文档库 最新最全的文档下载
当前位置:文档库 › An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter

An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter

An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter
An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter

An experimental investigation of hydrodynamics of a ?xed OWC Wave Energy

Converter

De-Zhi Ning a ,?,Rong-Quan Wang a ,Qing-Ping Zou b ,Bin Teng a

a State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China b

Department of Civil and Environmental Engineering,University of Maine,Orono,ME 04469,USA

h i g h l i g h t s

The hydrodynamic performance of a ?xed OWC device is experimentally studied.

There exists a critical wave slope at which hydrodynamic ef?ciency reaches the maximum. Slope angle has little in?uence on the resonant frequency.

The water motion inside the chamber is highly dependent on the relative wave length k /B .

a r t i c l e i n f o Article history:

Received 24July 2015

Received in revised form 25January 2016Accepted 28January 2016

Keywords:OWC

Wave energy Model testing

Hydrodynamic ef?ciency Water motion

a b s t r a c t

The hydrodynamic performance of a ?xed Oscillating Water Column (OWC)wave energy device under various wave conditions and geometric parameters was tested experimentally in a wave ?ume.The mea-sured water surface elevation at the chamber center,the air pressure in the chamber of the OWC device and the hydrodynamic ef?ciency are compared well with the published numerical model results in Ning et al.(2015).Then the effects of various parameters including incident wave amplitude,the chamber width,the front wall draught,the ori?ce scale and the bottom slope on the hydrodynamic ef?ciency of the OWC device were investigated.It is found that the opening ratio e (e =S 0/S ,where S 0and S are the cross-sectional areas of the ori?ce and the air chamber,respectively)has a signi?cant in?uence on the maximum hydrodynamic ef?ciency of the OWC device.The optimal ef?ciency occurs at the opening ratio of e =0.66%.Although bottom slope has little in?uence on the resonant frequency,the optimal hydrody-namic ef?ciency increases with the increase of bottom slope.A proper bottom slope can provide a work space in the OWC chamber almost independent on the sea wave conditions.The spatial variation of the water surface inside and outside the chamber was also examined.And the results indicate that the water motion is highly dependent on the relative wave length k /B (where k is the wave length and B is the chamber width).Seiching phenomenon is triggered when k /B =2at which the hydrodynamic ef?ciency is close to zero.

ó2016Elsevier Ltd.All rights reserved.

1.Introduction

To cope with the increasing costs of fossil fuels and the environ-mental problems derived from the extraction and the use of fossil fuels,renewable energy sources are believed to play a more and more important role to mitigate these effects [1].Wave energy is certainly a signi?cant component of the renewable energy [2]due to its high energy density [3]and less negative environmental impact [4,5].More than one thousand wave energy converter patents had been registered by 1980and the number has increased markedly since then [6],in which the OWC device has been exten-sively studied and implemented due to its mechanical and struc-tural simplicity [7].Generally,a land-?xed OWC device consists of two parts:a partially submerged land back chamber and an open below the mean sea level.They are used to trap a column of air above the free surface.As the waves impinge on the device,the oscillating motion of the internal water free surface makes the air to ?ow through a turbine that drives an electrical generator [8].A number of full sized OWC prototypes have been installed and tested world widely,including Tofteshallen in Norway (500kW),Sakata in Japan (60kW),Pico in Portugal (400kW),Limpet in Scotland (500kW),and more recently Mutriku in Spain (300kW)[9].However,OWC technology has not been fully commercialized

https://www.wendangku.net/doc/7615218073.html,/10.1016/j.apenergy.2016.01.1070306-2619/ó2016Elsevier Ltd.All rights reserved.

?Corresponding author.Tel.:+8641184708267.

E-mail address:dzning@https://www.wendangku.net/doc/7615218073.html, (D.-Z.Ning).

yet[10].The main reason is that the hydrodynamics of the OWC devices has not been fully understood.Further hydrodynamic investigations on OWC device still need to be carried out theoret-ically,numerically and experimentally.

Although signi?cant efforts have been made to investigate the hydrodynamic performance of OWC devices theoretically at the early stage,such as McCormick[11],Evans[12],Falc?o and Sarmento[13],Evans[14]and Falnes and McIver[15],majority of OWC theories are based on linear wave theory and neglect the viscosity,spatial variation of water surface elevation in the cham-ber.The hydrodynamic ef?ciency is generally over-predicted based on the simple theoretical solutions[8,16,17].

Recent development of numerical techniques and increasing computer power has signi?cantly increased the ef?ciency and accuracy of numerical studies of the hydrodynamic performance of OWC devices.Based on the potential?ow model,Count and Evans[18]developed a numerical model by coupling the three-dimensional(3-D)boundary integral method outside the OWC device and with the eigenfunction expansion method in the rectan-gular inner region.Wang et al.[19]validated numerical computa-tions with experimental measurements and found the topographical effects of bottom slope and water depth is important to the performance of an OWC.Delauréand Lewis[7]applied the ?rst-order BEM to simulate the hydrodynamic performance of a 3D?xed OWC device and discussed its accuracy.Josset and Clément[20]developed a time-domain numerical model of OWC wave power plants to predict the annual performance of the wave energy plants on Pico Island,Azores,Portugal.Nunes et al.[21] analyzed an off-shore OWC device numerically and studied the techniques that could improve energy extraction ef?ciency.It was proved that it is possible to achieve a resonant response for sinusoidal waves with a frequency different from the device’s natural frequency.Falc?o et al.[22]analyzed the performance of an OWC spar buoy wave energy converter in the frequency domain for both regular and irregular waves.Iturrioz et al.[10]presented a simpli?ed time-domain model for a?xed detached OWC device and validated numerical computations by comparison with exper-imental data.Gkikas and Athanassoulis[23]presented a nonlinear system identi?cation method for modeling the pressure?uctua-tion inside the chamber of an OWC wave energy converter under monochromatic excitation.Ning et al.[16]developed a two-dimensional(2-D)fully nonlinear numerical wave?ume(NWF) based on a time-domain higher-order boundary element method (HOBEM)and used it to investigate the hydrodynamic perfor-mance of a?xed OWC wave energy device.Rezanejad et al.[24] investigated the performance of dual chamber OWC devices in the stepped sea bottom condition.

Recently,researchers have also developed viscous-?ow model based on the N-S equations to analyze the OWC device.Marjani et al.[25]simulated the?ow characteristics in the chamber of an OWC system using the FLUENT software.They found that the ener-getic performances are higher in the case of the inhalation mode than in the case of the exhalation mode.Zhang et al.[17]devel-oped a2-D two-phase numerical wave tank(NWT)using a level-set immersed boundary method to study the?ow?eld,surface elevation and air pressure in an OWC chamber.They investigated the effects of the geometric parameters on the OWC power capture ef?ciency.Teixeira et al.[9]applied the Fluinco numerical model to simulate an OWC device and investigate the effects of the chamber geometry and the turbine characteristics on the device perfor-mance.López et al.[26]implemented a2-D numerical model based on the RANS equations and the VOF surface capturing scheme(RANS-VOF)to study the optimum turbine-chamber cou-pling for an OWC.Luo et al.[27]developed a2-D,fully nonlinear CFD model and analyzed the ef?ciency of?xed OWC-WEC devices with linear power take off systems.Iturrioz et al.[28]simulated a ?xed detached OWC device using OpenFOAM to test capability of CFD simulations in analyzing the OWC device.However,it is still dif?cult to perfectly simulate the nonlinear wave interaction with an OWC device in any previous numerical models due to the com-plicated coupling process of air and water in the chamber.

In addition to the numerical modeling,a number of experi-ments have been carried out to study the performance of OWC devices.Tseng et al.[29]presented the concept of a breakwater and a harbor resonance chamber which can extract energy from the ocean and protect the shore at the same time.A1/20model of this type of system was constructed and tested in a wave tank and the experimental data were compared with the previous the-oretical results.Afterward,Boccotti et al.[30]carried out an exper-iment to study the hydrodynamic performance of harbor resonance chambers.Morris-Thomas et al.[8]experimentally studied the energy ef?ciency of an OWC focused their study on the in?uence of front wall geometry on the OWC’s performance. Gouaud et al.[31]carried out experiments to investigate the hydrodynamic performance of an OWC device and compared the experimental data to numerical results.Liu[32]studied the oper-ating performance of an OWC air chamber both experimentally and numerically.Dizadji and Sajadian[33]carried out an experi-mental study on the geometrical design of an OWC system and optimized the set up for the maximizing the energy harness.He et al.[34]experimentally investigated an integrated oscillating water column type converter with?oating breakwater and found that the integrated system can widen the frequency range for energy extraction.Imai et al.[35]studied the total conversion pro-cess of an OWC device with a turbine theoretically,and carried out experiment to validate the theoretical results.

Above literature review shows that a number of investigation methods have been developed and applied to study the hydrody-namic performance of the OWC device.Various numerical models have been established based on either potential-?ow or viscous-?ow model.However,the related experimental studies on land-?xed OWC devices are still limited,especially those on the in?uence of wave nonlinearity,turbine damping and bottom slope on the performance of the OWC devices.Moreover,no suf?cient attention has been paid to the water motion in the chamber.The large difference between the internal and external surface eleva-tions of the chamber can cause the dynamic pressure on the front wall,which may be a threat to the safety operation of the OWC device[36].To complete the previous studies,the primary goal of this study is to experimentally investigate the effects of wave nonlinearity,the ori?ce scale and the bottom slope on the hydro-dynamic ef?ciency of land-?xed OWC devices and the characteris-tics of water motion in the air chamber.

The rest of the present paper is organized as follows:The exper-imental procedure is described in Section2.Experimental data is compared with the solutions of the higher-order boundary element method(HOBEM)in Section3.In Section4,the effects of the inci-dent wave amplitude and geometric parameters on the hydrody-namic ef?ciency of the OWC device are discussed.In Section5, the spatial variation of the free surface in the air chamber is analyzed.Finally,the conclusions of this study are summarized in Section6.

2.Experiments

2.1.Experimental set-up

The physical model tests were carried out in the wave-current ?ume at the State Key Laboratory of Coastal and Offshore Engineer-ing,Dalian University of Technology,China.The glass-walled wave ?ume is69m long,2m wide and1.8m deep as shown in Fig.1(a).

D.-Z.Ning et al./Applied Energy168(2016)636–648637

The piston-type wave maker is installed at one end of the ?ume,and a wave-absorbing beach is located at the other end to absorb the outgoing waves.The wave maker is able to generate regular and irregular waves with periods from 0.5s to 5.0s.The test sec-tion of the ?ume was divided into two parts along the longitudinal direction,which were measured as 1.2m and 0.8m in width,respectively.The OWC model was installed in the 0.8m wide part and 50m away from the wave maker (see Fig.2(b)).To avoid wave energy transfer through the device,the model was designed to span across the width and depth of the ?ume.The main body of the model was made of 8-mm thick transparent Perspex sheets,in order to have a clear view of the internal free-surface of the water.

