文档库 最新最全的文档下载
当前位置:文档库 › GF管路系统在高压直流输电换流阀纯水冷却系统中的应用

GF管路系统在高压直流输电换流阀纯水冷却系统中的应用

GF管路系统在高压直流输电换流阀纯水冷却系统中的应用
GF管路系统在高压直流输电换流阀纯水冷却系统中的应用

GF管路系统在高压直流输电换流阀用纯水冷却系统中的应用

一、高压直流输电发展概述

高压直流输电是将三相交流电通过换流站转换为直流电,然后通过高压直流输电线路送往另一个换流站,重新还原为三相交流电的输电方式,是目前最先进的高效、经济、环保的大容量、长距离、低损耗输电技术。作为远距离电力传输的理想技术,高压直流输电技术可以将偏远地区的电能顺利输送到用电负荷的中心区域,目前在国内得到了广泛应用,主要用于远距离大功率输电、海底电缆送电及不同或相同额定频率交流系统之间的非同步联络等方面。

换流站是高压直流输电系统中实现交直流电力变换的电力工程主要设施之一,换流站的设备需求投资占据整个直流输电工程投资规模的半数以上,而换流阀作为换流站的核心设备,其投资需求占据总投资的10%左右,可见,换流阀在直流输电工程中具有极其重要的作用。基于换流阀内可控硅元件及其辅助设备的特性,其对冷却系统的要求十分苛刻,冷却效果的好坏将直接影响其换流性能的发挥,从而进一步影响到整个直流工程运行的经济性和可靠性。从比热容的角度看,水的比热容是常见物质中最高的,为4.2 KJ/(Kg.℃),是煤油(2.1 KJ/(Kg.℃))的两倍,它的换热系数是空气自然对流冷却的150-300倍,可大大提高被冷却器件的通流容量,相比油冷却方式,水的比热较油几乎大一倍,无论是从冷却效果和环境影响方面看,水冷却都具有明显的优势,散热效率最高。同时,水作为热转移媒质还有无污染、可循环利用和能耗低的优点,特别是密闭式循环冷却设备还可以通过“水-风”或“水-水”换能的方式将热量高效地与外界交换,而不需借助在室内安装大功率空调来吸收热量,所以水冷也是最节能的冷却方式。然而,水中的杂质离子会在高压下产生电腐蚀和漏电,所以对冷却水的要求很高,比如水的杂质含量、氧气含量、电导率(<0.5μs/cm)、水温、水压和流速等都要严格控制,以保证冷却水的纯度,同时还可以在循环系统中加装离子交换树脂,对冷却水进行进一步的纯化处理。

目前,在IEC(国际电工委员会)和IEEE(美国电气和电子工程师协会)的一系列关于换流阀体的性能和试验方法的标准中均将密闭式循环纯水冷却设备作为首选的冷却方法,而在高压直流输电( HVDC)和可控串补( TCSC)中更将其列为唯一可行的冷却方式。因此,配备安全可靠的密闭式循环纯水冷却系统,对冷却水温度、流量、水质等指标精确调控,实现系统的控制与保护及通讯功能,使高压直流输电系统中的核心部件—换流阀正常工作,是高压直流输电回路稳定运行的基础。

二、高压直流输电设备的国产化发展趋势

根据智能电网发展建设规划,在“十二五”期间,我国的智能电网将全面进入建设高峰期。国内电网建设的持续快速发展推动了高压直流输电工程建设步伐的加快,为高压直流输电技术的快速发展和建设规模的稳步推进提供了动力源泉,而纯水冷却设备作为直流输电工程中换流阀的关键冷却设备也将迎来极大的发展机遇。

近年来,经过多年的超常规、跨越式发展,国内直流输电工程成套设备设计制造技术实现了由技术引进向自主创新的战略转型发展。

通过国外先进直流技术的引进、消化、吸收和再创新过程,国内直流输电工程设备的国产化率已经提高到70%以上了,主要设备基本都是国内厂商供货,换流阀纯水冷却设备也逐步

实现了全面国产化。而在21世纪以前,我国的直流输电系统用纯水冷却设备基本都是从国外进口(如ABB和西门子等),随着国内行业技术的发展,直流输电工程换流阀用纯水冷设备也逐步实现了国产化,并逐步取代了进口产品的市场。

在国内直流输电设备的国产化发展趋势推动下,国内具有自主知识产权的换流阀纯水冷却设备在直流输电工程的应用将会越来越广泛,并逐步在国内输配电领域用纯水冷却设备市场中占据主导地位,全面引领国内直流输电换流阀纯水冷却设备的市场导向。

