应与无催化剂的反应相比,在于酶能够()。 A. 提高反应所需活化能 B.降低反应所需活化能 C.促使正向反应速度提高,但逆向反应速度不变或减小 4.关于酶的叙述正确的是: A.所有酶都有辅酶 B.酶的催化作用与其空间结构无关 C.绝大多数酶的化学本质是蛋白质 D.酶能改变化学反应的平衡点 E.酶不能在胞外发挥催化作用 5.对于酶的叙述下列哪项是正确的: A.酶对底物都有绝对特异性 B.有些RNA具有酶一样的催化作用 C.酶只能在中性环境发挥催化作用 D.所有酶均需特异的辅助因子 6.关于酶催化作用的叙述不正确的是: A.催化反应具有高度特异性 B.催化反应所需要的条件温和 C.催化活性可以调节 D.催化效率极高 E.催化作用可以改变反应的平衡常数 7.关于酶促反应特点的描述错误的是: A.酶能加速化学反应速度 B.酶在体内催化的反应都是不可逆反应 C.酶在反应前后无质和量的变化 D.酶对所催化的反应具有选择性 E.酶能缩短化学反应到达平衡的时间 8.酶促反应作用的特点是: A.保证生成的产物比底物更稳定 B.使底物获得更多的自由能 C.加快反应平衡到达的速率 D.保证底物全部转变成产物 E.改变反应的平衡常数 9. 关于酶促反应特点的论述错误的是: A.酶能催化热力学上允许的化学反应 B.酶在催化反应前后质量不变 C.酶能缩短化学反应到达平衡所需时间 D.酶对所催化反应有绝对专一性 10.以下有关酶与一般催化剂共性的叙述不正确的是: A.都能加快化学反应速度 B.其本身在反应前后没有结构和性质上的改变 C.只能催化热力学上允许进行的化学反应 D.能缩短反应达到平衡所需要的时间E.能改变化学反应的平衡点 11.下列关于酶特性的叙述()是错误的。 A.催化效率高 B.专一性强 C.作用条件温和 D.都有辅因子参与催化反应 12.酶具有高效催化能力的原因是()。 A.酶能降低反应的活化能 B.酶能催化热力学上不能进行的反应 C.酶能改变化学反应的平衡点 D.酶能提高反应物分子的活化能 13.酶与一般催化剂的共同点是: A.高度特异性 B.高度催化效率 C.降低反应的活化能 D.改变化学反应的平衡点 E.催化活性可以调节 14.酶促反应中决定酶专一性的部分是: A.酶蛋白 B.底物 C.辅酶或辅基 D.催化基团 15.辅酶与酶的结合比辅基与酶的结合更为: A.紧 B.松 C.专一 D 有选择性 16.下列关于辅基的叙述()是正确的。

酶化学填空题1全酶由和组成在催化反应时二者所起

第七章酶化学 一、填空题 1.全酶由________________和________________组成,在催化反应时,二者所起的作用不同,其中________________决定酶的专一性和高效率,________________起传递电子、原子或化学基团的作用。 2.酶是由________________产生的,具有催化能力的________________。 3.酶的活性中心包括________________和________________两个功能部位,其中________________直接与底物结合,决定酶的专一性,________________是发生化学变化的部位,决定催化反应的性质。 4.常用的化学修饰剂DFP可以修饰________________残基,TPCK常用于修饰________________残基。 5.酶促动力学的双倒数作图(Lineweaver-Burk作图法),得到的直线在横轴上的截距为________________,纵轴上的截距为________________。 6.磺胺类药物可以抑制________________酶,从而抑制细菌生长繁殖。 7.谷氨酰胺合成酶的活性可以被________________共价修饰调节;糖原合成酶、糖原磷酸化酶等则可以被________________共价修饰调节。 二、是非题 1.[ ]对于可逆反应而言,酶既可以改变正反应速度,也可以改变逆反应速度。 2.[ ]酶活性中心一般由在一级结构中相邻的若干氨基酸残基组成。 3.[ ]酶活力的测定实际上就是酶的定量测定。 4.[ ]Km是酶的特征常数,只与酶的性质有关,与酶浓度无关。 5.[ ]当[S]>> Km时,v 趋向于Vmax,此时只有通过增加[E]来增加v。 6.[ ]酶的最适温度与酶的作用时间有关,作用时间长,则最适温度高,作用时间短,则最适温度低。 7.[ ]增加不可逆抑制剂的浓度,可以实现酶活性的完全抑制。 8.[ ]正协同效应使酶促反应速度增加。 9.[ ]竞争性可逆抑制剂一定与酶的底物结合在酶的同一部位。 10.[ ]酶反应的最适pH只取决于酶蛋白本身的结构。 三、选择题 1.[ ]利用恒态法推导米氏方程时,引入了除哪个外的三个假设? A.在反应的初速度阶段,E+P→ES可以忽略 B.假设[S]>>[E],则[S]-[ES]≈[S] C.假设E+S→ES反应处于平衡状态 D.反应处于动态平衡时,即ES的生成速度与分解速度相等 2.[ ]用动力学的方法可以区分可逆、不可逆抑制作用,在一反应系统中,加入过量S和一定量的I,然后改变[E],测v,得v~[E]曲线,则哪一条曲线代表加入了一定量的可逆抑制剂? A.1 B.2 C.3 D.不可确定