The power take-off was implemented through a circular ori?ce situated on the roof of the chamber and 0.2m from the front wall (see Fig.2).The sketch of the experimental setup is shown in Fig.2,in which h denotes the static water depth,B the chamber width,C the thickness of the front wall,D the diameter of the ori?ce,d the immergence of the front wall,L m the base length of the sea bottom

slope,h the slope angle of the bottom,and h c the height of the air chamber (i.e.,distance between the still water surface and the ceil-ing).In the experiments,four resistance-type wave gauges (G1,G2,G3,G4)with resolution of 0.01cm were used to measure the instantaneous surface elevations at different locations.One exte-rior wave gauges was situated 0.02m from the outer side of the front wall to measure and record the time series of free-surface wave elevation outside the chamber.Three were situated inside the OWC chamber,in which one was 0.02m from the inner side of the front wall,the second one was at the mid-point of the cham-ber and the last one was 0.02m from the rear wall.Two pressure sensors (S1and S2)were used to measure the air pressure inside the chamber,which were placed rigidly 0.02m from the edge of the ori?ce (see Fig.2).Their average value is regarded as the air pressure in the chamber.Both the surface and pressure signals are sampled at 50Hz.A high-speed CCD camera was used to record the whole water surface motion in the chamber with a frame rate of 100fps.

Five sets of experiments were carried out to investigate the effects of the incident wave amplitude,chamber width,front wall draught,ori?ce diameter and bottom slope on the hydrodynamic performance of the OWC.The front wall thickness C =0.04m and the chamber height h c =0.20m were remained constant in the experiments.Parameters B =0.55m,d =0.14m,h =0°,and D =0.06m were chosen as the references.Then only one corre-sponding parameter would be varied in each set of experiment and the others were kept constant.The geometric parameters chosen for the experiment are shown in Table 1.

By keeping the still water depth constant at h =0.8m,different wave conditions with wave amplitudes A i varied in the range of (0.02m,0.07m)and 14wave periods T in the range of (0.95s,2.35s)were considered.In the cases for the effects of the geomet-ric parameters on the OWC ef?ciency,the incident wave amplitude was ?xed at A i =0.03m.Total 177tests were carried out to study the hydrodynamic performance of the OWC

device.

Fig.1.Photos of (a)laboratory wave ?ume and (b)OWC device.

D

B

d

h c

G1G3C

G2

G4

Lm

Absorbing beach

G: Wave Guage S: Pressure Sensor

S1S2

Table 1

Geometric parameters used in the experiments.B (m)d (m)h (°)C (m)D (m)h c (m)L m (m)0.550.1400.040.040.2 1.00.700.17100.040.060.2 1.00.850.20200.040.080.2 1.0–

30

0.04

0.2

1.0

2.2.Data analysis

In?uenced by the incident waves,the water surface in the chamber is not?at and the water column may experience both sloshing and piston motions,which in?uence the natural fre-quency of the OWC system.The mean power absorbed by the OWC device depends primarily on the heave motion of the water column and air pressure inside the air chamber.Brendmo et al.

[37]reported that when wavelength is long enough in comparison with the characteristic horizontal dimension of the inner OWC sur-face,surface motion at one point can represent the whole surface variation in the chamber.In the present paper,the horizontal dimension of the interior chamber of the OWC is small when com-pared with the prevailing wavelength.The water surface motion at the mid-point(G3)is used to represent the internal surface?uctu-ation for calculating the hydrodynamic ef?ciency.

The hydrodynamic ef?ciency of an OWC device is determined as [8]

n?

P0

P w w

;e1T

where P w is the time-average energy?ux of the incident waves,w is the width of the?ume section used and P0is the hydrodynamic energy absorbed from the waves by the OWC device during one wave period,which is calculated by

P0?Z

S f

?

Bw

Z ttT

t

petTáuetTdt;e2T

where p(t)is the air pressure in the chamber,u(t)is the normal vertical velocity of interior free surface(represented by the surface at the chamber center),S f is the cross-section area of the free sur-face in the chamber and B is the width of the chamber.

According to linear wave theory,the average energy?ux per unit width in the incident wave is given by

P w?1

2

q gA2

i

c g;e3T

where q is the water density,g is the gravitational acceleration,A i is the incident wave amplitude and c g is the group velocity of the incident wave de?ned as

c g?c

2

1t

2kh

sinh2kh

;e4T

where k is the wave number;c is the incident wave velocity

c?x

k

;e5T

and the angular frequency x satis?es the following dispersion relation

x2?gk tanh kh:https://www.wendangku.net/doc/7615218073.html,parisons between experimental data and numerical results

A two-dimensional fully nonlinear numerical model based on the potential theory and the time-domain HOBEM by Ning et al.

[16]is used to simulate the proposed hydrodynamic performance of an OWC device and the numerical results are compared with the experimental data.In the numerical model study,the incident wave is generated by the inner-domain sources whose strength is dependent on the incident wave velocity.A damping layer with a coef?cient l1(x)at the inlet of the numerical?ume is implemented to absorb the re?ected wave from the OWC device as shown in Fig.3.The re?ected waves from the structure can pass through inner-domain sources(i.e.,the incident surface)and then absorbed at the inlet damping layer with nearly none re-re?ection.The rel-ative study is given in the Appendix A detailedly.The governing equation is changed from Laplace equation to Poisson equation. To model the viscous effect due to water viscosity and?ow separa-tion in the potential?ow model,the linear damping term can be used in the free surface boundary of a sloshing container[38]or

a narrow gap between twin?oating objects[39,40].In the study

[16],an arti?cial viscous damping term with a coef?cient l2is applied to the dynamic free surface boundary condition inside the OWC chamber.Then,velocity potential also satis?es the following modi?ed fully nonlinear free surface boundary conditions

dXex;zT

dt

?r/àl1exTeXàX0T

d/

dt

?àg gt12j r/j2àp qàl1exT/àl2@/

8

>><

>>:;e7T

where X0=(x0,0)denotes the initial static position of the?uid particle.The damping coef?cient l1(x)is de?ned by

l

1

exT?

x xàx1

L

àá2

;x1àL

0;x P x1

(

;e8T

where x1is the starting position of damping zone,L is the length of the damping zone at the left?ume-end and is set to be1.5k in the present study.The arti?cial viscous damping coef?cient l2is deter-mined by trial and error(the detailed determination process is shown in Appendix B)and only implemented inside the chamber.

The air pressure p on the water free surface is set to be zero (i.e.,atmospheric pressure)outside of the chamber.Inside the chamber,the pneumatic pressure is given by

petT?C dm U detT;e9Twhere C dm is linear pneumatic damping coef?cient and U d(t)the air ?ow velocity in the ori?ce.

The energy absorbed by the OWC device in the numerical model can be calculated by

P0?

1

Z ttT

t

QetTpetTdt?

1

Z ttT

t

B _getTpetTdt

?1

T

Z ttT

t

C dm U detTAU detTdt;e10T

where the?ow rate QetT?B _getT?AU detT. _getTis the time mean vertical velocity of the free surface inside the chamber.More details regarding the numerical model can be found in[16].

The numerical results with the parameters:chamber width B=0.55m,front wall thickness C=0.04m,front wall draught d=0.14m,bottom slope h=0°and the ori?ce diameter D=0.06m,are compared with the experimental data.In the numerical model,the air duct width ad is set as0.0036m,which

D.-Z.Ning et al./Applied Energy168(2016)636–648639

is of the same area with the circular air ori?ce in the experiment, and the other four parameters are the same as those used in the experiment.The incident wave amplitude is A i=0.03m.The vis-cous coef?cient and the linear pneumatic damping coef?cient in Eqs.(7)and(9)are set as l2=0.2and C dm=9.5,respectively.The length of the numerical?ume is set to5k,in which1.5k at the left side is used as the damping layer.And the size of the boundary ele-ments in the horizontal direction is D x=k/30.For each case,30 periods of waves are simulated with a time step of D t=T/80.

Fig.4(a)and(b)show the time series of the surface elevation at the chamber center for T=1.366s and T=1.610s,respectively. Overall,the measured and predicted surface elevation compare well with each other.However,the numerical model did not cap-ture the secondary harmonic peaks observed in the experiment in Fig.4(a).This is likely due to the fact that the present pneumatic model is linear,therefore,is unable to predict the higher harmonics generated by the interaction between the high frequency wave and the inhaled air?ow.To verify this point,Fig.5(a)and(b)show the surface elevation spectrums at points outside the chamber(G1) and inside the chamber(G3)for T=1.366s.Fig.5(a)indicates good agreement between the numerical model and experiment at G1 outside the chamber,where the highest harmonic energy occurs at the second harmonic frequency without the pneumatic in?u-ence in the chamber.However,the highest harmonic energy occurs at the fourth harmonic frequency as observed at G3by experiment in Fig.5(b),which is due to the pneumatic effect by comparison with the result in Fig.5(a)and are not resolved by the present lin-ear pneumatic model.Fig.6(a)and(b)presents the time series of air pressure in the chamber for T=1.366s and T=1.610s,respec-tively.Better agreements between the observed and predicted results are obtained.

Fig.7gives the variation of the hydrodynamic ef?ciency with the dimensionless wave number kh.The comparisons between the experimental data and the potential numerical results with l

2

=0.0(i.e.,no considering the viscous effects)and l2=0.2 (i.e.,considering the viscous effects)are shown in the?gure.It can be seen that the pure potential solutions(i.e.,l2=0.0)over-predict the hydrodynamic ef?ciency because it neglects the viscous damping,but the resonant frequencies predicted by the potential model with and without the damping term agree well with each other.The viscous effect on the hydrodynamic ef?ciency is more obvious in the resonant zone(i.e.,1.2

4.Effects of wave and geometric parameters

The in?uences of the incident wave amplitude(i.e.,wave non-linearity)and the OWC geometric parameters including the cham-ber width,the front wall draught,the ori?ce scale and the bottom slope on the hydrodynamic ef?ciency are examined in this section. Both the experimental data and their cubic?tting curves are included in the relevant?gures.The similar?tting method can be found in Zhang et al.[17].

4.1.Incident wave amplitude

To investigate the effect of the wave nonlinearity on the hydro-dynamic ef?ciency of the OWC device,the experiments were carried out with different incident wave amplitudes and constant other parameters:B=0.55m,d=0.14m,D=0.06m and h=0°. Fig.8shows the variation of the hydrodynamic ef?ciency with kh for the incident wave amplitudes A i=0.02m,0.03m and0.04m. It can be seen that wave amplitude has little in?uence on the res-onant frequency and the ef?ciency curve shape.While the reso-nant frequencies for all the three wave amplitudes occur at kh=1.58,the hydrodynamic ef?ciencies for A i=0.02m,0.03m and0.04m are of0.81,0.83and0.78,respectively.In addition,it can be observed that the overall hydrodynamic ef?ciency increases as the wave amplitude A i increases from0.02m to0.03m,and decrease as A i increases from0.03m to0.04m.The maximum ef?-ciency is at A i=0.03m among these three wave amplitudes.

To further illustrate the relationship between the wave nonlin-earity and the hydrodynamic ef?ciency,Fig.9shows the variation of the hydrodynamic ef?ciency with the incident wave amplitude at three frequencies of kh=1.40,1.58and1.82.It can be observed that the hydrodynamic ef?ciency?rstly increases with increasing wave amplitude,and reaches the maximum at a critical A i,then decreases as wave amplitude further increases.Such behavior is in agreement with the numerical results presented by Ning et al.

[16].When studying OWC in irregular waves,López et al.[41]also observed that the capture factor increases with the wave steepness at low wave frequencies and decreases at high wave frequencies. But the critical wave amplitude A i corresponding to the peak ef?-ciency was not presented in their work.In addition,the peak ef?-ciency at the resonant frequency(i.e.,kh=1.58)decreases more quickly with increasing amplitude than those at kh=1.40and kh=1.82.