目前国内活跃在该领域的公司主要有:中国电科院(中电普瑞电力工程有限公司)、河南许继柔性输电有限公司、北京博电电力有限公司、南方电网技术研究中心、西安西电工程有限公司、南京国电南自新能源工程技术有限公司、南京南瑞继保工程技术有限公司、广州高澜节能技术有限公司等。

三、国内高压直流输电换流阀用纯水冷却设备市场规模及容量预测

在高压直流输电工程中,每一条直流输电线路两端都需要建立一个换流站进行交直流电能转换,而每个换流站中都需要配置必备的一套换流阀设备。由于每条输电线路的输电电压不尽相同,导致换流阀设备的散热要求也不一样,因此根据不同的输电电压配套同样的纯水冷却设备的数量也是不一样的。

一般情况下,根据直流输电电压的高低,每项高压直流输电工程需要配套2-8套不等的纯水冷却设备。在常规高压情况下或直流联网工程中,每个换流站中的换流阀设备配置2套纯水冷却设备就能够满足去散热需求,而在超高压条件下,则一般需要配置4套纯水冷却设备,在超高压条件下,则需要配置8套纯水冷却设备才能满足去换流阀设备的散热需求。因此,根据近年来我国高压直流输电工程线路的建设投运情况可以看出,在“十一五”期间,国内高压直流输电换流阀用纯水冷却设备的市场规模达到8.73亿元,期间年均增长速度达到了14.08%。根据国家电网公司和南方电网公司在建的高压直流输电工程及部分建设规划,预计在“十二五”期间,国内高压直流输电换流阀用纯水冷却设备的市场规模将保持15%左右的年均增长速度稳步增长,到2015年达到4.53亿元,预计“十二五”期间的市场总容量将达到17.47亿元,如下图:

四、GF管路系统在高压直流输电换流阀用纯水冷却系统的应用

将近三十年以来,聚偏二氟乙烯(PVDF)管路系统已被确认为去离子水和超纯水的运输的首选材料。其用途以微电子产业为主, 在没有抗氧化剂,填充剂, 紫外线稳定剂和处理助手的情况下, 是超纯液体运输的理想选择。在新的应用增长领域, PVDF再次被呼吁以满足高纯度的要求, 并帮助世界上不断增长的电力需求。特别是在中国, 电力站到工业的大型网站和城市都是长距离的传输。

所产生的电力, 必须转换为高压直流电(HVDC)在传输过程中从源头到使用区, 然后最后再转化成交流电。在这个转换过程中晶闸管的冷却水是由去离子水完成。该输水管路系统必须提供过去的钢铁管路系统和其他聚合物的无法提供的特性, 即要求保持冷却水的纯净、非导电性、承受80摄氏度的热量、具有良好的机械特性、能够被定制成特定的形状、具有安全、可靠和易于安装技术的特点。

目前, GF已经与中国电科院(中电普瑞电力工程有限公司)、河南许继柔性输电有限公司、广州高澜节能技术有限公司有一定的合作。正在与西安西电工程有限公司、南京国电南自新能源工程技术有限公司接洽合作意向。因此,随着换流站的建设步伐进入历史发展快通道,未来五年,GF管路系统在高压直流输电换流阀纯水冷却系统中将具备良好的市场发展前景。

三峡-常州直流输电工程政平换流站晶闸管换流阀

河南许继电气换流阀PVDF冷却管路系统

闭式循环水冷却系统的应用

产品应用 应用一:空压站闭式循环水冷却系统 空压站闭式循环水冷却系统主要服务于水冷空压机、冷冻式压缩空气干燥机等设备的冷却。闭式冷却系统主要包括闭式冷却塔、循环水泵组、稳压排气装置、防冻装置、自动调节控制可视系统。 应用二:制冷站闭式循环水冷却系统 制冷站闭式循环水冷却系统主要服务于水冷制冷机组、机房空间、设备运行车间等空间的冷却。闭式冷却系统主要包括闭式冷却塔、循环水泵组、稳压蓄冷水箱、防冻装置、自动调节控制可视系统。

应用三:中频电炉炉体和电源闭式循环水冷却系统 中频电炉在日常工作中,炉体和电源需要循环水来冷却,带走多余的热量。 应用四:液压站液压油的闭式循环水冷却系统 液压站液压油在工作中会产生大量的热量,需要将此热量带走,来稳定液压油的温度,保证液压油的性能。闭式冷却系统主要包括闭式冷却塔、循环水泵组、稳压排气装置、膨胀水箱、板式换热器(管壳式换热器)防冻装置、自动调节控制可视系统。