酶的作用与特性导学案

第五章第一节酶的作用与特性导学案 编制:胡玉苹审核:张凤霞 2012.8.30 【考纲解析】 知识目标:(1)细胞代谢的概念(2)酶的作用和本质(3)探究影响酶活性的因素学习重点:酶的作用和特性 学习难点:1.酶降低活化能的原理。 2.实验中控制变量的科学方法。 【基础整理】 一、酶在细胞代谢中的作用 1.概念 ①细胞代谢:。 ②活化能:。 ③原理:同无机催化剂相比,酶__________的作用更显著,因而催化效率__________。 ④意义:使细胞代谢能在________条件下______进行。 2、酶在细胞代谢中的作用: 2H2O2 △2H2O+O22H2O22H2O+O2实验:比较过氧化氢在不同条件下的分解 实验步骤:【问题探讨】 1.与1号试管相比,2号试管出现什么不同的现象?这一现象说明什么? 2.3号试管和4号试管未经加热,也有大量气泡产生,这说明什么? 催化剂(酶)的作用原理是: 3.酶的催化效率和无机催化剂相比谁更高?为什么? 4.为什么说酶对于细胞内化学反应的顺利进行至关重要? 5.本实验最后得出了什么结论? 【实验总结】 1.变量、自变量、因变量、无关变量的概念: 本实验的自变量: 本实验的因变量: 本实验的无关变量: 2.对照实验、对照组、实验组的概念: 对照实验: 对照组:本实验的对照组:实验组:本实验的实验组:

【小结1】控制变量: 【小结2】酶在细胞代谢中的作用: 二、酶的本质 探究一:酶的高效性的实验验证 (1)实验原理 ①________________________________________________________________________。 ②H 2O 2在常温、高温、过氧化氢酶、Fe 3+ 等不同条件下气泡产生的________或卫生香燃烧的________不同。 (2)实验过程 (3)实验结论:酶具有________,与无机催化剂相比,酶的催化效率________。 探究二:酶的专一性的验证实验 (1)实验原理 ①?????? ??? ?淀粉非还原性糖――→酶麦芽糖蔗糖非还原性糖――→酶葡萄糖+果糖还原糖+斐林试剂― →________________ ②用________分别催化淀粉和蔗糖后,再用斐林试剂鉴定,根据是否有砖红色沉淀来判定淀粉酶是否对二者都有催化作用,从而验证酶的________。 (2)实验程序 (3)实验结论: 探究三:影响酶活性的条件 1.温度对酶活性的影响 (1)实验原理 ①淀粉――→淀粉酶 麦芽糖 ↓碘液 ↓碘液 ②温度影响酶的活性,从而影响淀粉的水解程度。滴加碘液,根据________________________来判断酶的活性。 (2)实验设计程序 淀粉 淀粉酶 ↓ ↓ 各自在所控制的温度下处理一段时间 ↓ 淀粉与 下的淀粉酶混合 ↓ 在各自所控制的温度下保温一段时间 ↓ 滴加 ,观察颜色变化 2.pH 对酶活性的影响 (1)实验原理 ①2H 2O 2――→过氧化氢酶________ ②pH 可影响酶活性,从而影响O 2的产生情况,可根据__________

第八章 酶

第八章酶 8.1概述 8.1.1酶的化学本质 酶是生物催化剂,是一类具有催化活性和特定空间构象的生物大分子,包括蛋白质和核酸。 酶分子的组成与结构: 据酶蛋白结构特征分类单体酶 寡聚酶 多酶复合体 只有一条具有活性部位的多肽链,即仅由单一的三 级结构蛋白质构成。——通常为水解酶类。 由多个具有三级结构的亚基聚合而成, 亚基聚合时有活性,解聚后失活。 由几种功能相关的酶靠非共价键嵌合而成的复 合体。 金属离子 小分子有机化合物 酶蛋白-决定反应专一性 辅助因子-决定反应性质 仅由蛋白质组成,水解---氨基酸单纯蛋白酶: 结合蛋白酶 (全酶) 据酶分 子组成 分类