640 D.-Z.Ning et al./Applied Energy168(2016)636–648

4.2.Chamber width

Fig.10shows the hydrodynamic ef?ciency of the OWC device for three different chamber widths:B=0.55m,0.70m and 0.85m and constant wave amplitude of A i=0.03m.The other parameters are kept the same as those in Fig.8.From the?gure, it can be seen that the chamber width has a signi?cant in?uence on the hydrodynamic ef?ciency of the OWC device.The hydrody-namic ef?ciency increases with the increase of chamber width B in the low-frequency region(about kh<1.5),but follows a com-pletely opposite trend in the high-frequency region.What’s more, the resonant frequency decreases with the increase of B.The opti-mal points are around kh=1.58(B=0.55m),kh=1.50(B=0.70m) and kh=1.36(B=0.85m)with the same hydrodynamic ef?ciency of0.83,respectively.The reason is due to that the inertia of the OWC water column increases with chamber width.The approxi-mated nature piston frequency formula by Veer and Thorlen[42] for the water mass oscillating in a moonpool is calculated as follows:

D.-Z.Ning et al./Applied Energy168(2016)636–648641

x

n?

?????????????????????????????

g

dt0:41

???????

Bw

p

r

:e11T

The coef?cient0.41in the above formula is empirical and hence does not necessarily provide accurate results in the case of OWC device.However,the dependence of the natural frequency on the width of the chamber can be clearly seen in Eq.(11).

4.3.Front wall draught

Fig.11illustrates the hydrodynamic ef?ciency of the OWC device obtained from different front wall draughts of d=0.14m, 0.17m and0.20m with A i=0.03m and other parameters remain-ing the same as those in Fig.8.Firstly,it can be observed that both the resonant frequency and the peak ef?ciency decrease with the increase of the submerged depth d.They occur at kh=1.59 (d=0.14m),1.50(d=0.17m)and1.41(d=0.20m)corresponding to the hydrodynamic ef?ciency of0.83,0.77and0.76,respectively. This characteristic is caused by the increased mass of water column in the chamber.The hydrodynamic ef?ciency reduces sig-ni?cantly with increasing d in the high-frequency zone(about kh>1.75)and is not sensitive to the change of draught d in the low-frequency zone(about kh<1.0).An explanation to such a phe-nomenon is that while in the low-frequency long wave region, compared with the wave length,the draught of the front wall is small enough,so that the variation of the long wave length is insensitive to the submerged depth.In contrast,in the high-frequency short wave region,the draught of the front wall is not small relative to the wavelength,so the variation of the short wave length is sensitive to the immergence depth[16].

4.4.Ori?ce scale

As shown in Fig.12,three circular-shaped openings were tested in the experiments.The size of an opening can be described by the opening area ratio e=S0/S,where S0and S are the cross-sectional areas of the ori?ce and the air chamber,respectively.In this set of experiments,the incident wave amplitude was set as A i=0.03m and other parameters were kept the same as those in Fig.8.Three diameters of the ori?ce D=0.04m,0.06m and

0.08m correspond to the opening ratios of0.29%,0.66%and

1.17%,respectively.The optimal hydrodynamic ef?ciency n is highly in?uenced by the opening ratio with n=0.63(e=0.29%), 0.83(e=0.66%)and0.74(e=1.17%).Moreover,the hydrodynamic ef?ciency n for e=0.66%reaches the largest among the three open-ing ratios except those in the high-frequency zone(about kh>

2.6). He and Huang[43]obtained a similar conclusion in their experimental study of pile-supported OWC-type structure.They found that the circular-shaped opening with an opening ratio of 0.625%could achieve the smallest transmission coef?cient.To further explain such phenomenon,Figs.13and14present the

642 D.-Z.Ning et al./Applied Energy168(2016)636–648

comparisons of the air pressure in the chamber and the maximum water surface elevation at the chamber center for different opening ratios,respectively.The water column motion is in?uenced by the oscillation of the air pressure inside the chamber.Experimental results show that internal air pressure decreases with increasing opening ratio,while the maximum surface elevation changes with an opposite trend.For the smallest opening ratio e =0.29%(i.e.,D =0.04m),the largest pressure ?uctuation in the chamber leads to the smallest oscillation amplitude of the water column.For the largest opening ratio e =1.17%(i.e.,D =0.08m),the pres-sure ?uctuation in the chamber is the smallest with the largest surface elevation.The wave energy extraction attributes to the pro-duct of air pressure and volume variation in the chamber according to Eq.(2).Thus the optimal ones correspond to the opening ratio e =0.66%(i.e.,D =0.06m)from Figs.12–14.The present analysis may help to determine the turbine damping of the OWC device to achieve the optimal energy extraction.4.5.Bottom slope

To investigate the in?uence of the bottom slope on the perfor-mance of the OWC device,physical tests are carried out for differ-ent bottom slopes with the parameters A i =0.03m,B =0.55m,d =0.14m,D =0.06m and L m =1.0m being constant.As shown in Fig.15,the results indicate that the ef?ciency curve is shifted slightly to the left with the increase of the slope angle h .The reso-nant frequency is basically unchanged and occurs at about kh =1.58.Rezanejad et al.[24]reported that the ef?ciency curve slightly shifts to the lower wave period with the decrease of the bottom slope in the case without stepped bottom in their study of the dual-chamber OWC.Ashlin et al.[44]experimentally studied the performance of an OWC device with different bottom pro?les subject to random waves and found that the nature frequency is independent of the bottom pro?le.

Fig.16shows the variation of the hydrodynamic ef?ciency ver-sus bottom slope for different kh .The largest ef?ciency occurs at the resonant frequency (i.e.,kh =1.58)and slightly increases with the bottom slope in the proposed scope of h 630°.This attributes to the largest product of the surface variation rate eg max àg min T=T and air pressure variation rate ep max àp min T=T in the chamber at resonant frequency (see Fig.17(a)and (b)).For the low-frequency (kh =1.26),the hydrodynamic ef?ciency increases with increasing slope angle.This is because the water depth in the chamber decreases with increasing slope angle,which can enhance the shal-low water effect and strengthen the piston motion in the chamber.

For the high-frequency (kh =1.99),the increase of the slope angle can lead to a stronger re?ection from the sloping bottom for the short waves with a weak transmission capability.Thus,the hydro-dynamic ef?ciency decreases with increasing slope angle.

From Fig.17,it can be seen that the difference in between sur-face variation rates for different kh is small for some special bottom slopes.The result indicates that a proper bottom slope can provide

D.-Z.Ning et al./Applied Energy 168(2016)636–648643

a work space in the OWC chamber almost independent on the sea wave conditions.This is important for the structure safety and operation stability.Because the real sea bottom is not plan,this will provide a good reference to explore a proper site for the OWC wave energy converter to be constructed.

5.Water motion outside and inside the chamber

To investigate the spatial variation of the free surface,four wave gauges were used to measure the wave elevations at locations as described in Fig.2.The free surface motion in the chamber is quite complicated and strongly in?uenced by the chamber geometry and the incident wave conditions.The following parameters,including wave amplitude A i=0.03m,chamber width B=0.70m,front wall draught d=0.14m,ori?ce diameter D=0.06m and bottom slope angle h=0°,are chosen in this section.

Fig.18shows the relative maximum surface amplitude|g max|/A i at each gauging point versus the dimensionless wave length k/B.It can be seen that the three maximum surface amplitudes inside the chamber increase with the increase of wave length,while the sur-face amplitude outside the chamber presents an opposite trend. This is because that the long wave possesses a strong transmission capability and a large part of the wave energy is transmitted into the chamber.The maximum surface amplitudes at G2and G4reach the largest at k/B=2(i.e.,T=0.950,k=1.40and B=0.70),but the relating surface amplitude at chamber center,i.e.,G3,is near to zero.This is due to the so called seiching phenomenon excited when k/B=2.A similar phenomenon was ever reported by Liu et al.[45]numerically.

Figs.19(a)and20(a)may help to further explain this special seiching phenomenon.Fig.19(a)shows the time series of the surface elevation at the gauges with a wave period T=0.950s (k/B=2.01).It is found that,there is a phase difference of half per-iod(i.e.,T/2)between G2and G4,and the amplitudes at G2and G4 are nearly twice the incident wave amplitude.However,the sur-face elevation at G3has a very weak?uctuation and its mean value is below the still water surface.This is because of the pneumatic pressure resulting in the lower mean surface in the chamber. Fig.20(a)shows the snapshot of surface elevation in the chamber with T=0.950s.It can be seen that,the water surface in the cham-ber is rising at one wall and falling at the other wall and the inter-section node of two lines lies at the chamber center.This is the typical standing wave characteristics.Furthermore,the total mass inside the chamber is not changed[45]and the air pressure is also kept constant which is close to the atmospheric pressure.Thus,no energy can be extracted from the waves,which can be seen the dashed line for case of B=0.70m in Fig.10(i.e.,the hydrodynamic ef?ciency is near to zero for kh=3.57corresponding to T=0.950s and k/B=2.01).Therefore,such seiching phenomenon should be avoided in the OWC design.

In addition,from Fig.19(b)–(d),it can be seen that the phase difference between the G1and G2decreases with the increase of wave length.That is to say,the long wave generates more synchro-nized surface motion inside and outside the chamber than the short wave.This is bene?t to the safety of the OWC device to avoid the large wave pressure on the front wall caused by the apparent phase difference between the internal and external surface eleva-tion of the chamber.

Overall,it is evident from Figs.18–20that the surface elevation at the three observed points inside the chamber become closer to each other with the increase of wave length.It means that the inte-rior water surface tends to a horizontal line,which proves that it is feasible to use a point to represent the water column motion inside the chamber for long waves in Eq.(2).From Fig.7,it can also be seen that there is good match between the measured ef?ciency and the improved potential solution for long waves in the low-frequency zone.However,due to the spatial variation of surface elevation in the chamber,there exists the apparent discrepancy between them for short waves in the high-frequency zone.It means that there may be some errors in calculating the experimen-tal hydrodynamic ef?ciency by using the chamber center to repre-sent the average motion of the water column in the chamber for some short waves.

644 D.-Z.Ning et al./Applied Energy168(2016)636–648

D.-Z.Ning et al./Applied Energy168(2016)636–648645

6.Conclusions

In the present work,the hydrodynamic performance of a?xed OWC Wave Energy Converter is experimentally investigated.The effects of the incident wave amplitude and geometric parameters on the hydrodynamic ef?ciency and water motion inside and out-side the chamber were examined.The measured surface elevation at the chamber center,the air pressure in the chamber and the hydrodynamic ef?ciency agree well with the improved potential numerical model.

The incident wave amplitude has little in?uence on the reso-nant frequency and the hydrodynamic ef?ciency.However,the hydrodynamic ef?ciency increases?rstly to a peak value and then decreases with the increase of the incident wave amplitude.The hydrodynamic ef?ciency decreases rapidly after the peak value with increasing the incident wave amplitude at the resonant fre-quency.With increasing the chamber width B,the hydrodynamic ef?ciency increases in the low-frequency region,and it follows a completely opposite trend in the high-frequency region.Mean-while,a lower resonant frequency occurs due to the greater water mass in the chamber for a larger width https://www.wendangku.net/doc/7615218073.html,rger submerged depth d leads to a lower hydrodynamic ef?ciency n and a lower resonant frequency.The opening ratio has a signi?cant in?uence on the peak value of the hydrodynamic ef?ciency.The present results show that the optimal hydrodynamic ef?ciency occurs at the opening ratio e=0.66%.In the range of h630°,the bottom slope has little in?uences on the resonant frequency,but the optimal ef?ciency increases with the increase of bottom slope.A proper bottom slope can provide a work space in the OWC chamber almost independent on the sea wave conditions.

