文档库 最新最全的文档下载
当前位置:文档库 › 实验一日光灯电路及功率因数的提高

实验一日光灯电路及功率因数的提高

实验一日光灯电路及功率因数的提高
实验一日光灯电路及功率因数的提高

电工学&电工学及电气设备

实验指导书山东农业大学电工电子实验中心

实验的基本要求

电工学基础实验课的目的在于培养学生掌握基本的实验方法与操作技能。培养学生学会根据实验目的,实验内容及实验设备拟定实验线路,选择所需仪表,确定实验步骤,测取所需数据,进行分析研究,得出必要结论,从而完成实验报告。在整个实验过程中,必须集中精力,及时认真做好实验。现按实验过程提出下列基本要求。

一、实验前的准备

实验前应复习教科书有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题(有些内容可到实验室对照实验预习,如熟悉组件的编号,使用及其规定值等),并按照实验项目准备记录抄表等。

实验前应写好预习报告,经指导教师检查认为确实作好了实验前的准备,方可开始作实验。

认真作好实验前的准备工作,对于培养同学独立工作能力,提高实验质量和保护实验设备都是很重要的。

二、实验的进行

1、建立小组,合理分工

每次实验都以小组为单位进行,每组由2~3人组成,实验进行中的接线、调节负载、保持电压或电流、记录数据等工作每人应有明确的分工,以保证实验操作协调,记录数据准确可靠。

2、选择组件和仪表

实验前先熟悉该次实验所用的组件,选择仪表量程,然后依次排列组件和仪表便于测取数据。

3、按图接线

根据实验线路图及所选组件、仪表、按图接线,线路力求简单明了,按接线原则是先接串联主回路,再接并联支路。为查找线路方便,每路可用相同颜色的导线或插头。

4、接通电源,观察仪表

接线完毕,首先自我检查,然后请指导教师查验无误后,方可通电。在正式实验开始之前,先熟悉仪表刻度,并记下倍率,然后开始实验,观察所有仪表是否正常(如指针正、反向是否超满量程等)。如果出现异常,应立即切断电源,并排除故障;如果一切正常,即可正式开始实验。

5、测取数据

预习时对电工实验的基本试验方法及所测数据的大小作到心中有数。正式实验时,根据实验步骤逐次测取数据。

6、认真负责,实验有始有终

实验完毕,须将数据交指导教师审阅。经指导教师认可后,才允许拆线并把实验所用的组件、导线及仪器等物品整理好。

实验过程中一定要注意用电安全,按程序规范操作,以避免人身触电事故的发生!

三、实验报告

实验报告是根据实测数据和在实验中观察和发现的问题,经过自己分析研究或分析讨论后写出的心得体

会。

实验报告要简明扼要、字迹清楚、图表整洁、结论明确。 实验报告包括以下内容:

1) 实验名称、专业班级、学号、姓名、实验日期。 2) 列出实验中所用组件的名称及编号等。 3) 数据的整理和计算

4) 根据数据进行计算和分析,说明实验结果与理论是否符合,可对某些问题提出一些自己的见解并最后写出结论。实验报告应写在一定规格的报告纸上,保持整洁 5) 每次实验每人独立完成一份报告,按时送交指导教师批阅。

实验一 日光灯电路及功率因数的提高

一、实验目的

1. 了解日光灯的工作原理;

2. 了解提高功率因数的意义;

3. 掌握提高感性负载功率因数的方法。

二、实验原理说明

1、日光灯各元件的联接及其工作过程

日光灯结构如图1-1所示,K 闭合时,日光灯管不导电,全部电压加在启辉器两触片之间,使启辉器中氖气击穿,产生气体放电,此放电产生的一定热量使双金属片受热膨胀与固定片接通,于是有电流通过日光灯管的灯丝和镇流器。短时间后双金属片冷却收缩与固定片断开,电路中的电流突然减小;根据电磁感应定律,这时镇流器两端产生一定的感应电动势,使日光灯管两端电压产生 400至 500V 高压,灯管气体电离,产生放电,日光灯点燃发亮。日光灯点燃后,灯管两端的电压降为100V 左右,这时由于镇流器的限流作用,灯管中电流不会过大。同时并联在灯管两端的启辉器,也因电压降低而不能放电,其触片保持断开状态。

图1-1 日光灯电路

三、实验设备

表1-1 实验仪器和设备

序号 名 称 型号与规格

数量 备注

1 交流电压表 1

2 交流电流表 1

3 功率表 1

4 自耦调压器

1 4 镇流器 与40W 灯管配用

1 5 电容器箱

1 6 启辉器 与40W 灯管配用

1 7 日光灯灯管

40W 1 8

1

按表1-2并联电容C ,令U=220V 不变,将测试结果填入表 1-2 中。

U

I Z=|Z|

电容值μF测量值计算值

U(V)I (A)I RL(A)I c(A)cosφ0

2.5

4.75

2.5+4.75

4.75+4.75

五、注意事项

1、测电压、电流时,一定要注意表的档位选择,测量类型、量程都要对应。

2、功率表电流线圈的电流、电压线圈的电压都不可超过所选的额定值。

3、自耦调压器输入输出端不可接反。

4、各支路电流要接入电流插座。

5、注意安全,线路接好后,须经指导教师检查无误后,再接通电源。

六、报告要求

1、若直接测量镇流器功率,功率表应如何接线,作图说明。

2、说明功率因数提高的原因和意义。

3、收获体会及其他。

实验接线图

实验板布置图

实验二 三相负载星形连接

一、实验目的

1.熟悉三相负载作星形连接的方法。

2.学习和验证三相负载对称与不对称电路中,相电压﹐线电压之间的关系。 3.了解三相四线制中中线的作用。 二、实验原理:

三相负载作星形连接时,如图2—1所示。

A

O C

B

O

A

C

B

图2—1

当三相负载对称或不对称的星形连接有中线时,线电压与相电压均对称,且

相线U U 3=。而且线U 超前与

U ?30。

当三相负载不对称又无中线连接时,此时将出现三相电压不平衡﹑不对称的现象,导致三相不能正常工作,为此必须有中线连接,才能保证三相负载正常工作。

从上述理论中,考虑到三相负载对称与不对称连接又无中线时某相电压升高,影响负载的使用时间,同时考虑到实验的安全,故将三相电压降低到220V 的相电压作实验。

三﹑实验仪器设备: 1、三相负载箱一个 2、电流T15-MA 一只 3、万用表500型一只 4、连接导线若干

四、实验内容及步骤:

实验板布置图如图所示。将实验台供电箱的三相电源A 、B 、C 、O 对应接到负载箱上。再接

成星形连接,即X、Y、Z、O连接。

1、上供电箱上三相开关,用电流

表插头及电压表进行下列情况的测量。

并将数据记入表内。

2、负载对称有中线,将三相负载

箱上的开关全部打到接通位置。

3、负载对称无中线,即断开中线。

4、负载不对称有中线,将A相的

KAI开关断开。

5、负载不对称无中线。

上述数据作完,请老师检查数据后,方

可整理好实验台。

五、填写实验报告:

1、分析负载不对称又无中线连接

时的数据。

2、中线有何作用?