应用五:大功率变频器及机房闭式循环水冷却系统 由于大功率变频器(或机房其他设备)在运行中有2%-4%左右的损耗,这些损耗都变成热量,如果不及时将热量导出变频室,将危害变频器的正常运行。闭式冷却系统主要包括闭式冷却塔、循环水泵组、稳压排气装置、空气处理机、防冻装置、自动调节控制可视系统。 采用风道将变频器内热风直接引入空气处理机组降温过滤处理后,送出35~40℃ 冷却风循环进入变频器内;同时热风通过空气处理机组内的铜管翅片式表冷器把热量间接换热传递给循环水,空气处理机组出来的热水进入闭式冷却塔蒸发冷却散热后回到空气处理机组。 由于闭式循环冷却系统的循环冷却水在密闭的管路内循环,不受外界环境的影响,有效的保护了循环水水质,避免了换热器结垢,堵塞,清洗的麻烦,大大提高了换热效率,具备清洁、节能、低水耗的优点,同时也广泛应用于焊接系统、涂装系统、连铸结晶、注塑机、真空泵、单晶炉、多晶炉等系统及设备的冷却。

柔性直流输电系统换流器技术规范()

ICS 中国南方电网有限责任公司企业标准 Q/CSG XXXXX—2015 柔性直流输电换流器技术规范 Technical specification of converters for high-voltage direct current (HVDC) transmission using voltage sourced converters (VSC) (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施 中国南方电网有限责任公司发布

目次 前言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 3.1 额定直流电流 rated direct current (1) 3.2最大直流电流maximum direct current (2) 3.3 短时过载(过负荷)直流电流short time overload direct current (2) 3.4 额定直流电压rated direct voltage (2) 3.5 额定直流功率rated direct power (2) 4 文字符号和缩略语 (2) 4.1 文字符号 (2) 4.2 缩略语 (2) 5 使用条件 (2) 5.1 一般使用条件的规定 (3) 5.2 特殊使用条件的规定 (3) 6 技术参数和性能要求 (3) 6.1 总则 (3) 6.2 换流器电气结构 (4) 6.3 阀设计 (5) 6.4 机械性能 (6) 6.5 电气性能 (7) 6.6 冗余度 (7) 6.7 阀损耗的确定 (8) 6.8 阀冷却系统 (8) 6.9 防火防爆设计 (8) 6.10 阀控制保护设计 (8) 7 试验 (9) 7.1 试验总则 (9) 7.2 型式试验 (9) 7.3 例行试验 (11) 7.4 长期老化试验 (11) 7.5 现场试验 (12) 8 其它要求 (12) 8.1 质量及使用寿命 (12) 8.2 尺寸和重量 (12) 8.3 铭牌 (12) 8.4 包装和运输 (12)

冷冻水循环系统

●冷冻水循环系统 该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。 冷却水循环部分 该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水) 主机 主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下: 首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。 中央空调原理简介:中央空调原理包括:一、中央空调制冷原理:有压缩式、吸收式等,这里不再细述;二、中央空调系统原理:有风系统工作原理、水系统工作原理、盘管系统工作原理等,简单介绍如下:1、中央空调原理的新风系统工作:室外的新鲜空气受到风处理机的吸引进入风柜,并经过过滤降温除湿后由风道送入每个房间,这时的新风不能满足室内的热湿负荷,仅能满足室内所需的新风量,随着室内风机盘管处理室内空气热湿负荷的同时,多余出来的空气通过回风机按阀门的开启比例一部分排出室外,一部分返回到进风口处以便再次循