酶的辅助因子(决定酶促反应的类型) 根据与酶蛋白结合牢固程度划分: 辅酶:与酶蛋白结合疏松,可用透析法除去 辅助因子 辅基:与酶蛋白结合紧密,用透析法不能除去 从化学本质上划分: 金属离子:稳定酶分子构象;参与传递电子; 辅助因子在酶与底物间起连接作用;降低反应的静电斥力 维生素B族衍生物 8.1.2酶的专一性 酶的催化效率: 和一般化学催化剂相比,酶具有下列的共性和特点。 共性:①具有很高的催化效率,但酶本身在反应前后并无变化。②不改变化学反应的平衡常数。③降低反应的活化能。 特有的性质:①高效性:反应速度是普通催化剂的107~1013; ②反应条件温和:pH5-8,20-40°C; ③酶活力条件可控:生成与降解量的调节,催化效力 的调节,改变底物浓度对酶进行调节等; ④专一性(specificity),即酶只能催化一种化学反应或 一类相似的化学反应,酶对底物有严格的选择。根 据专一程度的不同可分为以下4种类型。 键专一性:这种酶只要求底物分子上有合适的化

第七章 生物反应器的放大与控制

第七章生物反应器的放大与控制 生物工程技术的最终目标是为人类提供服务,创造社会和经济效益。因此,一个生物工程产品必须经历从实验室到规模化生产直至成为商品的一系列过程,其研究开发包含了实验室的小试,适当规模中试和产业规模化生产等几个阶段。随着生物产品的生产规模增大,生物加工过程中的关键设备——生物反应器也逐渐增大。生物反应器的放大是生物加工过程的关键技术之一。 从小型的实验室生物反应器到生产规模的生物反应器,离不开工艺条件和参数优化。这时,就要对生物反应器的多项参数进行检测,利用自动化技术实现生物反应过程的最优控制。 本章就生物反应器的放大与计算、生物反应过程的参数检测与控制作一阐述。 第一节生物反应器的放大 生物反应过程的工艺和设备改进的研究,首先在小型设备中进行,然后再逐渐放大到较大的设备中进行。然而在实践中往往是小罐中获得的规律和数据,常常不能在大罐中再现。这就涉及反应器放大的问题。生物反应器的放大是指将研究设备中的优化的培养结果转移到高一级设备中加以重演的技术,实际上也兼具生物反应过程放大的含义。它是生物技术开发过程中的重要组成部分,也是生物技术成果得以实现产业化的关键之一。 反应器的放大涉及内容较多。除涉及微生物的生化反应机制和生理特性外还涉及化工放大方面的内容,诸如:反应动力学,传递和流体流动的机理等。因此,它是一个十分复杂的过程。 目前反应器的放大方法主要有:经验放大法、因次分析法、时间常数法和数学模拟法。 一、经验放大法 经验放大法是依据对已有生物反应器的操作经验所建立起的一些规律而进行放大的方法。这些规律多半是定性的,仅有一些简单的、粗糙的定量概念。由于该法对事物的机理缺乏透彻的了解,因而放大比例一般较小,并且此法不够精确。但是对于目前还难进行理论解析的领域,还要依靠经验放大法。对于生物反应器来说,到目前为止,应用较多的方法也是根据经验和实用的原则进行反应器的放大和设计。下面介绍一下具体的经验放大原则: (一)几何相似放大 生物反应器的尺寸放大大多数是利用几何相似原则放大。所谓的几何相似指的是两台设备的几何形状完全相似。在几何相似放大中,放大倍数实际上就是反应器体积的增加倍数,即: (7-1) (7-2) 和(7-3) 式中——反应器的高度,m; ——反应器的内径,m; ——反应器的体积,m3; 下标“1”——-模型反应器;