六、注意事项:

1、电压电流表测量时,一定要注

意表的量程。

2、每测一次,改变负载连接方式

都要断开电源开关。

3、如何接线才能利用电流测量插孔测得中性线电流?

负载接法测量数据

对称负载不对称负载

有中线无中线有中线无中线

相电压U

A

U B

U C

线电压U

AB

U

BC

U

CA

相电流I

A I

B I C

中线电流I

实验三 三相负载三角形连接

一、实验目的:

1.熟悉三相负载作三角形连接的方法。

2.验证负载作三角形连接时,对称与不对称的线电流与相电流之间的关系。 二、实验原理:

三相负载三角形连接时如下图所示。

1、当三相负载对称连接时,其线电流、相电流之间的关系为

相线I I 3=,且相电流超前线电流?30。

2、当三相负载不对称作三角形连接时,将导致两相的线电流、一相的相电流发生变化。此时,I 线与I 相无3的关系。

3、当三角形连接时,一相负载断路时,如下图3-2所示。此时只影响故障相不能正常工作,其余两相仍能正常工作。

4、当三角形连接时,一条火线断线时如下图3-2所示。此时故障两相负载电压小于正常电压,而BC 相仍能够正常工作。

三、实验仪表设备:

1、三相负载箱一台

2、电流表T 15—MA 一只

3、电压表 一只 四、预习要点:

1、实验板上一相负载,电流插孔只有一个,如何通过适当接线使其可测线电流,又如何接线使其可测相电流?测相电流时,电流插孔又是对应那一相的电流?

五、实验步骤及内容:

实验板布置图见实验二。接线参照图3-3。 1、参照下图将负载箱接成三角形的负载。

2、合上供电箱的开关,进行下列负载接法的测量并将数据记入表内。

图3-2

测量数据负载接法

线电流相电流线电压

I

A

I

B

I

C

I

AB

I

BC

I

CA

U

AB

U

BC

U

CA

负载对称

负载不对称

一相负载断路

一相火线断路

(2)不对称负载的测量,短开KA1 开关。

(3)一相负载短路,短开KAI.KA2开关。

(4)一相火线断线,开关全部接通,取掉A相火线。

上述内容作完后,数据经老师检查后方可整理实验台,离开实验室。

五、填写实验报告:

1、负载作三角形连接时,从实验的数据作

I与线I之间关系的计算。二者之间的关系是什么?

2、对各种情况负载下用实验的数据进行分析。说明了什么?

图3-3

实验四变压器空载、短路实验

一、实验目的:

1、通过空载和短路实验判断变压器的性能。

2、学习各种仪表的使用。

二、实验内容:

1、变压器的空载实验。

2、变压器的短路实验。

三、预习要点:

1、在变压器空载和短路实验中,各种仪表怎样连接才能使测量误差最小?

2、变压器的空载实验,测空载损耗为什么必须用低功率因数表?

3、变压器空载及短路实验时应注意哪些问题?一般电源接在低压边还是高压边比较合适?

四、实验器材:

单相变压器、电流表、电压表、功率表、调压器、兆欧表。

五、实验步骤和方法:

1、测定绝缘电阻

用兆欧表分别检查变压器高、低压绕组之间和各绕组对地之间冷态绝缘电阻值。将数据填下表4-1中。

2、测定电压比

接线图如图2-1所示。闭合电源开关Q,将调压器的输出电压从低压绕组额定电压的50%左右开始调至U N范围内,对应不同的输入电压,测量低压绕组电压和高压绕组电压共3组数据,记录于4-2表中,

分别计算电压比,取其平均值。

3、空载实验

为了安全,空载实验应在低压边进行,空载实验的接线图如图2-2所示。由于空载时变压器的功率因数甚低,应选用低功率因数表测量功率,以减少测量误差。又因为变压器空载阻抗很大,故电压表应接在电流表的外侧,以免由于电压表分流引起误差。

为了保护仪表,调压器将电压从零开始升至U N,测量空载电流I0及空载损耗功率P0 ,。共测取数据3组。记录于表4-1中。

副边电压U

AX

4、短路实验

短路实验接线图如图2-3所示。由于短路阻抗很小,故电流表应接在电压表的外侧,以免由于电流表的内阻压降引起误差。短路时的功率因数较高,故不必采用低功率因数功率表。

通电前,必须将调压器调至输出电压为零的起始位置。然后合上开关Q,调节输出电压,使短路电流升至I N ,测量U k、P k。共测取数据3组。记录于表4-1中。

六、实验报告:

1、由测定的绝缘电阻值判定变压器的绝缘性能。

2、计算变压器电压变比的平均值作为受试变压器的变比。

3、将空载实验数据和标准值比较,判断性能。

4、将短路实验数据和标准值比较,判断性能。

实验五三相异步电动机的起动和调速

一、实验目的:

1、通过实验熟悉异步电动机的起动设备和起动方法。

2、熟悉异步电动机的调速原理和调速方法。

二、实验内容:

1、笼型异步电动机的起动。

2、绕线转子异步电动机的起动。

3、异步电动机的调速。

三、预习要点:

1、为什么笼型异步电动机降压起动不适用于重载起动?

2、绕线转子异步电动机所串电阻的大小对起动转矩有什么影响?