柔性直流换流阀在线监测技术研究

柔性直流换流阀在线监测技术研究 发表时间:2018-08-17T10:05:46.513Z 来源:《电力设备》2018年第14期作者:卓智伟[导读] 摘要:柔性直流输电是继交流输电、常规直流输电之后的新一代输电技术。换流阀是柔性直流换流站中的核心设备。换流阀设备一旦出现故障,不仅会导致直流输电的停运,甚至引发重大的安全事故。本文针对厦门柔性直流换流站的换流阀讨论了针对子模块的在线监测技术。 (福建省电力有限公司检修分公司福建厦门 361000)摘要:柔性直流输电是继交流输电、常规直流输电之后的新一代输电技术。换流阀是柔性直流换流站中的核心设备。换流阀设备一旦出现故障,不仅会导致直流输电的停运,甚至引发重大的安全事故。本文针对厦门柔性直流换流站的换流阀讨论了针对子模块的在线监测技术。 引言 柔性直流输电是继交流输电、常规直流输电之后的新一代输电技术,在控制传输电能的同时可独立调节无功功率。柔性直流输电不存在换相失败问题,无需配置滤波及无功补偿设备,易于构建多端直流网络,具备黑启动能力。可以解决目前交直流输电面临的诸多技术瓶颈,可以改善风电接入性能,大大提高低电压穿越能力和系统稳定性,是远距离海上风电并网的唯一技术手段。该技术的出现,为新能源发电并网、大型城市中心负荷供电、孤岛供电、多端直流联网提供了一个崭新的解决方案,是构建智能电网的重要技术手段。换流阀是柔性直流换流站中的核心设备。换流阀设备一旦出现故障,不仅会导致直流输电的停运,甚至引发重大的安全事故。引发换流阀设备出现故障有很多原因,在线监测技术能够及时发现并排除设备的安全隐患。因此,开展柔性直流输电换流阀在线监测技术研究,能够大大提高换流阀运行的安全可靠性,降低各种安全事故的风险。电力电子器件的结温严重影响着其工作可靠性,结温过高与结温波动过大都会对电力电子器件的性能造成影响,因此,获取电力电子器件的结温对其优化设计、可靠性分析、寿命预测等具有重要作用。对于金属化薄膜电容器,随着电容器的老化,容值会逐渐的衰减,造成子模块电压波动变大,甚至影响系统稳定运行。因此必须对电容进行容值的监测。 1、IGBT结温监测技术 1.1光纤测温原理 光纤光栅是利用掺有锗离子的光纤纤芯材料的光敏性,通过紫外激光将入射光的相干光场曝光到光纤的纤芯之中,使原本沿光纤纤芯轴向均匀分布的折射率发生永久性的周期性变化,此形成的一种光学结构被称为光纤光栅。光纤光栅具有高的反射特性、选频特性和色散特性,波长移动响应快,线性输出动态范围宽,能够实现被测参量的绝对测量,不受发光强度影响,对于背景光干扰不敏感、小巧紧凑、易于埋入材料内部,并能直接与光纤系统耦合。光纤光栅的反射波长与光栅周期及纤芯有效折射率有关,由于光纤Bragg 光栅(FBG)对外界环境敏感,当光纤光栅外部环境温度发生变化时,会产生热光效应和热膨胀效应,分别影响光纤光栅纤芯的有效折射率和栅格常数,导致FBG 的反射波长发生偏移,通过对反射波长偏移量的测定,可以间接测量外界物理量的变化。因此,基于光纤光栅的传感过程是通过外界参量对光纤光栅反射波长的调制来获得传感信息。下图是光纤光栅的工作原理图。 因此IGBT结温可使用光纤测温法测出。 1.2 IGBT 参数法测温原理 IGBT本质上是一个由MOSFET驱动的BJT管,因此结构与MOSFET十分相似,差别仅在于它是P+衬底,而MOSFET是N+衬底。 IGBT的饱和压降为在门极电压驱动下IGBT工作于饱和区时,IGBT集电极(C)与发射极(E)之间的电压。由IGBT的内部结构可知,IGBT的正向饱和压降由两部分组成,即二极管压降和MOS沟道压降。二极管的压降呈现负温度系数的电阻特性,而MOS沟道电阻随温度的升高而增大,因此沟道压降随温度的升高而升高。这使得IGBT的正向压降在不同的正向电流下呈现不同的温度特性。当电流较小时,沟道压降影响较小,IGBT的正向伏安特性与二极管相似,具有负温度系数,而当电流较大时,沟道压降起主要作用,IGBT的正向压降具有正温度系数。 实验测量结果证实在热稳态和热瞬态过程中,IGBT的正向饱和压降与温度的关系只与芯片内部结构和集电极电流有关,与封装结构等无关。故IGBT结温也可由测量IGBT运行过程中的电压及电流参数推算得出。 2、电容监测原理 由于子模块电容容值C 满足式2.1:

水冷却系统维护使用手册

1.5MW风力发电机组齿轮箱水冷却系统 使用维护说明书 贺德克液压技术(上海)有限公司

1.使用范围 本系统用于明阳1.5MW风力发电机组齿轮箱水冷却系统。 2.设计、制造标准 本系统针对明阳1.5MW风机齿轮箱冷却系统设计,按HYDAC公司相关标准制造。 3.工作环境条件 水冷却装置安装于有保护的机舱内部。 安装地点:高空塔架上 工作环境温度: -30℃—40℃ 生存环境温度: -40℃—50℃ 空气相对湿度: 最大95% 4.系统参数 齿轮箱发热量: ≤41KW 冷却系统介质预充压力: 2 bar(20°C时) 冷却系统介质工作压力:≤3 bar 冷却系统介质工作流量: 100 l/min , 16米扬程时 冷却介质工作温度范围: -15 °C <T< +70 °C 冷却系统工作介质: 40%乙二醇,60%水