The water surface motion in the chamber is highly dependent on the relative wave length k/B.Seiching phenomenon,which leads to no energy extracted from the waves,can be excited when the relative wave length is k/B=2.This phenomenon should be avoided in the design of an OWC device.With the increases of the relative wave length(k/B>2),the mode of sloshing motion decreases and the mode of piston motion increases.Meanwhile, the phase difference of free surface between the inside and outside the chamber also decreases.

The present investigation can be a guideline to assist in the geometry optimization design,site selection,and safety analysis of the land-based OWC devices and provide experimental data for validating numerical models.

Acknowledgements

The authors also would like to gratefully acknowledge?nancial support from the National Natural Science Foundation of China (Grant Nos.51179028,51222902,51490672),the Program for New Century Excellent Talents in University(Grant No.NCET-13-0076)and the Joint Project between NSFC and RS(Grant No. 51411130127).

Appendix A.Absorption ability of the damping layer The absorption ability of the damping layer was tested in a case with the following parameters A i=0.03m,T=1.610s,B=0.55m, D=0.06m,d=0.14m and h=0°.Fig.A1shows the time series of surface elevations at two different positions(i.e.,M1and M2)as marked in Fig.3.M1is at the left?ume-end(i.e.,the ending position of the damping layer,x=àL)and M2is at x=0.5L.It can

646 D.-Z.Ning et al./Applied Energy168(2016)636–648

be seen that the relative wave amplitude at the left?ume-end(M1) is less than0.03,which means that most of re?ected wave energy was absorbed in the damping layer.Fig.A2shows the relative wave height(H/2A i)distribution along the damping layer.The wave height attenuates rapidly to a very small value(less than 3%of the incident wave height)along the damping layer.This indicates that the damping layer can absorb the re?ected wave effectively and the re-?ection phenomenon can be ignored. Appendix B.Determination of the pneumatic damping

coef?cient C dm and arti?cial damping coef?cient l2 The controlling variables method is applied to determine the adaptable pneumatic damping coef?cient C dm and arti?cial damp-ing coef?cient l2.The same case in Appendix A was taken as an example.Firstly,we set the value of l2as zero and change the value of C dm.Fig.B1shows that the smallest C dm=7.0overesti-mates the surface elevation and underestimates the air pressure, it is vice versa for the largest C dm=12.0.It can be noted that the numerical results are closest to the experimental data for C dm=9.5.Then,the value of C dm is?xed as9.5and the value of

l

2

is varied.From Fig.B2we can see that the existence of viscous damping can reduce the amplitudes of both the surface elevation and air pressure.It can be seen that the numerical results show good agreement with the experimental data for l2=0.2.Therefore, the coef?cients C dm=9.5and l2=0.2are determined and the error between the numerical results and experimental data is within5% with these two conformed parameters.Such trial and error process can be looped until the most adaptable coef?cients C dm and l2are obtained.

References

[1]Veigas M,López M,Iglesias G.Assessing the optimal location for a shoreline

wave energy converter.Appl Energy2014;132(11):404–11.

[2]Pinson P,Reikard G,Bidlot JR.Probabilistic forecasting of the wave energy?ux.

Appl Energy2012;93:364–70.

[3]Pontes MT,Falc?o AFO.Oceans energies:recourses and utilization.In:

Proceedings of the18th world energy conference,Buenos Aires;2001.

[4]Palha A,Mendes L,Fortes J,Brito-Melo A,Sarmento AJNA.The impact of wave

energy farms in the shoreline wave climate:Portuguese pilot zone case study using Pelamis energy wave devices.Renew Energy2010;35:62–77.

[5]Carballo R,Iglesias G.Wave farm impact based on realistic wave-WEC

interaction.Energy2013;51:216–29.

[6]Falc?o AFO.Wave energy utilization:a review of the technologies.Renew Sust

Energy Rev2010;14(3):899–918.

[7]DelauréYMC,Lewis A.3D hydrodynamic modelling of?xed oscillating water

column wave power plant by a boundary element method.Ocean Eng2003;30

(3):309–30.

[8]Morris-Thomas MT,Irvin RJ,Thiagarajan AP.An investigation into the

hydrodynamic ef?ciency of an oscillating water column.J Offshore Mech Arct Eng2007;129(4):273–8.

[9]Teixeira PRF,Davyt DP,Didier E,Ramalhais R.Numerical simulation of an

oscillating water column device using a code based on Navier-Stokes equations.Energy2013;61:513–30.

[10]Iturrioz A,Guanche R,Armesto JA,et al.Time-domain modeling of a?xed

detached oscillating water column towards a?oating multi-chamber device.

Ocean Eng2014;76:65–74.

[11]McCormick ME.A modi?ed linear analysis of a wave-energy conversion buoy.

Ocean Eng1976;3:133–44.

[12]Evans DV.The oscillating water column wave energy device.IMA J Appl Math

1978;22(4):423–33.

[13]Falc?o AFO,Sarmento AJNA.Wave generation by a periodic surface pressure

and its application in wave-energy extraction.In:15th international congress of theoretical and applied mechanics.Toronto;1980.

[14]Evans DV.Wave-power absorption by systems of oscillating surface pressure

distributions.J Fluid Mech1982;114:481–99.

[15]Falnes J,McIver P.Surface wave interactions with systems of oscillating bodies

and pressure distributions.Appl Ocean Res1985;7:225–34.

[16]Ning DZ,Shi J,Zou QP,Teng B.Investigation of hydrodynamic performance of

an OWC(oscillating water column)wave energy device using a fully nonlinear HOBEM(higher-order boundary element method).Energy2015;83:177–88.

[17]Zhang Y,Zou QP,Greaves D.Air-water two-phase?ow modeling of

hydrodynamic performance of an oscillating water column device.Renew Energy2012;41:159–70.

[18]Count BM,Evans DV.The in?uence of projecting sidewalls on the

hydrodynamic performance of wave-energy devices.J Fluid Mech 1984;145:361–76.

[19]Wang DJ,Katory M,Li YS.Analytical and experimental investigation on the

hydrodynamic performance of onshore wave-power devices.Ocean Eng 2002;29:871–85.

[20]Josset C,Clément AH.A time-domain numerical simulator for oscillating water

column wave power plants.Renew Energy2007;32:1379–402.

[21]Nunes G,Valério D,Beir?o P,Sáda Costa J.Modelling and control of a wave

energy converter.Renew Energy2011;36:1913–21.

[22]Falc?o AFO,Henriques JCC,Candido JJ.Dynamics and optimization of the OWC

spar buoy wave energy converter.Renew Energy2012;48:369–81.

[23]Gkikas GD,Athanassoulis GA.Development of a novel nonlinear system

identi?cation scheme for the pressure?uctuation inside an oscillating water column-wave energy converter part I:theoretical background and harmonic excitation case.Ocean Eng2014;80:84–99.

[24]Rezanejad K,Bhattacharjee J,Soares CG.Analytical and numerical study of

dual-chamber oscillating water columns on stepped bottom.Renew Energy 2015;75:272–82.

[25]Marjani AE,Ruiz FC,Rodriguez MA,Santos MTP.Numerical modelling in wave

energy conversion systems.Energy2008;33:1246–53.

[26]López I,Pereiras B,Castro F,Iglesias G.Optimization of turbine-induced

damping for an OWC wave energy converter using a RANS-VOF numerical model.Appl Energy2014;127:105–14.

[27]Luo Y,Nader JR,Cooper P,Zhu SP.Nonlinear2D analysis of the ef?ciency of

?xed oscillating water column wave energy converters.Renew Energy 2014;64:255–65.

[28]Iturrioz A,Guanche R,Lara JL,et al.Validation of OpenFOAMòfor oscillating

water column three-dimensional modeling.Ocean Eng2015;107:222–36. [29]Tseng RS,Wu RH,Huang CC.Model study of a shoreline wave-power system.

Ocean Eng2000;27:801–21.

[30]Boccotti P,Filianoti P,Fiamma V,Arena F.Caisson breakwaters embodying an

OWC with a small opening-part II:a small-scale?eld experiment.Ocean Eng 2007;34:820–41.

[31]Gouaud F,Rey V,Piazzola J,et al.Experimental study of the hydrodynamic

performance of an onshore wave power device in the presence of an underwater mound.Coast Eng2010;57(11):996–1005.

[32]Liu Z.Experimental and numerical investigation of oscillating water column

wave energy convertor.PhD.Thesis.Qingdao:Ocean University of China;

2008.

D.-Z.Ning et al./Applied Energy168(2016)636–648647

[33]Dizadji N,Sajadian SE.Modeling and optimization of the chamber of OWC

system.Energy2011;36:2360–6.

[34]He F,Huang Z,Law WK.An experimental study of a?oating breakwater with

asymmetric pneumatic chambers for wave energy extraction.Appl Energy 2013;106(11):222–31.

[35]Imai A,Nagata S,Murakami T,Takao M,Setoguchi T.Experimental study of the

generating ef?ciency of a?xed oscillating water column type wave energy converter.In:Proceedings of the twenty-?fth(2015)international ocean and polar engineering conference.Hawaii(USA):International Society of Offshore and Polar Engineers;2015.p.843–48.

[36]Monk K.Forecasting for control and environmental impacts of wave energy

converters.PhD.Thesis.Plymouth University;2015.

[37]Brendmo A,Falnes J,Lillebekken PM.Linear modelling of oscillating water

columns including viscous loss.Appl Ocean Res1996;18:65–75.

[38]Kim YW.Arti?cial damping in water wave problems I:constant damping.Int J

Offshore Polar2003;13(2):88–93.

[39]Chen XB.Hydrodynamic analysis for offshore LNG terminals.In:The second

international workshop on applied offshore hydrodynamics2005;[Rio de Janeiro,Brazil].

[40]Lu L,Cheng L,Teng B,Zhao M.Numerical investigation of?uid resonance in

two narrow gaps of three identical rectangular structures.Appl Ocean Res 2010;32(2):177–90.[41]López I,Pereiras B,Castro F,Iglesias G.Performance of OWC wave energy

converters:in?uence of turbine damping and tidal variability.Int J Energy Res 2014;39:472–83.

[42]Veer RV,Thorlen HJ.Added resistance of moonpools in calm water.In:

Proceedings of the ASME27th international conference on offshore mechanics and arctic engineering.Estoril,Portuga;2008.

[43]He F,Huang Z.Hydrodynamic performance of pile-supported OWC-type

structures as breakwaters:An experimental study.Ocean Eng 2014;88:618–26.

[44]Ashlin SJ,Sannasiraj SA and Sundar V.Performance of an oscillating water

column device with different bottom pro?les subjected to random waves.In: The11th international conference on hydroscience&engineering.Hamburg, German;2014.

[45]Liu C,Huang Z,Keung ALW,et al.A numerical study of wave energy converter

in the form of an oscillating water column based on a mixed Eulerian-Lagrangian formulation.In:Proceedings of the ASME201029th international conference on ocean,offshore and arctic engineering.Shanghai,China: American Society of Mechanical Engineers;2010.p.589–96.