3、异步电动机的调速原理。

四、实验器材:

五、实验步骤和方法:

1、直接起动按图5-1接线。先将开关Q2向上闭合,然后闭合电源开关Q,读取瞬时起动电流数值,记录于表5-1中。

2、星—三角形起动

仍按上图5-1接线。先将开关Q2向下闭合,定子绕组为星形联结,然后电源开关Q1,读取起动电流数值,记录于表5-1中。待电机转速稳定后,将开关氏Q2拉开,并迅速向上闭合,定子绕组换接三角形联结,电动机转入正常运行。

3、自耦变压器起动

选用起动补偿器,按图5-2接线。抽头电压选60%电源电压。先合上电源开关Q1,然后将起动补偿器的手柄扳至“起动”位置,此时电动机由自耦变压器供给低电压起动。读取起动电流数值,记录于表5-1中。待电动机转速稳定后,将手柄从“起动”位置拉开,并迅速合至“运行”位置,电动机起动过程结束。

4、绕线转子异步电动机起动

按如图5-3接线,先将起动变阻器手柄置于阻值最大位置,然后合上电源开关Q1起动电动机,读取起动电流数值,记录于表5-1中。缓慢转动起动变阻器手柄,逐渐减小起动电阻,直至起动变阻器被切除,电动机进入稳定运行。

5、绕线转子导步电动机转子回路串电阻调速仍按图5-3接线,将电动机带一定负载起动后,改变转子电阻,观察转速变化,然后改变变阻器手柄位置,分别测量各电阻值所对应的电动机转速,并做记录。

6、鼠笼转子电机变极调速按图5-4的两种方式接线分别测出转速并记录。

六、实验报告:

1、比较异步电动机不同起动方法的特点和优、缺点。

2、从调速性能方面,对绕线转子异步电动机串电阻调速进行分析。

实验报告书

功率因数校正之基本原理

功率因数校正之基本原理 何谓工率因数? 功率因数(power factor;pf)定义为实功(real power;P)对视在功率(apparent power;S)之比,或代表电压与电流波形所形成之相角之余弦,如图1。功率因数值可由0至1之间变化,可为电感性(延迟的、指标向上)或电容性(领先的、指标向下)。为了降低电感性之延迟,可增加电容,直到pf为1。当电压与电流波形为同相时,工率因数等于1(cos(0o)=1)。所有努力使工率因数等于1是为了使电路为纯电阻化(实功等于视在功率)。 ▲图1: 功率因数之三角关系。 实功(瓦特)可提供实际工作,此为能量转换元素(例如电能到马达转动rpm)。虚功(reactive power)乃为使实功完成实际工作所产生之磁场(损耗)。而视在功率可想成电力公司提供之总功率,如图1所示。此总功率经由电力线提供产生所需之实功。 当电压与电流皆为正弦波时,如前述定义之功率因数(简称为功因)为电压与电流波形之对应相角,但大部份之电源供应器之输入电流乃非正弦波。当电压为正弦波而电流为非正弦波时,则功因包括两个因素:1)相角位移因素,2)波形失真因素。等式1表示相角位移与波形失真因素之于功因的关系。 ----------------------------------------------------(1)

Irms(1)为电流之主成份,Irms电流之均方根值。因此功率因数校正线路是为了使电流失真最小,且使电流与电压同相。 当功因不等于1时,电流波形没有跟随电压波形,不但有功率损耗,且其产生之谐波透过电力线干扰到连接同一电力线之其它装置。功因越接近1,几乎所有功率皆包含于主频率,其谐波越接近零。 ■了解规范 EN61000-3-2对交流输入电流至第40次谐波规范。而其class D对适用设备之发射有严格之限制(图2)。其class A要求则较宽松(图3)。 ▲图2:电压与电流波形同相且PF=1(Class D)。

功率因数补偿的原理方法及意义

功率因数补偿 功率因数补偿概述 功率因数补偿的理论分析 功率因数补偿方法 功率因数补偿的意义 编辑本段功率因数补偿概述 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S。 电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。因此在电网中安装并联电容器无功补偿设备后,将可以提供补偿感性负荷所消耗的无功功率,减少了电网电源侧向感性负荷提供及由线路输送的无功功率。减少了无功功率在电网中的流动,可以降低输配电线路中变压器及母线因输送无功功率造成的电能损耗,这种措施称作功率因数补偿。 由于功率因数提高的根本原因在于无功功率的减少,因此功率因数补偿通常称之为无功补偿。 在大系统中,无功补偿还用于调整电网的电压,提高电网的稳定性。 在小系统中,通过恰当的无功补偿方法还可以调整三相不平衡电流。按照wangs定理:在相与相之间跨接的电感或者电容可以在相间转移有功电流。因此,对于三相电流不平衡的系统,只要恰当地在各相与相之间以及各相与零线之间接入不同容量的电容器,不但可以将各相的功率因数均补偿至1,而且可以使各相的有功电流达到平衡状态。 编辑本段功率因数补偿的理论分析 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效

率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。 (1)最基本分析:拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。在这个例子中,功率因数是0.7(如果大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。 (2)基本分析:每种电机系统均消耗两大功率,分别是真正的有用功(叫千瓦)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。 (3)高级分析:在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。保尔金能使两个峰值重新接近在一起,从而提高系统运行效率。 编辑本段功率因数补偿方法 无功补偿的主要目的就是提升补偿系统的功率因数。因为供电局发出来的电是以KVA或者MVA来计算的,但是收费却是以KW,也就是实际所做的有用功来收费,两者之间有一个无效功率的差值,一般而言就是以KVAR 为单位的无功功率。大部分的无效功都是电感性,也就是一般所谓的电动机、变压器、日光灯……,几乎所有的无效功都是电感性,电容性的非常少见。也就是因为这个电感性的存在,造成了系统里的一个KVAR值,三者之间是一个三角函数的关系 KVA的平方=KW的平方+KVAR的平方 简单来讲,在上面的公式中,如果今天的KVAR的值为零的话,KVA 就会与KW相等,那么供电局发出来的1KVA的电就等于用户1KW的消耗,此时成本效益最高,所以功率因数是供电局非常在意的一个系数。用户如果没有达到理想的功率因数,相对地就是在消耗供电局的资源,所以这也是为什么功率因数是一个法规的限制。目前就国内而言功率因数规定是必须介于电感性的0.9~1之间,低于0.9,或高于1.0都需要接受处罚。这就是为什么我们必须要把功率因数控制在一个非常精密的范围,过多过少都不行。 供电局为了提高他们的成本效益要求用户提高功率因数,那提高功率因数对我们用户端有什么好处呢?