生物化学第六章酶化学

生物化学第六章酶化学 第一节概述 一、酶的概念 1、酶的概念---酶是生物催化剂 (1)所有酶均由生物体产生 几乎所有的生物都能合成酶,甚至病毒也能合成或含有某些酶。 (2)酶和生命活动密切相关 几乎所有的生命活动或过程都有酶参加 A 执行具体的生理机制,如乙酰胆碱酯酶和神经冲动有关。 B 参与消除药物毒物转化的过程,如限制性核酸内切酶能特异性地水解外源DNA,防止异种生物遗传物质的侵入。 C 协同激素等物质起信号转化、传递与放大作用,如细胞膜上的腺苷酸环化酶。 D 催化代谢反应,在生物体内建立各种代谢途径,形成相应的代谢体系。 ◆酶的组成和分布是生物进化与组织功能分化的基础。 不同生物,有各自相应的酶系和辅酶;即使同类生物,酶的组成与分布也有明显的种属差异,例如精氨酸酶只在排尿素动物的肝脏内,在排尿酸的动物中没有;例如,肝脏是氨基酸代谢与尿素形成的主要场所,因此,精氨酸酶几乎全部集中在肝脏内。 ◆在生物的长期进化过程中,为适应各种生理机能的需要,为适应外界条件的千变万化,还形成了从酶的合成到酶的结构和活性各种水平的调节机制。 2、酶的化学本质---大多数酶都是蛋白质 (1)酶的相对分子质量很大,如胃蛋白酶的相对分子质量为36000. (2)酶由氨基酸组成,将酶制剂水解后可得到氨基酸。 (3)酶具有两性性质 (4)酶的变性失活与水解一切可以使蛋白质失活变性的因素同样可以使酶变性。酶都是蛋白质?核酶不是 二、酶的催化特性 1、高效率酶的催化效率比一般化学剂高106—1013倍 2、专一性 一种酶只能作用于一类或某一种物质的性质称为酶作用的专一性或特异性。 蔗糖酶只能催化蔗糖等。 三、酶的组成及分类 1、酶的组成—根据组成分为单纯酶和结合酶 单纯酶:由简单蛋白质构成,如水解酶(淀粉酶、蛋白酶等) 结合酶:结构中含有蛋白质和非蛋白成分,结合酶分为酶蛋白或脱辅基酶蛋白,非蛋白成分称为辅因子,辅因子又分为辅酶(与酶蛋白结合疏松,可用透析法除去)和辅基(不能用透析法去除)两类。 辅酶及辅基从化学本质来看分为两类:一类为无机金属元素(铜/锌/镁/锰等),另一类为小分子有机物,如维生素。 酶蛋白决定酶的专一性。 2、酶的命名 3、酶的分类—酶按其催化的反应分类

酶的作用机制和酶的调节

酶的作用机制和酶的调节 重点综述 1. 酶作用机制:有专一性机理(锁与钥匙学说和诱导契和假说)和高效性的机理,以后者出现偏多,而且考查的题型上也是多样化(填写、选择、判断、问答等)。 (1)酶作用机理的两种学说,可以只作一般性的了解。 (2)酶作用高效性的机理要重点掌握。体现在以下5个方面:①靠近与定向;②变形与扭曲;③共价催化;④酸碱催化;⑤酶活性部位的低介电区。 在这一部分中,还要了解某些酶的作用原理: ①溶菌酶:活性部位有Clu3,和ASP52典型的酸碱催化。 ②胰凝乳蛋白酶:活性部位有ASPl02、His57和Serl95组成的电荷拉力网。 ③羧肽酶A:含金属离子zn2+的酶。 2. 酶的调节:酶调节的类型(共价调节,化学修饰,酶原激活,酶含量在分子水平的调节)。 几个概念也很重要:别构酶,调节酶等。 (一)名词解释 1.变构酶(allosteric enzyme);2.同工酶(isozyme);3.活性中心(active center);4. 酶原的激活(activation of zymogen); 5. 别构效应(allosteric effect); 6. 正协同效应(positive cooperative effect) (二)选择题(在备选答案中选出1个或多个正确答案) 1. 酶原激活的实质是 A. 激活剂与酶结合使酶激活 B. 酶蛋白的变构效应 C. 酶原分子一级结构发生改变从而形成或暴露出酶的活性中心 D. 酶原分子的空间构象发生了变化而一级结构不变 E. 以上都不对 2. 同工酶的特点是 A. 催化相同的反应,但分子结构和理化性质不同的一类酶 B. 催化相同反应,分子组成相同,但辅酶不同的一类酶 C. 催化同一底物起不同反应的酶的总称 D. 多酶体系中酶组分的统称 E. 催化作用,分子组成及理化性质相同,但组织分布不同的酶 3. 乳酸脱氢酶(LDH)是一个由两种不同的亚基组成的四聚体。假定这些亚基随机结合成四聚体,这种酶有多少种同工酶? A. 两种 B. 三种 C. 四种 D. 五种 E. 六种 4.下列关于酶活性中心的叙述哪些是正确的 A.是由一条多肽链中若干相邻的氨基酸残基以线状排列而成 B.对于整个酶分子来说,只是酶的一小部分 C.仅通过共价键与作用物结合

第九章酶反应器和酶传感器.