648 D.-Z.Ning et al./Applied Energy168(2016)636–648

(阅)避雷器规格型号

依据JB/T 8459-1996 《避雷器产品型号编制方法》、金属氧化物避雷器产品型号说明如下: 产品型式:Y —表示瓷套式金属氧化物避雷器 YH (HY )—表示有机外套金属氧化物避雷器 结构特征:W —表示无间隙 C —表示串联间隙 使用场所:S —表示配电型 Z —表示电站型 R —表示并联补偿电容器用 D —表示电机用 T —表示电气化铁道用 X —表示线路型 附加特性:W —表示防污型 G —表示高原型 TH —表示湿热带地区用

系统的额定电压(也称标称电压)为6KV,最高电压应该为6*1.15KV,而避雷器的灭弧电压设计是定在系统最高运行电压的1.1倍,应该为6*1.15*1.1.=7.59KV。 当然选择避雷器的额定电压又是在参考避雷器灭弧电压设计基础上再乘以 1.2-1.3倍即6*1.15*1.1*1.3.=9.867将上面的数据除以1.732就是5.696KV了又称电弧电压。 DL/T620-1997《交流电气装置的过电压保护和绝缘配合》标准的要求。 选择MOA的重要技术参数是额定电压、最大持续电压、标称电流、雷电冲击保护水平、操作冲击保护水平等,下面就6-35kV系统开关装置内避雷器选择进行阐述。 (1) 避雷器额定电压Ur的选择 a.按避雷器持续运行电压UC的选择 由于6-35kV系统多为中性点不接地系统,出现单相接地以后,相对地电压上升为线电压Um(Um为系统最高工作电压),属暂时过电压,故障持续时间≥10s,故避雷器持续运行电压的选择为:6-10kV时UC≥1.1Um ,则6kV避雷器UC≥1.1x7.2=7.92kV;10kV避雷器UC≥1.1x12=13.2kV 35kV时UC≥1.0Um ,则35kV避雷器UC≥1.0x40.5=40.5kV b.按避雷器暂时过电压Ut的选择 暂时过电压包括工频和谐振两大类。只有单相接地引起的工频过电压,才是确定和选择避雷器额定电压的主要依据。根据电力部1993年10月30日“关于提高3-66kV无间隙金属氧化物避雷器额定电压和持续运行电压有关情况的通报”,3-15.75kV Ur≥1.4Um ,35-66kVUr≥1.3Um 。 实际选择中略小于上述值: 6-10kV Ur≥1.38Um则6kV避雷器Ur≥1.38x7.2=9.94kV 10kV避雷器Ur≥1.38x12=16.6kV 35kVUr≥1.25Um 则35kV避雷器Ur≥1.25x40.5=50.6kV (2)标称放电电流的选择 避雷器的标称放电电流In是波形为8/20μs用以划分其等级的重要参数,有1.5、2.5、5、10、20kA 等五级,前三级分别与中性点、电机避雷器、电容器避雷器等相对应,电站避雷器则分为后三种,一般6-35kV 系统选择5kA。 (3)雷电冲击保护水平

HY5WX-51避雷器使用说明书

一、用途 交流系统用瓷(复合)外套无间隙金属氧化物避雷器是用来保护相应等级的交流电气设备免受雷电过电压和操作过电压损害的保护电器。 产品执行标准:GB11032/IEC60099-4 (交流系统用无间隙金属氧化物避雷器) 二、使用条件 1.适用户内、户外 2.环境温度(-40℃~+48℃) 3.太阳光最大辐射强度1.1kW/㎡ 4.海拔高度不超过2000m 5.电源频率(48-62)Hz 6.地震强度8度及以下地区 7.最大风速不超过35m/s 8.长期施加在避雷器端子间的工频电压应不超过避雷器的持续运行电压 三、结构和特性 该类避雷器由非线性金属氧化物电阻片叠加组装,密封于绝缘瓷外套内,无任何放电间隙。在正常运行电压下,避雷器呈高阻绝缘状态;当受到过电压冲击时,避雷器呈低阻状态,迅速泄放冲击电流入地,使与其并联的电气设备上的电压限制在规定值,以保证电气设备的安全运行。该避雷器设有压力释放装置,当其在超负载动作或发生意外损坏时,内部压力剧增,使其压力释放装置动作,排除气体,避免瓷外套爆炸。本避雷器具有陡波响应特性好,冲击电流耐受能力大,残压低、动作可靠、耐污秽能力强、维护简便等特点。 四、型号说明 1.1、型号含义 HY□W □□—□/□ ││││││└─标称电流下残压(kV) │││││└───避雷器额定电压(kV) ││││└─────设计序号,不表明产品的先进程度 │││└──────使用场所(S-配电型;Z-电站型;T-电气化铁道; │││R-保护电容,X线路型) ││└───────无间隙 │└─────────标称放电电流(kA) └──────────复合绝缘金属氧化物避雷器 Y □W □□—□/□ ││││││└─标称电流下残压(kV) │││││└───避雷器额定电压(kV) ││││└─────设计序号,不表明产品的先进程度 │││└──────使用场所(S-配电型;Z-电站型;T-电气化铁道; │││R-保护电容) ││└───────无间隙 │└─────────标称放电电流(kA) └──────────金属氧化物避雷器

各种型 的金属氧化物避雷器

各种型号的金属氧化物避雷器 金属氧化物避雷器型号说明: 一、有机复合外套无间隙氧化物避雷器有机复合外套无间隙氧化物避雷器采用通流能力较强的氧化锌非线性电阻片叠加组装,密封于外套腔内,无任何放电间隙。在正常持续运行电压状态下,避雷器不动作,呈高阻状态。当大气过电压或操作过电压的幅值超过一定范围时,避雷器导通。由于氧化锌电阻片优良的非线性伏安特性,导通后其两端的残压被抑制在被保护设备的绝缘安全值以下,从而使电气设备受到保护。氧化锌电阻片通流容量大,保护残压低,电压响应迅速,是近十余年兴起的高性能新型限压元件。优点:有机复合外套是我国硅橡胶复合绝缘子技术在避雷器外套上的应用。由于采用硅橡胶外套,从根本上消除了瓷套式避雷器可能存在的外瓷套爆裂现象,并提高了防潮、耐污、抗老化、散热等性能,同时体积小重量轻,免于维修。因此,该产品聚集了有机外套和氧化锌电阻片的全部优点,是新型的过电压保护电器。二、带脱离装置的复合外套无间隙氧化锌避雷器脱离装置是避雷器本体所带的一种自我保护装置,通常接在避雷器的底部,避雷器通过其接地。当避雷器在系统雷击或操作过电压下泄放能量,外界电动力、机械力及环境温度变化等综合作用时,脱离器不会动作,即避雷器正常工作时,脱离装置不影响其工作。当避雷器自动运行的稳定性受到损坏,或避雷器已经损坏时,脱离器迅速工作,将避雷接地线断开,避雷器电位悬空,退出运行。优点:安秒特性稳定、反应快、灭弧效果好、分断能力强、工作可靠性高、体积小、密封性好、为故障避雷器提供了明显标记、便于迅速发现故障点并及时维修。三、金属氧化物避雷器外形尺寸 避雷器型号D(mm)h(mm)H(mm)伞数重量(kg)YH5WS1-17/50 90 190 260 5 1.5 YH5WZ1-17/45 92 190 260 5 1.7 避雷器型号D(mm)h(mm)H(mm)伞数重量(kg)YH5WS1-17/50L 90 210 286 6 1.8 YH5WZ1-17/45L 92 220 296 6 2.0 交流无间隙金属氧化物避雷器技术性能指标 典型的电站型和配电型避雷器电气特性GB11032 产品型号系统 额定 电压 kv (有 效 值) 避雷 器额 定电 压kv (有 效 值) 避雷 器持 续运 行电 压kv (有 效 值) 陡波 冲击 电流 下残 压kv (峰 值) 雷电 冲击 电流 下残 压kv (峰 值) 操作 冲击 电流 下残 压kv (峰 值) 4/10us 大电流 冲击耐 受kv (峰 值) 直流 1mA电 压kv 不小于 2ms方波 电流峰值 A不小于 YH5WS-5/15 3 5 4.0 17.3 15.0 12.8 65 7.5 75(150) YH5WS-10/30 6 10 8 34.6 30 25.6 65 15 75(150)

10-35KV金属氧化物避雷器说明书剖解

金属氧化物避雷器安装使用说明书

一概述 (1) 二正常使用条件 (1) 三型号及意义 (1) 四复合外套金属氧化物避雷器主要技术参数 (2) 1、电站用无间隙金属氧化物避雷器 (2) 2、配电用无间隙金属氧化物避雷器 (3) 3、并联补偿电容器用无间隙金属氧化物避雷器 (3) 4、发电机、电动机、电机中性点保护用无间隙金属氧化物避 雷器 (4) 5、变压器中性点用无间隙金属氧化物避雷器 (5) 6、带串联间隙的金属氧化物避雷器 (5) 7、电气化铁道无间隙的金属氧化物避雷器 (6) 8、线路用复合外套无间隙的金属氧化物避雷器 (6) 五复合外套金属氧化物避雷器外形结构及安装尺寸图 (7) 六瓷外套金属氧化物避雷器 (11) 七瓷外套金属氧化物避雷器外形结构及安装尺寸图 (13) 八用户须知 (16)

一、概述 金属氧化物避雷器(MOA)是用于保护输变电设备的绝缘免受过电压危害的重要保护电器,它具有响应快、伏安特性平坦、性能稳定、通流容量大、残压低、寿命长、结构简单等优点,广泛使用于发电、输电、变电、配电等系统中。 复合外套金属氧化物避雷器是用硅橡胶复合材料做外套,和传统的瓷外套避雷器相比,具有尺寸小、重量轻、结构坚固、耐污性强、防爆性能好等优点。 本厂产品规格齐全,各类繁多。不但有各种常规产品,而且各种非标的、大容量的、大爬距的、高原防污的、全绝缘内出线式的等都可生产。 本厂避雷器产品采用标准为:IEC60099-4:1991、GB11032-2000、JB/T6479-1992 。为适应国际市场的需要,本厂还可以按英标、美标或出口商指定的技术标准进行生产。 二、正常使用条件 1、环境温度不低于-40℃,不高于+40℃; 2、海拔高度不超过2000m(瓷套式不超过1000 m); 3、电源频率不小于48 Hz、不大于62 Hz; 4、安装地点凤速不超过35m/s; 5、长期施加在避雷器上的工频电压不超过避雷器的持续运行电压(无间隙MOA)或 额定 电压(串联间隙MOA)。 6、地震裂度8度以下地区; 三、型号及意义

避雷器说明书修订稿

避雷器说明书 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、用途 交流系统用瓷(复合)外套无间隙金属氧化物避雷器是用来保护相应等级的交流电气设备免受雷电过电压和操作过电压损害的保护电器。 产品执行标准:GB11032/IEC60099-4 (交流系统用无间隙金属氧化物避雷器) 二、使用条件 1.适用户内、户外 2.环境温度(-40℃~+48℃) 3.太阳光最大辐射强度㎡ 4.海拔高度不超过2000m 5.电源频率(48-62)Hz 6.地震强度8度及以下地区 7.最大风速不超过35m/s 8.长期施加在避雷器端子间的工频电压应不超过避雷器的持续运行电压 三、结构和特性 该类避雷器由非线性金属氧化物电阻片叠加组装,密封于绝缘瓷外套内,无任何放电间隙。在正常运行电压下,避雷器呈高阻绝缘状态;当受到过电压冲击时,避雷器呈低阻状态,迅速泄放冲击电流入地,使与其并联的电气设备上的电压限制在规定值,以保证电气设备的安全运行。该避雷器设有压力释放装置,当其在超负载动作或发生意外损坏时,内部压力剧增,使其压力释放装置动作,排除气体,避免瓷外套爆炸。本避雷器具有陡波响应特性好,冲击电流耐受能力大,残压低、动作可靠、耐污秽能力强、维护简便等特点。 四、型号说明 、型号含义 HY□ W□□—□ /□ ││││││└─标称电流下残压(kV) │││││└───避雷器额定电压(kV) ││││└─────设计序号,不表明产品的先进程度 │││└──────使用场所(S-配电型;Z-电站型;T-电气化铁道; │││R-保护电容,X线路型) ││└───────无间隙 │└─────────标称放电电流(kA) └──────────复合绝缘金属氧化物避雷器 Y□ W□□—□ /□ ││││││└─标称电流下残压(kV) │││││└───避雷器额定电压(kV) ││││└─────设计序号,不表明产品的先进程度 │││└──────使用场所(S-配电型;Z-电站型;T-电气化铁道; │││R-保护电容) ││└───────无间隙 │└─────────标称放电电流(kA) └──────────金属氧化物避雷器 、~低压避雷器