实验十五 交流电路功率的测量

实验十五 交流电路功率的测量 实验目的 1.学习交流电路中功率及功率因数的测定方法; 2.加深对功率因数概念的理解,进一步了解交流电路中电阻、电容、电感等元件消耗功率的特点; 3.学习一种提高交流电路功率因数的方法. 仪器和用具 负载(铁芯电感为 40W 日光灯镇流器,阻值为 300Ω左右的变阻器)、电动型瓦特表(低功率因数瓦特表W -D34型额定电流为 0.5A 、1A ,额定电压为 150V 、300V 、600V ,功率因数20.φcos =)、铁磁电动型交流电压表、电磁型电流表、电容(0.5μF 、l μF 、2μF 、4μF 、10F 各一个)、调压变压器、示波器、音频信号发生器.-MF 20型晶体管万用表、双刀双掷开关两个等. 实验原理 一、交流功率及功率因数 在直流电路中、功率就是电压和电流的乘积,它不随时间改变.在交流电路中,由于电压和电流都随时间变化,因而它们的乘积也随时间变化,这种功率称为瞬时功率p . 设交流电路中通过负载的瞬时电流i 为 t ωI i sin m = (C.13.1) 负载两端的瞬时电压u 为 ()φt ωU u +=sin m (C.13.2) 则瞬时功率 ()()φt ωt ωI U i u p +=?=sin sin m m (C.13.3) 平均功率 R 图C.13.1

()()()[]???+-?=+==T T T dt φt ωφI U T dt φt ωt ωI U T pdt T P 0m m 0 m m 02cos cos 2 1 1sin sin 11 其中第二项积分为零,所以 φUI φI U dt φI U T P T cos cos 2 1 cos 211m m 0m m ===? (C.13.4) 平均功率不仅和电流、电压的有效值有关,并和功率因数φcos 有关. 由图C.13.1所示可知 I U φUI P R ==cos (C.13.5) 故平均功率也就是电路中电阻上消耗的功率,也称有用功率.由于电压与电流有效值的乘积称为总功率,也称视在功率S ,即 UI S = (C.13.6) 故 φUI φ UI S P cos cos == (C.13.7) 功率因数φcos 就是电源送给负载的有用功率P 和总功率S 的比值,它是反映电源利用率大小的物理量. 测量功率的方法很多,最常用的是瓦特表,此外示波器也可测量功率(示波器适用于测量高频情况下较小的功率). 二、瓦特表测量功率及功率因数 1.瓦特表测功率 本实验采用电动型瓦特表,电动型瓦特表的测量机构示意图如图C.13.2所示. 电动型瓦特表内部测量机构有两个线圈,线圈A 为固定线圈,它与负载串联而接人电路,通过固定线圈的电流就是负载电 流,因此称固定线圈A 为瓦特表的电流线圈;线圈B 为动圈,线圈本身电阻很小,往往与扩程用的高电阻相串联,测量时与负载相并联,动圈支路两端的电压就是负载电压1U ,因此图C.13.2 电动型仪表测量机构示意图 1.固定线圈;2.可动线圈;3、4.支架; 5.指针;6.游丝

无源功率因数校正电路的原理和应用

无源功率因数校正电路的原理和应用 摘要:本文介绍SIEMENS公司提出的开关电源集成控制器TDA16846无源功率因数校正(PFC)电路原理及其在电视机开关电源中的应用。功率因数的改善是基于一个特殊的由电感,电容及二极管组成的充电泵电路,该电路在功率管的高压端兼起吸收缓冲作用,因此它具有输入谐波电流分量小,PF值高以及EMI小、电路简单、成本低和可靠性高等优点。这为电视机厂家提供了一个高效价廉的解决电源谐波问题的新方案。 关键词:开关电源功率因数校正 一、引言 众所周知,目前电视机和大部分通用电器都广泛地从交流电网中提取电能经整流后变成直流电供全机使用,AC电源经桥式整流后常接一个滤波平整电容。由于该电容的存在,使整流臂的导通时间小于半个周期,因而做成输入电源电压是正弦形,而输入电流却是正负交替的脉冲形。后者导致大量电流谐波特别是三次谐波的产生,这既构成对电网效能的干扰和损害,又降低了本机功率因数,为此,我国跟欧美各国一样,已于去年12月1日起正式实施限制功耗大于75W的通用电器产品输入谐波电流的新规定。面对这种新情况,当前各电器厂家都必须考虑更新产品中的电源设备,尤其是对25英寸以上的彩色电视机,过去国内产品绝大部分都没有安装PFC电路,其PF值一般在0.55~0.65之间,输入电流谐波分量往往超出国家限定的标准,因此改进电源电路,增加PFC功能以便降低电视机的输入电流谐波分量是各厂家的当务之急。 本文介绍由SIEMENS公司推出的与开关电源集成控制器TDA16846配合使用的一个无源功率因数校正(PFC)电路,该电路能将电源PF值提高到0.9以上,与有源PFC电路相比,它明显地具有结构简单,成本低,可靠性高,和EMI小等优点,因此对电视机厂家来说,不失为一个有效的解决电源谐波问题的可行方案。 二、无源PFC电路工作原理介绍 图1示出一个不含PFC的标准型电源电路的输入电压Vm和输入电流Im波形,Im只在Vm为正最大和负最大的一小段时间内流通,在这些时间以外,Im为零。这是因为此时的正弦电压输入值小于泸波电容上的电压,导致整流二极管不导通的缘故。

功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是 目前比较流行的一个专业术语。PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。 线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。 功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。 PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。 长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上 的电压时,整流二极管因反向偏置而截止。也就是说,在AC 线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC 输入电压仍大体保持正弦波波形,但AC 输入电流却呈高幅值的尖峰脉冲,如图l 所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC 输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF 与电流总谐波失真(度)THD 之间存在下面关系: 而是由二极管、电阻、电容和电感等无源元件组成。无源PFC 电路有很多类型,其中比较简单的无源PFC 电路由三只二极管和两只电容组成,如图2所示。这种无源PFC 电路的工作原理是:当50Hz 的AC 线路电压按正弦规律由0向峰值V m 变化的1/4周期内(即在0

功率因数补偿电路

电子报/2006年/8月/27日/第013版 资料(开发) 电子镇流器功率因数补偿电路 河北黄海成 《电子报》今年第24期刊载的《日光灯电感镇流器与电子镇流器》一文,提供了一款电子镇流器的电路图,并称其具有功率因数补偿功能。笔者认为,该镇流器只有简单电容滤波,没有功率因数补偿功能。本文简单介绍几种功率因数补偿电路。 功率因数补偿电路分为有源功率因数补偿和无源功率因数补偿两类。 一、有源功率因数补偿 有源功率因数补偿是指利用有源电子器件使电子镇流器输入电流波形与输出电压波形一致,从而提高功率因数的电路。 图1所示电路是通过IC1控制开关管VT1的导通和截止时间来控制流过电感T1电流的,称PFC升压电路。IC1③脚是交流整流后脉动电压的取样端,②脚是400V取样端,开关管的导通截止同时被两个参数控制,所以此电路有功率因数补偿功能,同时具有稳压作用,可使功率因数最高达到0.99,电流波峰比接近1。其优点是,功率因数高、电流畸变极小,缺点是电路相对复杂,成本较高。 二、无源功率因数补偿 无源功率因数补偿是利用无源器件使电子镇流器的输入电流接近正弦波,从而提高功率因数的电路,有三种电路。 1.改变滤波电容在充电和放电时的电容量。灯管功率一定的情况下,改变滤波电容的容量,功率因数也会改变。假如滤波电容容量为零,输入电流波形为正弦波,功率因数等于1,随着电容容量的增加,电容两端的电压也在不断的升高(电容滤波的特点之一),输入电流变成越来越窄的脉冲,功率因数越来越低。用什么办法让电容充电的时候容量变小而放电的时候容量文变大呢?如图2所示,整流二极管对电容充电时,C8、C9串联,等效容量是它们容量的一半,电容对负载放电时,C8、C9并联,等效容量是它们的两倍。如果一下子理解不了,把虚线右边的电路去掉,换成图3电路容易理解。这种电路的功率因数大于0.9,电流波峰比大于2。其优点是电路简单、成本低廉、其缺点是波峰比大,影响灯管寿命。