第九章酶反应器和酶传感器 第一节酶反应器 一、生物反应器概述 利用生物催化剂将原料转化成有用物质的生产过程,称为生物反应过程。 通常,生物反应过程包括四个组成部分: (1原材料的预处理。 (2生物催化剂的制备。 (3生物反应器的选择及反应条件的调控。 (4产物的分离提纯。 在生物反应过程中,生物反应器(Biological Reactor是用于完成生物化学反应(酶促反应的核心装置。 利用生物工程技术进行生产的过程统称为生物反应过程,在这一过程中,生物反应器起着极其重要的作用,它是实现生物技术产品产业化的关键设备,是连接原料和产物的桥梁。 生物反应器设计的主要目标是,使产品的质量提高,生产成本降低。为了达到上述标准,对生物反应器提出下列要求: (1.所用生物催化剂应具有较高的比活和酶浓度。 (2.能用电脑自动检测和调控,从而获得最佳的反应条件。 (3.应具有良好的传质和混合性能。 (4.应具有最佳的无菌条件。

二、固定化酶反应器的类型及特点 固定化酶反应器和固定化细胞反应器,二者的构造、性能基本一致。 固定化酶反应器有下列各种类型: 1.间歇式酶反应器 特点是底物与酶一次性投入反应器内,产物一次性取出;酶回收后转入下一批反应。 2.连续搅拌釜式反应器 特点是达到平衡后以恒定的流速连续流入底物溶液,同时,以相同流速输出反应液(含产物。 3.填充床反应器 将固定化酶填充于反应器内,制成稳定的柱床,然后,通入底物溶液,在一定的条件下实现酶催化反应,以一定的流速,收集输出的转化液(含产物。 4.流化床反应器 特点是底物溶液以足够大的流速,从反应器的底部向上通过固定化柱床时,便能使固定化酶颗粒始终处于流化状态。 5.连续搅拌罐——超滤膜反应器 特点是在连续搅拌釜式反应器出口处设置一个超滤器。 6.其他类型反应器 三、对固定化酶反应器的选择 影响酶反应器选择的因素很多,但一般可以从以下几个方面考虑:

酶的试题及答案 (5)

第5章酶试题及答案(5) 一、单项选择题 1.关于酶的叙述哪项是正确的? A.体内所有具有催化活性的物质都是酶B.所有的酶都含有辅基或辅酶C.大多数酶的化学本质是蛋白质D.都具有立体异构特异性 E.能改变化学反应的平衡点并加速反应的进行 2.关于酶的叙述哪一个是正确的? A.所有的酶都是别构酶E.酶催化的高效率是因为分子中含有辅酶或辅基C.酶的活性中心中都含有催化基团D.所有的酶都含有两个以上的多肽链 E.所有的酶都能使化学反应的平衡常数向加速反应的方向进行 3.酶具有下列哪种能量效应 A.增加反应活化能B.降低反应活化能 C.增加产物的能量水平D.降低反应物的能量水平 E.降低反应的自由能变化 4.酶蛋白变性后其活性丧失,这是因为 A.亚基解聚B.酶蛋白被完全降解为氨基酸 C.酶蛋白的一级结构受破坏D.酶蛋白的空间结构受到破坏 E.酶蛋白不再溶于水 5.有关酶的辅酶叙述正确的是 A.是与酶蛋白结合紧密的金属离子B.分子结构中不含维生素的小分子有机化合物C.在催化反应中不与酶的活性中心结合D.在反应中参与传递氢原子、电子或其他基团E.是与酶蛋白紧密结合的小分子有机化合物 6.酶和一般化学催化剂相比具有下列特点,例外的是 A.具有更强的催化效能B.具有更强的专一性 C.催化的反应无副反应D.可在高温下进行 E.其活性可以受调控的 7. 酶能使反应速度加快,主要在于 A.大大降低反应的活化能 B. 增加反应的活化能 C. 减少了活化分子 D. 增加了碰撞频率 E. 减少反应中产物与底物分子自由能的差值 8. 在酶促反应中,决定反应特异性的是 A. 无机离子 B. 溶液pH C.酶蛋白 D. 辅酶 E. 辅助因子 9.酶的特异性是指 A.酶与辅酶特异的结合B.酶对其所催化的底物有特异的选择性C.酶在细胞中的定位是特异性的D.酶催化反应的机制各不相同 E.在酶的分类中各属不同的类别 10.酶促反应动力学研究的是 A.酶分子的空间构象B.酶的电泳行为 C.酶的活性中心D.酶的基因来源