常见氧化锌避雷器型号及参数

常见型号氧化锌避雷器0.22~0.38kV低压避雷器 类别避雷器型号避雷器 额 定电压 kV (有效 值) 系统标 称 电压kV (有效 值) 持续运 行 电压kV (有效 值) 直流 U1mA 参考电 压 ≮kV 陡波冲 击 电流残 压 ≯kV(峰 值) 雷电冲 击 电流残 压 ≯kV(峰 值) 操作冲 击 电流残 压 ≯kV(峰 值) 2mS 方波电 流 A(峰值) 4/10μs 冲击电 流 kA(峰 值) 低压(H)Y1.5W S-0 .28/1.3 0.28 0.22 0.24 0.60 ---- 1.30 ---- 50 10 (H)Y1.5W S-0 .50/2.6 0.50 0.38 0.42 1.20 ---- 2.60 ---- 50 10 3kV配电型/电站型 类别避雷器型号避雷器 额 定电压 kV (有效 值) 系统标 称 电压kV (有效 值) 持续运 行 电压kV (有效 值) 直流 U1mA 参考电 压 ≮kV 陡波冲 击 电流残 压 ≯kV(峰 值) 雷电冲 击 电流残 压 ≯kV(峰 值) 操作冲 击 电流残 压 ≯kV(峰 值) 2mS 方波电 流 A(峰值) 4/10μs 冲击电 流kA(峰 值) 配电(H)Y5W S-3.8 /15 3.8 3 3.0 7.5 17.3 15.0 12.8 75 40 (H)Y5W S-5/1 5 5 3 4.0 7.5 17.3 15.0 12.8 75 40 电站(H)Y5W Z-3.8 /13.5 3.8 3 3.0 7.2 15.5 13.5 11.5 200 65 (H)Y5W Z-5/1 3.5 5 3 4.0 7.2 15.5 13.5 11.5 200 65 3kV配电型/电站型(带脱离装置) 配电(H)Y5W S-3.8 /15L 3.8 3 3.0 7.5 17.3 15.0 12.8 75 40 (H)Y5W S-5/1 5L 5 3 4.0 7.5 17.3 15.0 12.8 75 40 电站(H)Y5W Z-3.8 /13.5L 3.8 3 3.0 7.2 15.5 13.5 11.5 200 65 (H)Y5W Z-5/1 3.5L 5 3 4.0 7.2 15.5 13.5 11.5 200 65 6kV配电型/电站型 类别避雷器型号避雷器 额系统标 称 持续运 行 直流 U1mA 陡波冲 击 雷电冲 击 操作冲 击 2mS 方波电 4/10μs 冲击电

ZFTW防雷器说明书

ZFTW-系列通道防雷保安器说明书 一、功能与特点 ZFTW-系列通道防雷保安器为我公司为铁路信号系统设计,用于防止雷电过电压和瞬态过电压对铁路信号系统及设备造成的损坏。 ●其主要特点是: ●防雷保安器为插拔式,防雷底座即可直接固定于直六柱瓷端子接线柱上,也 可固定于35mm导轨或防雷分线柜绝缘板上。实现传统6柱瓷端子的分线、防雷一体化,使用简单、方便、节省空间及改造成本。 ●内置过流保护电路,避免火险发生 ●内部串接压敏电阻,有效阻断漏流 ●采用绿、红色分别指示工作状态及失效状态,清晰直观 ●防雷模块设有测试点,方便对防雷器整体性能及内部器件定期测试。 二、工作原理及主要元器件选型 二.1 共模型 信号线2 PE

二.2 差模型 二.3 全模型 信号线 信号线 PE 信号线 信号线 PE

三、主要外形参数 防雷模块和底座组装后外形尺寸为49×40×82mm ,图为防雷模块及与底座组装后的示意图如下:

四. 使用方法 鉴别座的方向与电压等级一一对应,使用时,依据电压等级和保护模式选用相应的底座及与之配合的防雷保安器模块,电压等级与鉴别座的对应关系如下图所示: 共模 共模 共模 共模 差模和全模 签别座方向对应电压等级和保护模式对照图 差模和全模 差模和全模 差模和全模

黑点为签别座方向 底座俯视图 使用时,可以通过螺母将防雷保安器底座与直六柱瓷端子的接线柱连接起来,使得防雷保安 器底座固定在直六柱瓷端子上,此步骤还可同时实现接线柱与防雷电路的电气连接,使得防雷保 安器与信号设备并联连接,到达防雷减灾的目的;三个防雷底座可共用一接地连接排,用于与地 线连接;可共用一标识牌,用于记录信号线路的走向及其他信息。 五.检测方法 如图一二三所示,模块引脚和模块上所表示意图对应关系原则如下:左边对应左边;右边对应右边;中间对应中间;近端对应近端;远端对应远端。即原理图中所标的a,b,c,d,x,y,z分别对应模块 下引脚和测试点的A,B,C,D,X,Y,Z;具体对应关系如下: 检测方法如下:举例:如检测M1压敏电阻时,测量引脚D和测试点Y两端电压和漏流即可。检测放电管G1时,检测引脚A和测试点Y两点放电电压即可。

FS4避雷器使用说明书

一、用途 FS系列阀式避雷器用作保护配电变压器和电缆头等电气设备免受大气过电压的损害。它适用于: 1、室内和室外:使用地点环境温度-40℃~+40℃。 2、使用地点海拔高度不超过1000m,高于1000m地区,采用高原型避雷器。 3、安装地点可能出现相对地最高工频电压不应大于避雷器的额定电压。 它不适用于:有严重污秽和剧烈振动的地方。 二、结构和性能 FS系列避雷器由火花间隙和阀片呈单柱叠装在瓷套内,瓷套两端用橡皮密封。为安装和接线设有铁夹及接线螺栓。 FS8系列避雷器为FS4系列避雷器的改型产品,其内部结构、电气特性与FS4系列相同,但具有以下特点: (1) 产品内部充入高纯度干燥氮气,防止电晕产生臭氧,从而保证产品性能稳定。 (2) 上部金属盖改用瓷盖式结构,解决了上部铁盖锈蚀问题。 (3) 采用特种螺栓从瓷套上端芽出接线,代替焊工金属上的接线端子,避免接线端子脱焊。 (4) 瓷套上端采用双层橡皮密封,保证密封性能可靠。 高原避雷器瓷套与铁盖采用金属与瓷件焊接密封,具有优良的密封性,因此可适用于任何海拔高度的地区。 三、使用条件 □环境温度为±40℃ □海拨高度不超过1000m □电力系统频率50Hz或60Hz □安装地点最大风速为35m/s 四、技术标准 该系列避雷器性能符合国家标准“GB7327-87交流系统用碳化硅阀式避雷器”的要求,其主要性能见特性表。 五、技术参数

1、避雷器在运行前后应做预防性试验,在运行中的避雷器每隔1~2年应做一次,其项目有: (1) 泄露电流的测量,于避雷器两端加以特性表中所规定的直流电压(直流电压的脉动不大于±1.5%),流过避雷器的泄露电流应符合特性表的规定。 (2) 绝缘电阻试验:用2.5kV摇表来测量其绝缘电阻,阻值不作规定,但每次试验结果应相近。 (3) 工频放电电压测量:在避雷器端加以50Hz交流电压,在能正确读出电压数值的前提下,从零值起均匀升压到避雷器放电止。放电时流过避雷器的电流应限制在0.2~0.7A,放电后应在0.5s内切断电源。每只避雷器的测量次数不得少于3次,每次测量的时间间隙不得少于10s,其值应符合特性表中的规定。 2、在运输和贮存时,应将避雷器正置立放。 3、在运行中,避雷器原有刷漆部分应每隔1-2年刷漆一次。 4、安装时,避雷器顶端引线的水平拉力应不大于294N(30kgf)。 上海昌开电器有限公司

避雷器在线监测系统说明书

五、现场安装 将电流传感器套装于变压器铁芯接地线上并固定,将装置安装固定在变压器旁边的线杆上,固定方式选用钢带固定(装置后板图如图七),然后将电流传感器二次引线接入装置,最后将装置可靠接地。 六、售后服务 (1)本公司产品随机携带产品保修单,订购产品交货时,请当场检验并填好保修单。 (2)自购机之日起,凭保修单保修一年,终身维护。在保修期内,维修不收维修费;保修期外,维修调试收取适当费用。 (3)属下列情况之一者不予保修: 1、用户对产品有自行拆卸或对产品工艺结构有人为改变。 2、因用户保管或使用不当造成产品的严重损坏。 3、属于用户其它原因造成的损坏。 服务电话:1 ES-2010线路避 雷器监测单元 使 用 说 明

书 福州亿森电力设备有限公司 TEL:5 (Ver2.0) 目录 一、概述 (2) 二、安装尺寸 (3) 三、安全措施 (4) 四、现场安装 (5) 五、售后服务 (5) 一概述: ES-2010系列带485通讯线路避雷器监测单元 ES-2010系列带485通讯线路避雷器监测单元,是福州亿森电力设备有限公司最新设计的具有RS485双向通讯功能的避雷器监测器。技术性能完全满足国际标准IEC的要求。技术参数与原JSH/JCQ型相同,可记录避雷器的动作次数和在线监测避雷器漏电流,并带有485通讯接口,可将避雷器运行参数:漏电流大小,动作次数、动作时间等随时传输主控室。从而可提前发现事故隐患,避免发生事故。 通讯接口分类:485线接口和光纤接口。485线接口型对现场的布线相对比较简单,只需要将485线首尾相连至控制室上位机即可。光纤接口型需在监测器下端水泥柱增加一光纤转换器,将A\B\C三相光信号转换后再连接至控制室上位机。 性能参数表(订货时注明485接口型货光纤接口型): 二:安装尺寸图及接线方式: 安装尺寸图及接线方式: 需采用RS485转RS232串口转换器,电源电压DC5-12V接信号输出接口1(红正)、2(黄负)端,通讯线A+接4(绿)端、B-接3(蓝)端,转换器插计算机串口。 ES-2010避雷器泄露电流监视仪通讯协议