技能训练19 提高日光灯电路的功率因数

技能训练19 提高日光灯电路的功率因数 一.实验目的 (1)熟悉日光灯电路的工作原理,做到能正确迅速连接线路。 (2)通过实验了解功率因数提高的方法和意义。 (3)学会功率表、功率因数表的使用方法。 二.实验原理及内容说明 日光灯管R ,镇流器L (带铁心电感线圈),启动器S 组成(实验图7-1),当接通电源后,启动器内发生辉光放电,双金属片受热弯曲,触点接通,将灯丝预热使它发射电子,启动器接通后辉光放电停止,双金属片冷却,又把触点断开,这时镇流器感应出高电压加在灯管两端使日光灯放电,灯管内壁的荧光粉吸收后辐射出可见的光,日光灯就开始正常工作,启动器相当一只自动开关,能自动接通电路(加热灯丝)和开断电路(使镇流器产生高电压,将灯管击穿放电)。镇流器的作用除了感应高压使灯管放电外,在日光灯正常工作时,其限制电流的作用,镇流器的名称也由此而来,由于电路中串联着镇流器,它是一个电感量较大的线圈,因而整个电路的功率因数不高。(约0.5左右) 负载功率因数过低,一方面没有充分利用电源容量,另一方面又在输电电路中增加 损耗。为了提高功率因数,一般最常用的方法是在负载两端并联一个补偿电容器,抵消负载电流的一部分无功分量。在日光灯接电源两端并联一个可变电容器,当电容器的容量逐渐增加时,电容支路电流Ic 也随之增大,因Ic 导前电压U90°可以抵消电流I g 的一部分无功分量I gl ,结果总电流I 逐渐减小(实验图7-2),但如果电容器C 增加过多(过补偿) 。Ic>I gl 总电流又将增大。所以并联电容器应有一个合适的数值。 为了测量日光灯的功率有多大,可在电路中接入功率表,一般功率表都是多量程的,使 本实验中所使用的功率表需外接,该功率表的电压回路的灵敏度很高,因而内阻很大,测量时对被测电路的并联分流作用极小。另外,该表电流回路的内阻也特别小,因而对被测电路串联分压效应也很小。 功率表的接线如图7-3所示,图中功率表W 的电流回路引出接线柱应与负载串联连接,W 的电压回路引出端则与负载并联。其中标有* 号,称同名端,接线时应将这两端连在一起。这样连接时当功率表指针正偏或有正读数时,则表示电源向负载传送功率,其数值为 . .

功率因数介绍

在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有 功功率和视在功率的比值,即cosΦ=P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载 的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。要求(1) 最基本分析拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。(使用了70个单位的有功功率,你付的就是70个单位的消耗)在这个例子中,功 率因数是0.7 (如果大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。 (2) 基本分析每种电机系统均消耗两大功率,分别是真正的有用功(叫kw)及电抗性的无用功。功率因数是有 用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。 (3) 高级分析在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。 对于功率因数改善 电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程 中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。因此在电网中安装并联电容器无功补偿设备后,将 可以提供补偿感性负荷所消耗的无功功率,减少了电网电源侧向感性负荷提供及由线路输送的无功功率。由于减 少了无功功率在电网中的流动,因此可以降低输配电线路中变压器及母线因输送无功功率造成的电能损耗,这就 是无功补偿的效益。无功补偿的主要目的就是提升补偿系统的功率因数。因为供电局发出来的电是以KVA或者MVA来计算的,但是收费却是以KW,也就是实际所做的有用功来收费,两者之间有一个无效功率的差值,一般 而言就是以KVAR为单位的无功功率。大部分的无效功都是电感性,也就是一般所谓的电动机、变压器、日光灯……,几乎所有的无效功都是电感性,电容性的非常少见,例如:变频器就是容性的,在变频器电源端加入电抗器可提高功率因数 供电部门为了提高成本效益要求用户提高功率因数,那提高功率因数对用户端有什么好处呢? ①通过改善功率因数,减少了线路中总电流和供电系统中的电气元件,如变压器、电器设备、导线等的容量,因此不但减少了投资费用,而且降低了本身电能的损耗。 ②良好的功因数值的确保,从而减少供电系统中的电压损失,可以使负载电压更稳定,改善电能的质量。 ③可以增加系统的裕度,挖掘出了发供电设备的潜力。如果系统的功率因数低,那么在既有设备容量不变的 情况下,装设电容器后,可以提高功率因数,增加负载的容量。 举例而言,将1000KVA变压器之功率因数从0.8提高到0.98时: 补偿前:1000×0.8=800KW 补偿后:1000×0.98=980KW 同样一台1000KVA的变压器,功率因数改变后,它就可以多承担180KW的负载。 ④减少了用户的电费支出;透过上述各元件损失的减少及功率因数提高的电费优惠。 此外,有些电力电子设备如整流器、变频器、开关电源等;可饱和设备如变压器、电动机、发电机等;电弧 设备及电光源设备如电弧炉、日光灯等,这些设备均是主要的谐波源,运行时将产生大量的谐波。谐波对发动机、变压器、电动机、电容器等所有连接于电网的电器设备都有大小不等的危害,主要表现为产生谐波附加损耗,使 得设备过载过热以及谐波过电压加速设备的绝缘老化等。 并联到线路上进行无功补偿的电容器对谐波会有放大作用,使得系统电压及电流的畸变更加严重。另外,谐 波电流叠加在电容器的基波电流上,会使电容器的电流有效值增加,造成温度升高,减少电容器的使用寿命。 谐波电流使变压器的铜损耗增加,引起局部过热、振动、噪音增大、绕组附加发热等。