推荐工作介质: 每2年更换一次冷却介质,或按照介质制造商的说明。 5.功能说明 水冷却系统由水泵装置、水/风冷却器、压力罐、压力继电器、铜热电阻等组成。水泵工作后,冷却水经齿轮箱润滑油系统中的板式热交换器、水/风冷却器组成冷却水循环回路。当冷却水温度达到一定值时,例如45℃时,水/风冷却器电机启动;当水温降到一定值时,例如40℃时水/风冷却器电机停止。 水泵出口设有压力继电器,当冷却水压力低于0.6bar时,压力继电器发出低压报警信号. 水泵出口设有铜热电阻(PT100),用于检测冷却水的温度并控制水/风冷却器的电机工作或停止. 6.设备组成 6.1水泵装置(见附图) ●水泵工作流量: 100 l/min , 16米扬程时 ●水泵电机: AC 400V-50HZ-3相 1.1KW 2980rpm

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

冷却系统的组成

水冷却系统一般由散热器、节温器、水泵、水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器又分为横流式和垂直流动两种,空调冷凝器通常与其装在一起。 此主题相关图片如下: 按此查看图片详细信息 正在读取此图片的详细信息,请稍候... 水泵和节温器 发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,推动冷却液在整个系统内循环。目前最先进的水泵是宝马新一代直六发动机上采用的电动水泵,它能精确的控制水泵的转速,并有效的减少了对输出功率的损耗。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。可以将节温器看作一个阀门,其原理是利用可随温度伸缩的材料(石蜡或乙醚之类的材料)做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。

此主题相关图片如下: 空气的流动 为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。以前的轿车散热器风扇是由曲轴皮带直接带动的,发动机启动它就要转,不能视发动机温度变化而变化,为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风力进入。现在已经普遍使用风扇电磁离合器或者电子风扇,当水温比较低时离合器与转轴分离,风扇不动,当水温比较高时由温度传感器接通电源,使离合器与转轴接合,风扇转动。同样,电子风扇由电动机直接带动,由温度传感器控制电动机运转。这两种形式的散热器电扇运转实际上都由温度传感器控制。 散热器 散热器兼作储水及散热作用,再此之上还装有膨胀水箱。因为单纯依赖散热器有几个缺点,一是水泵吸水一侧因压力低而容易沸腾,水泵的叶轮容易穴蚀;二是气水分离会产生气阻;三是温度高冷却液容易沸腾。因此设计师就加装了膨胀水箱,它的上下两根水管分别与散热器上部和水泵进水口联接,防止上述问题的产生。 冷却介质 虽然我们称其为水冷但冷却介质并不是单纯的水,而是由水、防冻液和各种专门用途的防腐剂组成的混合物,也称为冷却液。这些冷却液中的防冻液含量占30%~50%,提高了液体的凝固点,防止在低温下结冰而损坏发动机。整个冷却系统并不与大气相通,相当于高压锅的作用,水箱盖则相当于高压阀,一般情况下,轿车冷却液的允许工作温度可达摄氏120度,提高传热能力。

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

基于MCGS中央空调冷却水循环系统(超详细)

目录 摘要 (2) 前言 (2) 1.设计准备 (3) 1.1设计内容与要求 (3) 1.2设计思路 (4) 1.3 具体设计及实现功能 (4) 2.系统报警记录与参数设置 (4) 2.1 报警定义设置 (4) 2.1.1 冷却塔储水容量的报警定义设置 (4) 2.1.2 冷却塔出水温度报警定义的设置 (5) 2.2报警显示的设置 (6) 2.3报警数据的设置 (7) 2.4报警参数设置 (9) 3.历史数据报表和历史曲线的设置 (10) 3.1历史数据报表的设置 (10) 3.2 历史曲线的设置 (11) 4.运行与调试 (14) 4.1 系统运行 (14) 4.2 系统调试 (14) 4.2.1调试中出现的问题 (14) 4.2.2 解决方案 (14) 5.设计总结 (15) 参考文献 (16) 答谢 (17) 附录 (18)

基于MCGS中央空调冷却水循环系统演示 摘要冷却水循环系统是中央空调系统中的重要组成部件,它直接影响到中央空调供冷、供热功能的实现效果,所以对它准确的测试与处理要求很高。 本设计研究了基于MCGS组态环境在中央空调冷却水循环系统中得应用。利用组态软件MCGS设计了冷却水循环系统监控界面,提供了直观、清晰、准确的冷却水循环系统的运行状态,进而为控制运行、维修和故障诊断提供了多方面的可能性,充分提高了系统的工作效率。 关键词中央空调、冷却水循环、MCGS Abstract The cooling water circulation system is a key component in the central air conditioning system, it directly affects the central air-conditioning cooling and heating function to achieve the effect, so it is accurate testing and demanding. This design study Based on MCGS environment have central air-conditioning cooling water circulation system applications. Configuration software MCGS design of the cooling water circulation system monitoring interface provides an intuitive, clear, accurate operational status of the cooling water circulation system, and thus provide a wide range of possibilities for the control of the operation, maintenance and troubleshooting to fully enhance the system efficiency. Key words central air conditioning, cooling water circulation, MCGS 前言