防雷知识及避雷器产品型号含义

防雷知识及避雷器产品型号含义 雷电防护措施采用避雷针、避雷带和避雷网等可防止和减少雷电对建筑物、人身和居室造成的危害。但已有大量事实证明:在安装了这些避雷装置的室内,计算机设备、通讯网络及微电子器件在雷击时,却仍然会遭受不同程度的损害。对此,科学家通过进一步的分析,已经找到了其中的原因所在。 避雷器的种类基本上分三大类型: (1)电源避雷器:按电压的不同,分22V的单相电源避雷器和380V 的三相电源避雷器(安装时主要是并联方式,也串联方式)。“电源防雷器”并接在电力线路上,可遏制瞬态过电压和泄放浪涌电流。从总进线到用电设备端通常配置分为三级,经过逐级限压和放电,逐步消除雷电能量,保证用电设备的安全。根据不同的需要可选用“可插拔模块型”、“端子接线式”和“移动插座式”等品种。 (2)信号型避雷器:多数用于计算机网络、通信系统上,安装的方式是串联。“信号防雷器”接入信号接口后,一方面能切断雷电进入设备的通路,另一方面能迅速对大地放电,确保信号设备的正常工作。信号防雷器具有多种规格,分别可用于电话、网络、模拟通信、数字通讯、有线电视及卫星天线等设备的防雷,各种设备的输入口特别是室外引入端,均应安装信号防雷器。

(3)天馈线避雷器:它适用于有发射机天线系统和接收无线电信号设备系统,连接方式也是串联。选用防雷器要注意接口的形式和接地的可靠,重要场所应设置专用的接大地线,切不可将防雷接地线与避雷针接地线并接,且要尽量远离、分开入地。 氧化锌避雷器主要用于电力系统保护电气设备免受雷电过电压和操作过电压的危害,具有反应灵敏,伏安特性平坦、残压低、运行可靠等优点。产品各项技术能符合国标GB1103-2000《交流无间隙金属氧化物避雷器》的有关规定。 Y10W2-200/520 Y:表示氧化锌避雷器10:标称放电电流 W:表示无间隙 2:表示设计序号 200:避雷器的额定电压 520:在标称放电电流下的最大残压

菲尼克斯防雷器、电涌防护器使用说明

菲尼克斯防雷器、电涌防护器使用说明

VAL-MS230 ST 和F-MS 12 ST 德国菲尼克斯浪涌保护器防雷器 防雷器的工作原理:防雷器内部结构其实就是巨功率电压敏感器件,当雷击进入电源进户线路时:防雷器将过高的电压吸收和泄放到大地上,所以地线是很重要的,没有地线就没有防雷效果,只能吸收浪涌效果,当遇到过于强大的雷击时需要空气开关或熔断器(保险丝)来保护,所以空气开关和熔断器的电流要选择合适,不然烧了防雷器还与电网未断开,在空气开关后面再接熔断器是为了更保险,因为空气开关是机械动作的,不会100%可靠。防雷器的使用必须与空气开关和熔断器配合,理论上讲:空气开关或保险丝电流越小越好,防雷器的并联只数越多效果越好,对雷电的吸收功率越大,但如果选用过大电流的空气开关是不利的,当防雷器达到极限功率时间后,如果空气开关或保险丝未断开是不行的。 使用漏电开关要接在防雷线路之后,漏电开关里面有电子线路,接在防雷线路后面可以保护漏电开关被雷击损坏。 本防雷器属于快速更换结构,当过强雷击被击穿后可以快速更换防雷器芯,不用任何工具,只从防雷器座上拔下和插上,购买时也以多买几个防雷器芯备用,防雷器芯购买请看:德国菲尼克斯PHOENIX CONTACT V AL-MS230 防雷器芯 下图是:简单的浪涌保护接线图,本图不能实现防雷保护,只有浪涌保护,空气开关和溶断器大于32A时用两只防雷器并联。

VALVETRAB -MS是一个单通道、导轨安装式的Ⅱ类(C级)电涌保护器。为了对多路导线进行电涌保护,可以将多个VALVETRAB并联在一起安装,并在接地侧桥接。VAL MS...VF产品在保护插头中特殊设计了压敏电阻和气体放电管,可以有效限制漏电流。VALVETRAB产品由保护插头和基座两部分组成,这种构造的优点是,在进行绝缘检测的整个过程中,可以拔出保护插头或者在超负荷情况下无需中断供电便可调换保护插头。保护插头的基座的编码在首次插入保护插头时即行完成。这样就排除了将不合适的保护插头插入已编码的基座中的可能。 VAL-MS产品特性: —可插拔 —热脱离装置 —机械式状态显示 —遥信接点(浮地干接点)

避雷器型号

各种型号的金属氧化物避雷器 专业2007-10-13 12:49 阅读2206 评论6 字号:大中小 各种型号的金属氧化物避雷器 随着电力系统的发展,对输电线路供电可靠性要求越来越高,由于雷击输电线路引起的事故日 益增多,尤其是在多雷、土壤电阻率高、地形复杂的地区,雷击输电线路引起的事故更高。这不仅影响设 备的正常工作,也极大地影响了人们的正常生活,给社会带来巨大的经济损失。 为了减少线路的雷击事故,提高供电可靠性,可在线路上安装金属氧化物避雷器来减少线路雷 击事故,为此我公司设计生产了瓷外套、有机复合外套、带脱离装置有机复合外套等金属氧化物避雷器。 金属氧化物避雷器型号说明: □ □口□口□—口/ □ □ ?附加特征代码 D ■带电栓修型 「带脱第装置 ------ 标称电臨下的最大残压kV ---------------- ?諏走电压CVr)期 ----------------------- 设计序号 ------------------------------ "便用场所 「配电星 "电站型 A保护电容爼 ----------------------------------- 结构特征 肛无间隙 标称敢电电流kA ?扎■复合外套,无标记为瓷外茸丫―蛊届氧化恂魁番豁 :X^N: L.XRNP1XRMP1XCIHP4-] 1 鶴丰『作HUF :3牒“?叩「K V 坍亓船31熔畐: QJA-J1A |划启世隶主邙i£录冈左斑1)fiiM- 主Klj£ XRNFl_XKIl】U!KJqF_盘小倂申坏三感需许护.弓刃坯湍熔肝贾产晶适用子户邨QH E」前走电避2-30描走电!£1朋4?」胡宗蜕厂Ml出=耳F禺Q 丁:些¥現便甘.卑本蹲-粽: 有机复合外套无间隙氧化物避雷器采用通流能力较强的氧化锌非线性电阻片叠加组装,密封于外套腔内,无任何放电间隙。在正常持续运行电压状态下,避雷器不动作,呈高阻状态。当大气过电压或操作过电压的幅值超过一定范围时,避雷器导通。由于氧化锌电阻片优良的非线性伏安特性,导通后其两端的残压被抑制在被保护设备的绝缘安全值以下,从而使电气设备受到保护。

氧化锌避雷器使用说明书

-- 流,使与避雷器并联的电气设备的残压,被抑制在设备绝缘安定值以 下,待有害的过电压消减后,迅速恢复高阻绝缘状态,从而保证了电 气设备的正常运行。 氧化锌避雷器除可作为一般电器设备的过电压保护外,对外联补 偿电容器,真空开关、旋转电机、发电机组、变压器中性点等设备的 过电压保护更有显著效果。 3. 主要电气性能: 介产品按 GB11032-2000《交流无间隙金属氧化物避雷器》和JB/T8952-1999《34kV 及以下交流系统用复合外套无间隙金属氧化物氧化锌避雷器是当今最先进的过电压保护电器,它主要由氧化锌避雷器》制造。 非线性电阻片组装而成。在系统工作电压下,具有极高的电阻而呈绝 4. 复合外套氧化锌避雷器采用耐电蚀、抗老化、弹性好、机械强度 缘状态。当过电压幅值超过一定范围时,则呈现低阻状态,泄放雷电高,一次整体模压成型的硅橡胶做为绝缘外套,非线性伏安特性优异

的氧化锌电阻片做为芯体。具有体积小,重量轻、安装方便,耐污能 力强,密封性能好、防潮、防爆,并具有良好的憎水性,可减少运行 维护大大减轻电力工人的劳动强度。 5.用户注意事项 5.1 在运输和储存时,应注意安全,不得碰撞,尽可能直立。 5.2 用户不得随意拆开产品。 5.3 对无间隙氧化锌避雷器决不允许做工放试验。 5.4 一年内因质量问题,本公司可无偿更换或修理。 5.5 投入运行前测量其电流 1mA 电压应符合本说明书中的要求,投运几年后测量其直流 1mA 电压,应不低于规定值的 96%,测量时直 流电源谐波分量尽可能小,并注意先清洁外绝缘和保持环境温度湿度及电压 相对恒定。 -5- 四、交流无间隙金属氧化物避雷器的性能特征 1、用途和特点: 无间隙氧化锌避雷器是由具有优异非性 V-A 特性的氧化锌阀片组装而成,是用于保护 35kV 以下系统交流电器设备免受过电压损害或保护并联补偿的保护电器。 氧化锌避雷器由于采用了优异的非线性氧化锌电阻片,从而 可以取消传统的碳化硅避雷器不可缺少的串联间隙,提高了产品的保护可靠性。在绝缘配合方面可以做到陡波、雷电波和操作波的保护裕度接近一致。 2、使用条件: 2.1 环境温度不高于 +40℃,不低于 -40℃; 2.2 海拔高度不超过1000m; 2.3 交流系统的频率50-60HZ; 2.4 连续施加在避雷器的工频电压不超过避雷器的持续运行电 压; 2.5 最大风速为 35m/s; 2.6 地震烈度为 8 度及以下地区。 -4- 一、型号说明 1.字母“ H”表示复合绝缘外套; 2.字母“ Y”表示氧化锌避雷器;

JSH避雷器在线监测器使用说明书JCQ

一、适用范围 JSH型和JCQ型避雷器在线监测器是交流高压电力系统中避雷器的在线监测仪器,该仪器集毫安表与计数器为一体,串联在避雷器接地回路中。监测器中的毫安表用于监测运行电压卜越过避雷器的泄漏电流蜂值,可以有效地检测出避雷器内部是否受潮或内部元件是否异常等情况;计数器则记录避雷器在过电压下的动作次数。 JSH-3型和JCQ-3型监测器设计了指针式动作计数器和数字式动作计数器,计数器面板大,便于远处观察;增加了由发光管组成的漏电流警示装置,更明显地提示巡视人员的注意及夜间观察。外形尺寸小,外观美观,安装方便;JCQ-3型外接测量插空使处接测量仪方便地串联于泄漏电流回路,例如通过电缆引人中心控制室,便于集中监视,或接入阻性电流测量仪,在不停电的情况下,对避雷器实施在线监测。 JSH-4型监测器又在JSH-3型和JCQ-3型监测器的基础上再次作了重大改进,JSH-3型和JCQ-3型不足之处在于:在潮湿天气里,瓷套外表的漏电流一并进入监测器的毫安表内,使得监测器毫安表在瓷套外表漏电流大的情况下,无法真实反映避雷器瓷套内部问题,因此一些用户自行采用在瓷套底座附近增加一金属屏蔽环,将瓷套外表漏电流引入地中的办法,解决上述产品的不足,LSH-4型监测器则变废为宝,在监测器内增加了一块毫安表,将屏蔽环收集的瓷套外表漏电流一表征变电所外绝缘污秽程度的量反映出来,使JSH-4型监测器更具特色。 JSH-4型监测器配有不锈钢制作的屏蔽环及热缩绝缘的引下线,瓷套外的漏电流通过监测器瓷套的裙间金属环,导入内中右侧毫安表,毫安表中刻度是用反映污层电导率uS来表示的,它考虑了我国主要避雷器生产厂所用瓷套的爬电距离及绝缘子形状因素。表的上层刻度适用普通瓷裙,下层刻度适用大小防污瓷裙。 二、使用环境 1.适用于户内或户外; 2.环境温度一40℃-+40℃; 3.电网额定频率50HZ或60HZ; 4.安装处没有强烈振动; 三、安装说明(附图) JSH型监测器安装高度宜适当,以方便值班人员看清楚监测器中的毫安表指针及动作次数。 监测器上端接避雷器底部,外壳下端接地线。当固定抱箍或金属构架已接地时,监测器下端可以不必重复接地。 JSH-4型监测器备有不锈钢屏蔽环及绝缘引下线,屏蔽环安装在瓷套底座上方约3-4cm处,通过配备的绝缘引线,将屏蔽环与监测器瓷套中部的金属环牢固连接,绝缘引线可用绝缘带固定在避雷器引下线上,以免风吹时摆动。

避雷器使用说明书

ETA E-8700000 金属氧化锌避雷器 使用说明书 ?请在使用本设备之前熟读本使用说明书。 ?阅读本使用说明书后,请将妥善保存。

ETA . .