实验八-单相交流电路及功率因数的提高

实验八 单相交流电路及功率因数的提高 一、实验目的 1. 研究正弦稳态交流电路中电压、电流相量之间的关系。 2. 了解日光灯电路的特点,理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1. 交流电路中电压、电流相量之间的关系在单相正弦交流电路中,各支路电流和回路中各元件两端的电压满足相量形式的基尔霍夫定律,即 Σ?=0和ΣU =0 图8-1所示的RC 串联电路,在正弦稳态信号U 的激励下,电阻上的端电压U 与电路中的电流I 同相位,当R 的阻值改变时,R U 和C U 的大小会随之改变,但相位差总是保持90°,R U 的相量轨迹是一个半圆,电压U 、C U 与R U 三者之间形成一个直角三角形。 即U =R U +C U 相位角φ=acr tg (Uc / U R ) 改变电阻R 时,可改变φ角的大小,故RC 串联电路具有移相的作用。 2. 交流电路的功率因数 交流电路的功率因数定义为有功功率与视在功率之比,即 c os φ=P / S 其中φ为电路的总电压与总电流之间的相位差。 交流电路的负载多为感性(如日光灯、电动机、变压器等),电感与外界交换能量本身需要一定的无功功率,因此功率因数比较低(cos φ<0.5)。从供电方面来看,在同一电压下输送给负载一定的有功功率时,所需电流就较大;若将功率因数提高 (如cos φ=1 ),所需电流就可小些。这样即可提高供电设备的利用率,又可减少线路的能量损失。所以,功率因数的大小关系到电源设备及输电线路能否得到充分利用。 为了提高交流电路的功率因数,可在感性负载两端并联适当的电容C,如图8-2所示。并联电容C以后,对于原电路所加的电压和负载参数均未改变,但由于C I 的出现,电路的总电流I 减小了,总电压与总电流之间的相位差φ减小,即功率因数cos φ得到提高。

实验3 日光灯电路及功率因数的提高

实验三 交流电路的研究 一、实验目的 1、学会使用交流数字仪表(电压表、电流表、功率表)和自耦调压器; 2、学习用交流数字仪表测量交流电路的电压、电流和功率; 3、学会用交流数字仪表测定交流电路参数的方法; 4、加深对阻抗、阻抗角及相位差等概念的理解。 5、研究提高感性负载功率因数的方法和意义; 二、实验原理 1、交流电路的电压、电流和功率的测量 正弦交流电路中各个元件的参数值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U ,流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法,是用来测量50Hz 交流电路参数的基本方法。计算的基本公式为: 电阻元件的电阻:I U R R =或2I P R = 电感元件的感抗I U X L L = ,电感f X L π2L = 电容元件的容抗I U X C C = ,电容C 21 fX C π= 串联电路复阻抗的模I U Z = ,阻抗角 R X arctg =? 其中:等效电阻 2 I P R = ,等效电抗2 2 R Z X -= 在R 、L 、C 串联电路中,各元件电压之间存在相位差,电源电压应等于各元件电压的相量和,而不能用它们的有效值直接相加。 电路功率用功率表测量,功率表(又称为瓦特表)是一种电动式仪表,其中电流线圈与负载串联,(具有两个电流线圈,可串联或并联,以便得到两个电流量程),而电压线圈与电源并联,电流线圈和电压线 圈的同名端(标有*号端)必须连在一起,如图3-1 方法与电动式功率表相同,电压、电流量程分别选500V 和3A 。 2、提高感性负载功率因数的研究 供电系统由电源(发电机或变压器)通过输电线路向负载供电。负载通常有电阻负载,如白炽灯、电阻加热器等,也有电感性负载,如电动机、变压器、线圈等,一般情况下,这两种负载会同时存在。由于电感性负载有较大的感抗,因而功率因数较低。

功率因数校正原理及相关IC.

功率因数校正原理及相关IC 近年来,随着电子技术的发展,对各种办公自动化设备,家用电器,计算机的需求逐年增加。这些设备的内部,都需要一个将市电转换为直流的电源部分。在这个转换过程中,会产生大量的谐波电流,使电力系统遭受污染。作为限制标准,IEC发布了IEC1000?3?2;欧美日各国也颁布实施了各自的标准。为此谐波电流的抑制及功率因数校正是电源设计者的一个重要的课题。2高次谐波及功率因数校正一般开关电源的输入整流电路为图1所示:市电经整流后 近年来,随着电子技术的发展,对各种办公自动化设备,家用电器,计算机的需求逐年增加。这些设备的内部,都需要一个将市电转换为直流的电源部分。在这个转换过程中,会产生大量的谐波电流,使电力系统遭受污染。作为限制标准,IEC发布了IEC1000?3?2;欧美日各国也颁布实施了各自的标准。为此谐波电流的抑制及功率因数校正是电源设计者的一个重要的课题。 2高次谐波及功率因数校正 一般开关电源的输入整流电路为图1所示: 市电经整流后对电容充电,其输入电流波形为不连续的脉冲,如图2所示。这 种电流除了基波分量外,还含有大量的谐波,其有效值I 式中:I1,I2,…In,分别表示输入电流的基波分量与各次谐波分量。 谐波电流使电力系统的电压波形发生畸变,我们将各次谐波有效值与基波有效值 的比称之为总谐波畸变THD(TotalHarmonicDistortion) THD=(2) 用来衡量电网的污染程度。脉冲状电流使正弦电压波形发生畸变,见图3的波峰处。它对自身及同一系统的其它电子设备产生恶劣的影响,如: ——引起电子设备的误操作,如空调停止工作等; ——引起电话网噪音; ——引起照明设备的障碍,如荧光灯闪灭; ——造成变电站的电容,扼流圈的过热、烧损。 功率因数定义为PF=有效功率/视在功率,是指被有效利用的功率的百分比。没有被利用的无效功率则在电网与电源设备之间往返流动,不仅增加线路损耗,而且成为污染源。 设电容输入型电路的输入电压e为:

配电室的电容补偿及功率因数

配电室的电容补偿及功率因数 功率因数是电力系统的一个重要的技术数据,是衡量电气设备效率高低的一个系数,我们都知道功率因数过低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。一般电容补偿柜容量按变压器容量的百分之三十计算。 A,为什么要用电容来补偿? 因为电容器有贮能的功能,无功功率是不消耗能量的功率,只是在交流电的半个周期内暂时将电能以磁场(感性无功)或电场(容性无功)的形式储存起来,然后再另外半个周期内将所储存的能量返还给电网。 电容吸收无功功率的时候,正是电机放出无功功率的时候,反之,电机吸收无功功率时,又正好是电容放出无功功率的时候。这样,电机和电容就相互交换无功功率,电机等等负载就不需要从电源上吸收或释放无功功率了,这就相当于电容代替电源向电机提供无功功率,也就是补偿无功功率。 电容补偿提高负载功率因数,降低无功功率,提高有用功的利用率;降低网损,增加电网传输容量,提高稳定极限。 B,电容补偿的定义 电容补偿就是功率因数补偿或者是无功补偿。电力系统的用电设备在使用时会产生无功功率,而且通常是电感性的,它会使电源的容量使用效率降低,而通过在系统中适当地增加电容的方式就可以得以改善。电力电容补偿也称功率因数补偿。 C,配电室电容柜的基本组成 它是指合断路器和刀熔开关,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。