柔性直流输电技术

柔性直流输电 一、柔性直流输电技术 1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 二、常规直流输电技术和柔性直流输电技术的对比 1. 换流器阀所用器件的对比。 1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,

冷冻水循环系统

● 冷冻水循环系统 该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。 ● 冷却水循环部分 该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。 ● 主机 主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下: 首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新

进入了压缩机,如此循环往复。 中央空调原理简介:中央空调原理包括: 一、中央空调制冷原理:有压缩式、吸收 式等,这里不再细述;二、中央空调系统 原理:有风系统工作原理、水系统工作原 理、盘管系统工作原理等,简单介绍如下: 1、中央空调原理的新风系统工作:室外 的新鲜空气受到风处理机的吸引进入风 柜,并经过过滤降温除湿后由风道送入每 个房间,这时的新风不能满足室内的热湿 负荷,仅能满足室内所需的新风量,随着 室内风机盘管处理室内空气热湿负荷的 同时,多余出来的空气通过回风机按阀门 的开启比例一部分排出室外,一部分返回 到进风口处以便再次循环利用。如图:2、 中央空调原理的盘管系统工作:室内的 风机盘管工作时吸入一部分由风柜处理 后的新风,再吸入一部分室内未处理的空 气经过工艺处理后,由风口送出能够吸收 室内余热余湿的冷空气,使室内温度湿度 达到所需要的标准,如此循环工作。如图: 3、中央空调原理的风管积尘原因:室外 空气经中央空调处理时,由于大多数粗精 效过滤网仅能过滤3um以上的悬浮颗粒 物,其微细颗粒物则随风直接进入风管, 而风管内表面实际粗糙度远远高于微细 颗粒物的大小,因此,这些微细的颗粒物 随着空气与风管内壁相互碰撞摩擦产生 静电吸附越积越多,从而导致风管内壁的 粗糙度越来越大,灰尘粘附加速进行,如 此长年累月形成较厚积尘。 顶 21

冷却水、冷冻水系统

一、前言 作为建筑内部重点耗能设备,中央空调系统的耗电一般要占整座建筑电耗的40%以上。而中央空调机组是以满足使用场所的最大冷热量来进行设计的,而在实际应用中绝大多数用户在使用时,冷热负荷是变化的,一般与最大设计供冷热量存在着很大的差异,系统各部分90%以上运行在非满载额定状态。传统的中央空调水、风系统均采用调节阀门或风门开度的方式来调节水量和风量,这种调节方式的缺点不仅是消耗大量能量,而且调节品质难以达到理想状态而导致空调的舒适度不良。 利用变频器通过对中央空调的末端空调风机箱、冷冻水/冷却水水泵、冷却塔风机、甚至主机驱动电机转速等进行控制调节,从而使空调各子系统风量、水流量等负荷工况参数按负荷情况得到适时调节,不但能改善系统的调节品质,达到阀门、风门节/回流调节、变极调速等落后调节方式所不能相比的调节性能,改善空调的舒适性;还能节省大量电能。 二、中央空调系统的构成及工作原理 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻水泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送冷风达到降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量,与冷却循环水进行热交换,由冷却

水泵将带有热量的冷却水送到散热水塔上由水塔风扇对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去,如下图所示: 冷冻水循环系统:由冷冻泵及冷冻水管道组成。从冷冻主机流出的冷冻水由冷冻泵加压送入冷冻水管道,通过各房间的盘管,带走房间内的热量,使房间内的温度下降。同时,房间内的热量被冷冻水吸收,使冷冻水的温度升高。温度升高了的循环水经冷冻主机后又成为冷冻水,如此循环不已。从冷冻主机流出,进入房间的冷冻水简称为“出水”,流经所有房间后回到冷冻主机的冷冻水简称为“回水”。无疑回水的温度将高于出水的温度形成温差。

冷却循环水系统施工组织设计方案

、冷却循环水系统施工方案 1.施工程序 施工准备一一图纸会审一一施工作业指导书报审一一技术交底一一现场预制一一现场安装质量检查一一水压试验一一管道保温一一管道吹扫及冲洗一一管道交工验收 2.管材、管件的验收 2.1检验程序 检查产品质量证明书一一检查出厂标志一一外观检查一一核对规格、材质一—材质复检无损检验及试验标识入库保管 2.2检验要求:所有材料必须具有制造厂的质量证明书,其质量要求不得低 于现行标准的规定。钢管、管件、阀门在使用前应进行外观检查,不合格者不得使用。钢管表面不得有裂缝、折迭、皱折、离层、发纹及结疤等缺陷;钢管无超过壁厚负偏差的锈蚀、麻点、凹坑及机械损伤等缺陷。除非极个别情况,禁止利用旧管道和管件,否则必须按有关标准的规定进行全面检验合格,并经过设计许 可。法兰密封面应光洁,不得有径向沟槽,且不得有气孔、裂纹、毛刺或其他降低强度和连接可靠性方面的缺陷。法兰端面上连接的螺栓的支承部位应与法兰结合面平行,以保证法兰连接时端面受力均匀。螺栓及螺母的螺纹应完整、无伤痕、毛刺等缺陷,螺栓与螺母应配合良好,无松动或卡涩现象 3.阀门试压