目录 1.前言 (4) 2.安全注意事项 (4) 3.概要 (9) 4.检查和安装 (9) 4-1 检查 (9) 4-2 存放 (9) 4-3 安装 (10) 4.3.1 准备 (10) 4.3.2 安装时的注意事项 (10) 4.3.3 安装 (10) 4-4 接线 (10) 4-5 安装后的检查 (10) 5.维护 (11) 5.1 日常维护 (11) 5.2 特别维护 (11) 5.3 测试 (11)

此页留空白

1.前言 本说明书是为确保安全操作金属氧化锌避雷器编写而成。在进行维护之前,请务必阅读本说明书,以便正确使用该设备。应将本说明书存放在该设备附近,以便随时参阅。 2.安全注意事项 本说明书中及设备上的标记、说明,对管理、操作、维护及检查均十分重要。避免设备受到损伤或损坏,同时要正确操作该设备。在阅读本说明书之前,要完全理解下列标记和简短说明,并建议您查阅相关设备和部件的使用说明书。

应用 本设备用于变压器或电抗器,不可将其作为其它用途。 保证和义务限制 廊坊电科院东芝避雷器有限公司对包括异常状况或由于与该设备连接的装置的故障造成的间接损失在内的任何损失不承担赔偿义务。 仅限定有资格的人员操作 本使用说明书主要是为贵公司的电气总工程师和电气总工程师指定的(*)有资格的人员编写的。 为了操作、维护和检查该设备,必须阅读和理解本使用说明书和其他有关装置和部件的说明书,工作人员必须遵从电气总工程师的指示。 (*)指定人员是指充分理解本使用说明书内容的电气工程师。 警示标牌 (1)为确保安全,必须阅读并理解所有警示标牌。 (2)必须将警示标牌张贴在容易看见的地方,切勿将其弄脏、撕下或遮盖。

避雷器说明书

金属氧化物避雷器 一、概述 金属氧化物避雷器是当前限制过电压最先进的一种保护电器,被广泛地用于发电、输变电、配电系统中,保护电气设备的绝缘免受过电压的损害。 有机外套金属氧化物避雷器是有机绝缘材料和传统的瓷套式金属氧化物避雷器技术优 点相结合的科研成果,它不仅具有瓷套式金属氧化物避雷器的优点,还具有电气绝缘性能好,介电强度高、抗漏痕、抗电蚀、耐热、耐寒、耐老化、防爆、憎水性、密封性能好等优点。 二、使用条件 a)适用于户内、外; b)环境温度-40℃~+40℃; c)海拔高度不超过3000m(瓷套式不超过1000m); d)电源频率不小于48Hz、不超过62 Hz; e)长期施加在避雷器端子间的工频电压不超过避雷器的持续运行电压; f)地震烈度8度及以下地区; g)最大风速不超过35m/s。 三、产品型号说明 依据JB/T 8459-1996《避雷器产品型号编制方法》、金属氧化物避雷器产品型号说明如下: □□□□□—□/□□-□ 防污等级 附加特性代号 标称放电电流下残压 避雷器额定电压 设计序号(用阿拉伯数字表示) 使用场所 结构特征 标称放电电流 产品型式 产品型式:Y—表示瓷套式金属氧化物避雷器 YH(HY)—表示有机外套金属氧化物避雷器 结构特征:W—表示无间隙C—表示串联间隙 使用场所:S—表示配电型Z—表示电站型R—表示并联补偿电容器用D—表示电机用T—表示电气化铁道用X—表示线路型附加特性:W—表示防污型G—表示高原型TH—表示湿热带地区用

DL—表示电缆型避雷器(优点:产品采用全密封结构,缩小相间距离,爬 电距离大。) 防污等级:3-表示Ⅲ级防污 四、选型 用户可根据被保护对象选用不同型号的避雷器,对使用场所的不同可选用防污型和高原型。 为满足市场的需求我厂可根据用户的要求设计各种非标产品。 五、金属氧化物避雷器用途及主要参数 1.配电型是用于保护相应电压等级的开关柜、变电压、箱式变、电缆出线头、柱上油开关等配电设备免受大气和操作过电压的损坏。 配电型无间隙金属氧化物避雷器

各种型号的金属氧化物避雷器

各种型号的金属氧化物避 雷器 Prepared on 24 November 2020

各种型号的金属氧化物避雷器 金属氧化物避雷器型号说明: 一、有机复合外套无间隙氧化物避雷器有机复合外套无间隙氧化物避雷器采用通流能力较强的氧化锌非线性电阻片叠加组装,密封于外套腔内,无任何放电间隙。在正常持续运行电压状态下,避雷器不动作,呈高阻状态。当大气过电压或操作过电压的幅值超过一定范围时,避雷器导通。由于氧化锌电阻片优良的非线性伏安特性,导通后其两端的残压被抑制在被保护设备的绝缘安全值以下,从而使电气设备受到保护。氧化锌电阻片通流容量大,保护残压低,电压响应迅速,是近十余年兴起的高性能新型限压元件。优点:有机复合外套是我国硅橡胶复合绝缘子技术在避雷器外套上的应用。由于采用硅橡胶外套,从根本上消除了瓷套式避雷器可能存在的外瓷套爆裂现象,并提高了防潮、耐污、抗老化、散热等性能,同时体积小重量轻,免于维修。因此,该产品聚集了有机外套和氧化锌电阻片的全部优点,是新型的过电压保护电器。 二、带脱离装置的复合外套无间隙氧化锌避雷器脱离装置是避雷器本体所带的一种自我保护装置,通常接在避雷器的底部,避雷器通过其接地。当避雷器在系统雷击或操作过电压下泄放能量,外界电动力、机械力及环境温度变化等综合作用时,脱离器不会动作,即避雷器正常工作时,脱离装置不影响其工作。当避雷器自动运行的稳定性受到损坏,或避雷器已经损坏时,脱离器迅速工作,将避雷接地线断开,避雷器电位悬空,退出运行。优点:安秒特性稳定、反应快、灭弧效果好、分断能力强、工作可靠性高、体积小、密封性

好、为故障避雷器提供了明显标记、便于迅速发现故障点并及时维修。三、金属氧化物避雷器外形尺寸 避雷器型号D(mm)h(mm)H(mm)伞数重量(kg)YH5WS1-17/50 90 190 260 5 YH5WZ1-17/45 92 190 260 5 避雷器型号D(mm)h(mm)H(mm)伞数重量(kg)YH5WS1-17/50L 90 210 286 6 YH5WZ1-17/45L 92 220 296 6 交流无间隙金属氧化物避雷器技术性能指标 典型的电站型和配电型避雷器电气特性GB11032 产品型号系统 额定 电压 kv (有 效 值) 避雷 器额 定电 压 kv (有 效 值) 避雷 器持 续运 行电 压 kv (有 效 值) 陡波 冲击 电流 下残 压 kv (峰 值) 雷电 冲击 电流 下残 压 kv (峰 值) 操作 冲击 电流 下残 压 kv (峰 值) 4/10us 大电流 冲击耐 受kv (峰 值) 直流 1mA电 压kv 不小于 2ms方波 电流峰值 A不小于 YH5WS-5/15 3 5 65 75(150) YH5WS-10/30 6 10 8 30 65 15 75(150) YH5WS-17/50 10 17 50 65 25(26) 75(150) YH5WS-17/50L 10 17 50 65 25(26) 75(150) Y5WS-17/50 10 17 50 65 25(26) 75(150) YH5WZ-5/ 3 5 65 150(200) YH5WZ-10/27 6 10 8 31 27 65 150(200) YH5WZ-17/45 10 17 45 65 24 150(200) YH5WZ-51/134 35 51 154 134 114 100 73(76) 400(600) 注:括号内为企业内控参数,下同。典型的发电机、电动机保护用避雷器电气特性 GB11032 产品型号避雷 器额 定电 压kv (有 效 值) 避雷 器持 续运 行电 压kv (有 效 值) 陡波 冲击 电流 下残 压kv (峰 值) 雷电 冲击 电流 下残 压kv (峰 值) 操作 冲击 电流 下残 压kv (峰 值) 4/10us 大电流 冲击耐 受kv (峰 值) 直流 1mA 电压 kv不 小于 2ms 方波 电流 峰值 A不 小于

FS阀式避雷器使用说明书

上海昌开电器有限公司 FS系列阀式避雷器说明书 ◆用途: FS系列阀式避雷器用作保护配电变压器和电缆头等电气设备免受大气过电压的损害。 它适用于: 1、室内和室外:使用地点环境温度-40℃~+40℃。 2、使用地点海拔高度不超过1000m,高于1000m地区,采用高原型避雷器。 3、安装地点可能出现相对地最高工频电压不应大于避雷器的额定电压。 它不适用于:有严重污秽和剧烈振动的地方。 ◆结构和性能: FS系列避雷器由火花间隙和阀片呈单柱叠装在瓷套内,瓷套两端用橡皮密封。为安装和接线设有铁夹及接线螺栓。 FS8系列避雷器为FS4系列避雷器的改型产品,其内部结构、电气特性与FS4系列相同,但具有以下特点: (1) 产品内部充入高纯度干燥氮气,防止电晕产生臭氧,从而保证产品性能稳定。 (2) 上部金属盖改用瓷盖式结构,解决了上部铁盖锈蚀问题。 (3) 采用特种螺栓从瓷套上端芽出接线,代替焊工金属上的接线端子,避免接线端子脱焊。 (4) 瓷套上端采用双层橡皮密封,保证密封性能可靠。 高原避雷器瓷套与铁盖采用金属与瓷件焊接密封,具有优良的密封性,因此可适用于任何海拔高度的地区。 ◆技术标准: 该系列避雷器性能符合国家标准“GB7327-87交流系统用碳化硅阀式避雷器”的要求,其主要性能见特性表。

◆使用注意事项: 1、避雷器在运行前后应做预防性试验,在运行中的避雷器每隔1~2年应做一次,其项目有: (1) 泄露电流的测量,于避雷器两端加以特性表中所规定的直流电压(直流电压的脉动不大于±1.5%),流过避雷器的泄露电流应符合特性表的规定。 (2) 绝缘电阻试验:用2.5kV摇表来测量其绝缘电阻,阻值不作规定,但每次试验结果应相近。 (3) 工频放电电压测量:在避雷器端加以50Hz交流电压,在能正确读出电压数值的前提下,从零值起均匀升压到避雷器放电止。放电时流过避雷器的电流应限制在0.2~0.7A,放电后应在0.5s内切断电源。每只避雷器的测量次数不得少于3次,每次测量的时间间隙不得少于10s,其值应符合特性表中的规定。 2、在运输和贮存时,应将避雷器正置立放。 3、在运行中,避雷器原有刷漆部分应每隔1-2年刷漆一次。 4、安装时,避雷器顶端引线的水平拉力应不大于294N(30kgf)。

相关文档