一般来说,电容补偿柜由柜壳、母线、隔离开、容断器、接触器、热继电器、电容器、避雷器、一、二次导线、端子排、功率因数自动补偿控制装置、盘面仪表等组成。 D,电容补偿对于电路的基本作用 D-1,电容在交流电路里可将电压维持在较高的平均值!(近峰值).(高充低放),可改善增加电路电压的稳定性! D-2,对大电流负载的突发启动给予电流补偿!电力补偿电容组可提供巨大的瞬间电流!可减少对电网的冲击! D-3,电路里大量的感性负载会使电网的相位产生偏差,(感性元件会使交流电流相位滞后,电压相位超前90度!).而电容在电路里的特性与电感正好相反,起补偿作用。

单相功率因数检测电路设计

仪器科学与电气工程学院 本科毕业论文(设计)开题报告 题目:单相功率因数检测电路设计 学生姓名:学号: 专业:电气工程及其自动化 指导教师: 2013年12月20日

1. 选题依据 1.1 选题背景 功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。在电力网的运行中功率因数越大则电路中的视在功率供给有功功率就越大,无功功率的消耗就越少。用户功率因数的高低对电力系统发、供、用电设备的充分利用有着显著的影响。无功补偿可以降低电能损耗、挖掘发供电设备潜力、改善供电电压质量。 对运行中的发电设备来讲,负载的功率因数越低,则由电源输出并被负载所吸收的有功功率也越小,这说明发电设备的容量仅有一小部分被有效利用,其余部分只是在电源与负载之间进行无用的功率交换。这样实质上等于发电设备的潜力未能得到充分的发挥。为了提高发电设备的利用率,所以必须提高负载的功率因数。 近年来,随着我国国民经济GDP(国民生产总值)的不断增长,我国的电力工业也有了长足的发展,同时电力网中的无功问题也逐渐引起人们的广泛关注,这是由于随着电力电子技术的飞速发展,各种电力电子装置的电力系统、工业、交通及家庭中的应用日益广泛。而大多数电力电子的装置的功率因数很低,它们所消耗的无功功率在电力系统所输送的电量中占有很大的比例。无功功率增加会导致电流的增大,设备及线路的损耗增加,导致大量有功电能损耗。同时使功率因数偏低、系统电压下降。无功功率如果不能就地补偿,用户负荷所需要的无功功率全靠发、配电设备长距离提供,就会使配电、输电和发电设备不能充分发挥作用,降低发、输电的能力,使电网的供电质量恶化,严重时可能会使系统电压崩溃,造成大面积停电事故,这对我们日常生活造成了很大影响。 然而,我国和世界上的发达国家(美国、日本)相比,无论从电网功率因

日光灯电路与功率因数的提高-日光灯功率因数提高

实验4.7 日光灯电路与功率因数的提高 4.7.1实验目的 1.熟悉日光灯的接线方法。 2.掌握在感性负载上并联电容器以提高电路功率因数的原理。 4.7.2实验任务 4.7.2.1基本实验 1.完成因无补偿电容和不同的补偿电容时电路中相关支路的电压、电流以及电路的功率、功率因数的测量和电路的总功率因数曲线cosθ′=f (C )的测量。并测出将电路的总功率因数提高到最大值时所需补偿电容器的电容值。(日光灯灯管额定电压为220V ,额定功率30W 。) 2.完成图4-7-1所示点亮日光灯时 所需电压U 点亮和日光灯熄灭时电压U 熄灭 的测量。 3.定量画出电路的相量图。完成镇流器的等效参数R L 、L 的计算。 4.7.2.2扩展实验 保持U =220V 不变,当电路并联最佳电容器后使得总功率因数达到最大时,在电容器组两端并入20W 灯泡,通过并入灯泡的个数,使得总电流I 与无并联电容时的I 值大致相同,记录此时I 、I C 、I L 、P 以及流入灯泡的电流值。 4.7.3实验设备 1.三相自耦调压器 一套 2. 灯管 一套 3.镇流器 一只 4. 起辉器 一只 5. 单相智能型数字功率表 一只 6. 电容器组/500V 一套 7. 电流插座 三付 8. 粗导线电流插头 一付 9. 交流电压表(0~500V) 或数字万用表 一只 10.交流电流表(0~5A) 一只 11.粗导线 若干 图4-7-1

4.7.4 实验原理 1.日光灯电路组成 日光灯电路主要有灯管、启辉器和镇流器组成。联接关系如图4-7-2所示。 2.日光灯工作原理 接通电源后,启辉器内固定电极、可动电极间的氖气发生辉光放电,使可动电极的双金 属片因受热膨胀而与固定电极接触,内壁涂有 荧光粉的真空灯管里的灯丝预热并发射电子。启辉器接通后辉光放电停止,双金属片冷缩与固定电极断开,此时镇流器将感应出瞬时高电压加于灯管两端,使灯管内的惰性气体电离而引起弧光放电,产生大量紫外线,灯管内壁的荧光粉吸收紫外线后,辐射出可见光,发光后日光灯两端电压急剧下降,下降到一定值,如40W 日光灯下降到110V 左右开始稳定工作。启辉器因在110V 电压下无法接通工作而断开。启辉器在电路启动过程中相当于一个点动开关。 当日光灯正常工作后,可看成由日光灯管和镇流器串联的电路,电源电压按比例分配。镇流器对灯管起分压和限流作用。灯管相当于一个电阻元件,而镇流器是一个具有铁心的电感线圈,但它不是纯电感,我们可把它看成一个R L 、L 串联的感性负载,电流为L I ? 。设日光灯电路两端电压? U 的相位超前于日光灯电路电流L I ? 相位θ角,则日光灯电路的功率因数为cosθ。如图4-7-3所示。 3.提高功率因数的目的 为了减少电能浪费,提高电路的传输效率和电源的利用率,须提高电源的功率因数。提高感性负载功率因数的方法之一,就是在感性负载两端并联适当的补 偿电容,以供给感性负载所需的部分无功功率。并联电容器后,电路两端的电压? U 与总电流(C L I I I ? ? ? +=)的相位差为θ',相应的向量图如图4-7-3所示。由图可见,补偿后的cos θ'>cosθ,即功率因数得到了提高。 ? U ─电源电压 ─日光灯支路电流 L I ?─补偿后电路总电流 ? I C I ?─电容支路电流 θ─补偿前电路的电压与电流间相位角 θ'─补偿后电路的电压与电流间相位角 图4-7-2 日光灯电路图 ? U ~ ? U I ? 图4-7-3 提高电路功率因数的相量图