酶促反应的特点与作用机制

20 ~ 20 学年度第学期 教师课时授课教案 学科系:医学院授课教师: 专业:科目:生物化学 教研室主任签字:学科系系办主任签字:年月日年月日

第二节酶促反应的特点与作用机制 一、酶促反应的特点 酶是一类催化剂,具有一般催化剂的特征:在化学反应前后没有质和量的改变;只能催化热力学上允许进行的反应;只加速可逆反应的进程,不改变平衡点;对可逆反应的正反应和逆反应都具有催化作用。但酶的化学本质是蛋白质,又具有一般催化剂所没有的特征。 (一)高度的催化效率 酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107-1013倍。例如蔗糖酶催化蔗糖水解的速率是H+催化作用的2.5×1012倍,脲酶催化尿素的水解速率是H+催化作用的7×1012倍,且不需要较高的反应温度。研究表明,酶能更有效地降低反应的活化能,使参与反应的活化分子数量显著增加,从而大大提高酶的催化效率。 (二)高度的专一性 一种酶只能催化一种或一类化合物,或一种化学键,发生一定的化学反应,生成一定的产物,这种特性称为酶的专一性或特异性。根据酶对底物选择的严格程度不同,酶的专一性可分为三种类型。 1.绝对专一性酶只作用于某一特定的底物,进行一种专一的反应,生成一种特定的产物,称为绝对专一性。例如,尿酶只催化尿素水解成NH3和CO2,而对尿素的衍生物如甲基尿素没有催化作用。 2.相对专一性有些酶能作用于一类化合物或一种化学键,这种不太严格的选择性称为相对专一性。如磷酸酶对一般的磷酸键都能水解,不论是甘油磷酸酯,还是葡萄糖磷酸酯;蔗糖酶不仅水解蔗糖,

也能水解棉子糖,使之生成蜜二糖和果糖。 3.立体异构专一性有些酶对底物的立体构型有要求,仅作用于底物的一种立体异构体,这种特性称为酶的立体异构专一性。如L-氨基酸氧化酶只作用于L-氨基酸,对D-氨基酸则没有催化作用;淀粉酶只能水解淀粉中的α-1,4-糖苷键,而不能水解纤维素中的β-1,4-糖苷键。 (三)酶具有不稳定性 酶所催化的反应都是在比较温和的条件下进行的,如常温、常压、接近中性的环境等。由于酶的化学本质是蛋白质,任何能引起蛋白质变性的理化因素,如强酸、强碱、重金属盐、高温、紫外线、X射线等均能影响酶的催化活性,甚至使酶完全失活。 (四)酶促反应具有可调节性 酶促反应受多种因素的调控,以适应内外环境变化和生命活动的需要。例如在细胞内酶的分布具有区域化;酶原的激活使酶在合适的环境被激活和发挥作用;代谢物对关键酶、变构酶的抑制与激活和酶的共价修饰等调节;酶的含量受到酶蛋白合成的诱导、阻遏与酶降解速率的调节。 二、酶的作用机制 (一)酶能更有效地降低反应活化能 在任何一种热力学允许的反应体系中,底物分子所含能量各不相同,只有那些能量达到或超过一定水平的过渡态分子(即活化分子)オ有可能发生化学反应,底物分子达到活化分子所需要的最小能量称为

第四章酶习题

第四章酶习题 一、名词解释 1. 酶:生物体内一类具有催化活性和特定空间构象的生物大分子,包括蛋白质和核酸; 2. 单纯酶:由简单蛋白质构成的酶,活性仅由其蛋白质结构决定(如水解酶类:淀粉酶、蛋白酶、脂肪酶、纤维素酶、脲酶等); 3. 结合酶:酶结构中除含有蛋白质还有非蛋白质部分,这些酶属于结合蛋白质即结合酶(如绝大多数氧化还原酶); 4. 单体酶:只有一条多肽链,大多是催化水解反应的酶,分子量较小,有核糖核酸酶、胰蛋白酶、溶菌酶等; 5. 寡聚酶:由两个或两个以上亚基组成,亚基相同或不同,亚基间非共价结合,彼此易分开,己糖激酶、3-磷酸甘油醛脱氢酶等; 6. 多酶复合体:由几种酶通过非共价键彼此嵌合形成的复合体,该复合体的形成可导致相关酶促反应依次连接,有利于一系列反应的连续进行,提高反应效率; 7. 酶的活性中心:酶与底物结合并发挥其催化作用的部位; 8. 必需基团:酶发挥催化作用与底物直接作用的有效基团,

即活性中心内的必需基团; 9. 辅酶:与酶蛋白结合比较疏松(一般为非共价结合)并可用透析方法除去的辅助因子; 10. 辅基:与酶蛋白结合牢固(一般为共价键结合),不能用透析方法除去的辅助因子; 11. 酶原:某些酶(绝大多数蛋白酶是)在细胞内合成或初分泌时没有活性,这些无活性的酶的前身称为酶原; 12. 酶原激活:使酶原转化为有活性酶的作用称为酶原激活; 13. 酶的最适温度:酶催化的化学反应速度受温度影响呈倒U形曲线,到达曲线顶点所代表的温度时,反应速度最大,称为酶的最适温度; 14. 酶的最适pH:大多数酶活性受pH影响较大,酶表现最大活性时的pH称为酶的最适pH; 15. 米氏常数(Km):酶促反应速度达到最大反应速度的一半时底物浓度; 16. 酶的激活剂:凡是能提高酶的活性,加速酶促反应进行的物质; 17. 酶的抑制剂:能对酶起抑制作用的物质;