3.1该阀门试验应从每批中抽查5 %,且不少于1个,进行壳体压力试验和密封试验,当不合格时,应加倍抽查,仍不合格时,该批阀门不得使用;阀门的壳体试验压力不得小于公称压力的1.5倍,试验时间不得少于5min,以壳体填料无渗漏为合格;密封试验宜以公称压力进行,以阀瓣密封面不漏为合格。 3.2试验合格的阀门,及时排除积水,并吹干。关闭阀门,做好明显标记,并填写《阀门试验记录》。 3.3阀门壳体压力试验和密圭寸试验应用洁净水进行。 3.4密封试验不合格的阀门,必须解体检查,重做试验。 4.管道预制 4.1切割要求:管道切割后应移植原有标记。切口表面应平整,无裂纹、重皮、毛刺、凸凹、缩口、熔渣、氧化物、铁屑等;切口端面倾斜偏差不应大于管子外径的1%且不得超过3mm。弯管用弯管机冷弯成形或热煨弯。 4.2管道加工:管道预制工作应按设计单位提供的管道施工蓝图实施。管道 预制应遵守下列程序和规定: 4.2.1管道组成件应按施工图、《管道安装材料表》规定的数量、规格、材质选配。 4.2.2为了保证工程质量和便于安装,应合理选定自由管段和封闭管段 423自由管段应按施工图标注的长度加工,封闭管段应留有适当的裕度, 按现场安装实测后的长度加工,以保证现场安装工作顺利进行。 4.2.4预制管段应具有足够的刚性,必要时,可进行加固,以保证在存放、运输过程中不

柔性直流输电

南京工程学院 远距离输电技术概论 班级:输电112 学号: 206110618 姓名:钱中华 2014年12月10日

目录 0.引言 (3) 1.研究与应用现状 (3) 2.原理 (4) 3.特点 (5) 4.关键技术 (6) 5.发展趋势 (7) 6.小结 (9)

柔性直流输电技术 0.引言 随着能源紧缺和环境污染等问题的日益严峻,国家将大力开发和利用可再生清洁能源,优化能源结构。然而,随着风能、太阳能等可再生能源利用规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点,使得采用交流输电技术或传统的直流输电技术联网显得很不经济。同时海上钻探平台、孤立小岛等无源负荷,目前采用昂贵的本地发电装置,既不经济,又污染环境。另外,城市用电负荷的快速增加,需要不断扩充电网的容量,但鉴于城市人口膨胀和城区合理规划,一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量的配电网转入地下。因此,迫切需要采用更加灵活、经济、环保的输电方式解决以上问题。 柔性直流输电技术即电压源换流器输电技术(VSC HVDC)采用可关断电力电子器件和PWM 技术,是一种新型直流输电技术,它能弥补传统直流输电的部分缺陷,其发展十分迅速。为了进一步推动柔性直流输电技术在我国的研究和应用,本文结合ABB 公司几个典型应用工程, 详细介绍了柔性直流输电的系统结构、基本工作原理和与传统直流输电相比的技术优势,并就我国的实际情况讨论了柔性直流输电在我国多个领域,尤其是风电场的应用前景。 1.研究与应用现状 自1954 年世界上第一个直流输电工程(瑞典本土至GotIand 岛的20MW、100kV 海底直流电缆输电)投入商业化运行至今,直流输电系统的换流元件经历了从汞弧阀到晶闸管阀的变革。然而由于晶闸管阀关断不可控,目前广泛应用的基于PCC的传统直流输电技术有以下固有缺陷:1只能工作在有源逆变状态,且受端系统必须有足够大的短路容量,否则容易发生换相失败;2换流器产生的谐波次数低、谐波干扰大;3换流器需吸收大量的无功功率,需要大量的滤波和无功补偿装置;4换流站占地面积大、投资大。因此,基于PCC的常规直流输电技术主要用于远距离大容量输电、海底电缆输电和交流电网的互联等领域。 其先研究主要发展有一下几项基本技术: 1.高压大容量电压源变流器技术 模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图 1 所示。桥臂中的每个子模块可以独立控制,每相上、下两个桥臂的电压和等于直流母线电压。交流电压通过控制每相中两个桥臂的子模块旁路比例来叠加实现,桥臂中的子模块越多,交流电压的谐波越小。与两电平变流器相比,由于不需要每一相上的所有器件在较高频率下同时动作,模块化多电平大大降低了器件的开关损耗。