单相电路参数测量和功率因数的提高

单相电路参数测量及功率因数的提高 一实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。 3.研究日光灯电路中电压、电流相量之间的关系。 4.理解改善电路功率因数的意义并掌握其应用方法。 二实验原理 1.日光灯电路的组成 日光灯电路是一个RL串联电路,由灯管、镇流器、起辉器组成,如图3-1所示。由于有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。 I 图3-1日光灯的组成电路 灯管:内壁涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。 镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻R L和一个电感L串联组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双金属片制成的U形动触片。动触片由两种热膨胀系数不同的金属制成,受热后,双金属片伸张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此

时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气电离产生弧光放电,并发射紫外线到灯管内壁,激发荧光粉发光,日光灯就点亮了。 灯管点亮后,电路中的电流在镇流器上产生较大的电压降(有一半以上电压),灯管两端(也就是起辉器两端)的电压锐减,这个电压不足以引起起辉器氖管的辉光放电,因此它的两个触片保持断开状态。即日光灯点亮正常工作后,起辉器不起作用。 3.日光灯的功率因数 日光灯点亮后的等效电路如图2 所示。灯管相当于电阻负载R A ,镇流器用内阻R L 和电感L 等效代之。由于镇流器本身电感较大,故整个电路功率因数很低,整个电路所消耗的功率P 包括日光灯管消耗功率P A 和镇流器消耗的功率P L 。只要测出电路的功率P 、电流I 、总电压U 以及灯管电压U R ,就能算出灯管消耗的功率P A =I ×U R , 镇流器消耗的功率P L =P ?P A ,UI P =?cos R A 图3-2日光灯工作时的等效电路 2.功率因数的提高 日光灯电路的功率因数较低,一般在0.5 以下,为了提高电路的功率因数,可以采用与电感性负载并联电容器的方法。此时总电流I 是日光灯电流 I L 和电容器电流 I C 的相量和:? ? ? +=C L I I I ,日光灯电路并联电容器后的相量图如图3 所示。由于电容支路的电流I C 超前于电压U 90°角。抵消了一部分日光灯支路电流中的无功分量,使电路的总电流I 减小,从而提高了电路的功率因数。电压与电流的相位差角由原来的 1?减小为?,故cos ?>cos 1?。 当电容量增加到一定值时,电容电流C I 等于日光灯电流中的无功分量,?= 0。cos ?=1,此时总电流下降到最小值,整个电路呈电阻性。若继续增加电容量,

日光灯电路与功率因数的提高

实验 日光灯电路与功率因数的提高 4.7.1实验目的 1.熟悉日光灯的接线方法。 2.掌握在感性负载上并联电容器以提高电路功率因数的原理。 4.7.2实验任务 4.7.2.1基本实验 1.完成因无补偿电容和不同的补偿电容时电路中相关支路的电压、电流以及电路的功率、功率因数的测量和电路的总功率因数曲线cosθ′=f (C )的测量。并测出将电路的总功率因数提高到最大值时所需补偿电容器的电容值。(日光灯灯管额定电压为220V ,额定功率30W 。) 2.完成图4-7-1所示点亮日光灯时 所需电压U 点亮和日光灯熄灭时电压U 熄灭 的测量。 3.定量画出电路的相量图。完成镇流器的等效参数R L 、L 的计算。 4.7.2.2扩展实验 保持U =220V 不变,当电路并联最佳电容器后使得总功率因数达到最大时,在电容器组两端并入20W 灯泡,通过并入灯泡的个数,使得总电流I 与无并联电容时的I 值大致相同,记录此时I 、I C 、I L 、P 以及流入灯泡的电流值。 4.7.3实验设备 1.三相自耦调压器 一套 2. 灯管 一套 3.镇流器 一只 4. 起辉器 一只 5. 单相智能型数字功率表 一只 6. 电容器组/500V 一套 7. 电流插座 三付 8. 粗导线电流插头 一付 9. 交流电压表(0~500V) 或数字万用表 一只 10.交流电流表(0~5A) 一只 11.粗导线 若干 图4-7-1

4.7.4 实验原理 1.日光灯电路组成 日光灯电路主要有灯管、启辉器和镇流器组成。联接关系如图4-7-2所示。 2.日光灯工作原理 接通电源后,启辉器内固定电极、可动电极间的氖气发生辉光放电,使可动电极的双金 属片因受热膨胀而与固定电极接触,内壁涂有 荧光粉的真空灯管里的灯丝预热并发射电子。启辉器接通后辉光放电停止,双金属片冷缩与固定电极断开,此时镇流器将感应出瞬时高电压加于灯管两端,使灯管内的惰性气体电离而引起弧光放电,产生大量紫外线,灯管内壁的荧光粉吸收紫外线后,辐射出可见光,发光后日光灯两端电压急剧下降,下降到一定值,如40W 日光灯下降到110V 左右开始稳定工作。启辉器因在110V 电压下无法接通工作而断开。启辉器在电路启动过程中相当于一个点动开关。 当日光灯正常工作后,可看成由日光灯管和镇流器串联的电路,电源电压按比例分配。镇流器对灯管起分压和限流作用。灯管相当于一个电阻元件,而镇流器是一个具有铁心的电感线圈,但它不是纯电感,我们可把它看成一个R L 、L 串联的感性负载,电流为L I ? 。设日光灯电路两端电压? U 的相位超前于日光灯电路电流L I ? 相位θ角,则日光灯电路的功率因数为cosθ。如图4-7-3所示。 3.提高功率因数的目的 为了减少电能浪费,提高电路的传输效率和电源的利用率,须提高电源的功率因数。提高感性负载功率因数的方法之一,就是在感性负载两端并联适当的补 偿电容,以供给感性负载所需的部分无功功率。并联电容器后,电路两端的电压? U 与总电流(C L I I I ? ? ? +=)的相位差为θ',相应的向量图如图4-7-3所示。由图可见,补偿后的cos θ'>cosθ,即功率因数得到了提高。 ? U ─电源电压 ─日光灯支路电流 L I ?─补偿后电路总电流 ? I C I ?─电容支路电流 θ─补偿前电路的电压与电流间相位角 θ'─补偿后电路的电压与电流间相位角 图4-7-2 日光灯电路图 ? U ~ ? U I ? 图4-7-3 提高电路功率因数的相量图

相关文档