第七章 酶反应器的类型与选择

第七章酶反应器的类型与选择 ◆用于酶进行催化反应的容器及其附属设备称为酶反应器。 ◆按照结构的不同分为: 搅拌罐式反应器(Stirred Tank Reactor, STR)、鼓泡式反应器(bubble column reactor, BCR )、填充床式反应器(packed column reactor, PCR )、流化床式反应器( Fluidized Bed Reactor, FBR)、膜反应器(Membrane Reactor, MR)等; ◆酶反应器的操作方式可以分为分批式反应(batch )、连续式反应(continuous )和流加分批式反应(feeding batch ); ◆将反应器的结构和操作方式结合一起,对酶反应器进行分类, 连续搅拌罐反应器(Continuous Stirred Tank Reactor, CSTR)、分批搅拌罐反应器(Batch Stirred Tank Reactor, BSTR)等。 1.酶反应器的类型

1.1搅拌罐式反应器: ◆搅拌罐式反应器(stirred tank reactor, STR)是有搅拌装置的一种反应器(图8-1,8-2所示)。◆在酶催化反应中是最常用的反应器。它由反应罐,搅拌器和保温装置组成。 ◆搅拌式反应器的操作方式可以根据需要采用分批式(batch)、流加分批式(feeding batch)和连续式(continuous)三种。与之对应的有分批搅拌罐式反应器和连续搅拌罐式反应器之分。 (1)分批搅拌罐式反应器: 图8-1 分批搅拌罐式反应器 (2)搅拌罐式反应器: 连续搅拌罐式反应器(continuous stirred tank reactor ,CSTR)的结构示意图如图8-2 图8-2 连续搅拌罐式反应器示意图 1.2填充床式反应器: 填充床式反应器(packed column reactor, PCR)是一种用于固定化酶进行催化反应的反应器。如图8-3所示。

生物化学:第四章 酶参考答案

第四章 酶 1. 酶作为生物催化剂有什么特点? 答:酶和化学催化剂一样,能够改变化学反应的速度,但不能改变化学反应的平衡。能够稳定底物形成的过渡态,降低反应的活化能。此外,酶是一类特殊的蛋白质(除酶性核酸之外),它在生物体内不仅作为各种复杂生物化学反应的催化剂,而且也作为生物体内不同能量之间转换的中间体。酶的催化特点表现为: (1)高效性。酶是自然界中催化活性最高的一类催化剂。 (2)高度专一性。酶是具有高度选择性的催化剂。主要表现在:①反应专一性,酶一般只能选择性的催化一类相同类型的化学反应。且酶催化的反应几乎不产生副反应。②底物专一性,一种酶只能作用于某一种或某一类结构性质相似的物质。 (3)需要温和的反应条件。 (4)可调控性。 2. 辅酶和金属离子在酶促反应中有何作用?水溶性维生素与辅酶有什么关系? 答: (1) 辅酶和金属离子作为结合蛋白酶类的非蛋白部分(又称辅因子),在酶实施催化作用过程中起到非常重要的作用。只有酶蛋白与辅因子结合成的全酶才具有催化性能。 一般来说,与酶蛋白结合松散的有机小分子化合物被称作辅酶。 金属酶中,金属离子与酶蛋白结合紧密;金属激酶中金属离子与酶蛋白结合松散。 辅酶与金属酶中的金属离子在酶促反应中直接参加了反应,起到电子、原子或者某些化学基团转移的作用,决定了酶催化反应类型的专一性;而金属激酶中的金属离子主要起到激活酶的催化活性的作用。 (2) 大部分辅酶的前体都是水溶性B族维生素,许多水溶性维生素的生理功能与辅酶的作用息息相关。 3. 现有1 mL乙醇脱氢酶制剂,用缓冲溶液稀释至100 mL后,从中吸取500 μL测定酶的活力。得知2 min使0.5 mmol乙醇转化为乙醛。请计算每毫升酶制剂每小时能转化多少乙醇?(设:最适条件下,每小时转化1 mmol乙醇所需要的酶量为1个活力单位)。

酶的定义及特点

酶的定义及特点 酶的概念: 酶是由活细胞合成的,对其特异底物起高效催化作用的生物催化剂(biocatalyst)。已发现的有两类:主要的一类是蛋白质酶(enzyme),生物体内已发现4000多种,数百种酶得到结晶。美国科学家Cech于1981年在研究原生动物四膜虫的RNA前体加工成熟时发现核酶“ribozyme”,为数不多,主要做用于核酸(1989年的诺贝尔化学奖)。 二、酶的作用特点 酶所催化的反应称为酶促反应。在酶促反应中被催化的物质称为底物,反应的生成物称为产物。酶所具有的催化能力称为酶活性。 酶作为生物催化剂,具有一般催化剂的共性,如在反应前后酶的质和量不变;只催化热力学允许的化学反应,即自由能由高向低转变的化学反应;不改变反应的平衡点。但是,酶是生物大分子,又具有与一般催化剂不同的特点。 1.极高的催化效率 酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107~1013倍。例如,脲酶催化尿素的水解速度是H+催化作用的7×1012倍;碳酸酐酶每一酶分子每秒催化6×105 CO2与水结合成H2CO3,比非酶促反应快107倍。 2.高度的特异性

酶对催化的底物有高度的选择性,即一种酶只作用一种或一类化合物,催化一定的化学反应,并生成一定的产物,这种特性称为酶的特异性或专一性。有结构专一性和立体异构专一性两种类型。 结构专一性又分绝对专一性和相对专一性。前者只催化一种底物,进行一种化学反应。如脲酶仅催化尿素水解。后者可作用一类化合物或一种化学键。如酯酶可水解各种有机酸和醇形成的酯。在动物消化道中几种蛋白酶专一性不同,胰蛋白酶只水解Arg或Lys羧基形成的肽键;胰凝乳蛋白酶水解芳香氨基酸及其它疏水氨基酸羧基形成的肽键。 立体异构专一性指酶对底物立体构型的要求。例如乳酸脱氢酶催化L-乳酸脱氢为丙酮酸,对D-乳酸无作用;L-氨基酸氧化酶只作用L-氨基酸,对D-氨基酸无作用。 3.酶活性的可调节性 酶促反应受多种因素的调控,通过改变酶的合成和降解速度可调节酶的含量;酶在胞液和亚细胞的隔离分布构成酶的区域化调节;代谢物浓度或产物浓度的变化可以抑制或激活酶的活性;激素和神经系统的信息,可通过对关键酶的变构调节和共价修饰来影响整个酶促反应速度。所以酶是催化剂又是代谢调节元件,酶水平的调节是代谢调控的基本方式。 4.酶的不稳定性

第七章 生物反应器习题

第七章生物反应器习题 1.何谓恒化器,何谓恒浊器,二者有何区别? 2.某一酶促反应可以米氏方程表达,已知Km = 0.03mol/ L, r m=13 mol /(L?min),底物流量F = 10L/ min, 入口底物浓度S in= 10mol /L,底物的95%转化为产物,计算以下反 应器条件下所需反应器体积:(1)CSTR 条件下;(2)CPFR 条件下。 3. 初始浓度为0.1mol /m3的麦芽糖在酶的作用下加水水解生成葡萄糖, 底物流量 F = 0.002m3/ s ,转化率χ = 80%,反应符合米氏反应规律, r max= 4.39 ×10 -3mol/( m3?s) ,K =1.03mol /m3。求(1)采用单级CPFR 反应器时 所需体积;(2)采用单级CSTR 反应器时所需体积;(3)其他条件不变,采用两个CSTR 反应器时的反应体积;比较上述3 种情况。 4.利用海藻酸钙凝胶包埋法固定化葡萄汁酵母,采用填充床式反应器,连续加入葡萄糖底 =0.80的反应器。生物反应可采用米氏方程物,产物为乙醇。试设计一确定保转化率χ 2 来描述,已知, K′= 1.74 ×102mol /m3。空隙率为0.4; 入口处底物浓度为S in =10mol /m3;底物流量F = 5.0×10-3m3/ s 。 5. 带有挡板的通用式发酵罐,罐直径D1=0.5m,安装涡轮搅拌器,转速为150rpm,若以单位体积搅拌功率一定,放大至D2=1.5m,问大型罐涡轮搅拌器的转速N2 为多少?另外,若两罐内的液体循环速度相同,N2 为多少?假定以上各状态反应液均为湍流状态。 6. 有一发酵产品,采用具有六弯叶涡轮搅拌器的通用式发酵罐进行实验。经小罐到大罐逐步放大,试验证明:这种发酵能有效地采用单位体积等功率地放大方法。最后在500L 中间规模试验发酵罐中,得到最高产率时地工艺条件是:搅拌转速为300r/min;风量比 0.3m3/(m3?min),并测得在通风情况下得功率消耗为0.53kW。现放大到10m3,求大罐的工艺条件。罐的装填系数为0.7。

相关文档