柔性直流输电对比

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 (1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 (2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 (3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 (4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大), 不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

1. 换流器阀所用器件的对比。 (1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 (2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 (1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,可以输送大功率。 (2)柔性直流输电系统中的换流阀采用了IGBT器件,可实现很高的开关速度,在触发控制上采用PWM技术,开关频率相对较高,换流站的输出电压谐波量较小,主要包含高次谐波。故相对于常规直流输电,柔性直流输电换流站安装的滤波装置的容量大大减小。(3)常规直流输电通过换流变压器连接交流电网,而柔性直流输电是串联电抗器加变压器,常规直流输电以平波电抗器和直流滤波器来平稳电流,而柔性直流输电则采用直流电容器。 3. 换流站控制方式的对比。 (1)常规直流输电系统的换流站之间必须进行通信,以传递系统参数并进行适当的控制,而柔性直流输电系统中各换流站之间的通信不是必需的。

对冷却水系统设计问题的探讨

对冷却水系统设计问题的探讨 空调制冷的冷却水系统一般是开式系统,相对比较简单,因而,经常不被设计人员所重视。本文就冷却水系统的承压、水泵扬程的确定、多台冷却塔的并联、系统的启停顺序、节能控制等问题谈谈自己的观点,供大家参考。 关键词:冷却水承压扬程冷却塔并联变频控制 一、冷却塔的位置要考虑系统设备承压要求: 冷却水系统形式主要有两种:水泵前置式和水泵后置式。确定时要考虑水系统的承压能力。水系统的承压能力最大的地方是水泵出口,系统承压有以下三种情况:系统停止运行时,水泵出口压力为系统静水压力h=Z;系统瞬时启动,但动压尚未形成时,水泵出口压力为系统静水压力和水泵全压之和h=Z+HP;正常运行时,水泵出口压力为该点静水压力与水泵静压之和h=Z+HP-v2/2g。冷水机组冷凝器耐压,目前国产机组一般为981KPa。水泵壳体的耐压取决于轴封的形式,水泵吸入侧压力在981KPa以上时,要使用机械密封。 冷却塔如果设在高层建筑主楼屋面,产生的压力高于机组的承压能力时,冷却水泵宜设在冷水机组的冷凝器出口,以降低冷凝器工作压力。有人会提出疑问:水泵入口负压过大,会产生气蚀。事实上, 冷却塔与冷水机组之间的高差,远大于管路阻力和冷凝器阻力,并且水泵还有一个容许吸上真空高度。 笔者的同学曾经设计一个工程,机房在地下,裙房屋顶为人员活动空间,业主要求在120米高的屋面安装冷却塔,系统最大承压要超过1.2MPa与水泵全压之和。这就造成产生的静压太高,冷凝器不能承受,同时对水泵轴封和软接头提出了更高要求。 解决方法一:选用能承受高静压的设备和管道配件,这将大大增加工程造价。 解决方法二:设两个冷却水箱、两套冷却水泵。一个高温冷却水箱、一个低温冷却水箱,一套冷却水泵从低温水箱抽水进入冷凝器后进入高温水箱,另一套冷却水泵从高温水箱抽水送入冷却塔,然后回流到低温水箱。但要注意:冷却塔

冷却系统的循环

冷却系统的循环 汽车发动机的冷却系为强制循环水冷系,即利用水泵提高冷却液的压力,强制冷却液在发动机中循环流动。冷却系主要由水泵、散热器、冷却风扇、补偿水箱、节温器、发动机机体和气缸盖中的水套以及附属装置等组成。在冷却系统中,其实有两个散热循环:一个是冷却发动机的主循环,另一个是车内取暖循环。这两个循环都以发动机为中心,使用是同一冷却液。 一、冷却发动机的主循环 主循环中包括了两种工作循环,即“冷车循环”和“正常循环”。冷车着车后,发动机在渐渐升温,冷却液的温度还无法打开系统中的节温器,此时的冷却液只是经过水泵在发动机内进行“冷车循环”,目的是使发动机尽快地达到正常工作温度。随着发动机的温度,冷却液温度升到了节温器的开启温度(通常这温度在80℃后),冷却循环开始了“正常循环”。这时候的冷却液从发动机出来,经过车前端的散热器,散热后,再经水泵进入发动机。 二、车内取暖的循环 这是一个取暖循环,但对于发动机来说,它同样是一个发动机的冷却循环。冷却液经过车内的采暖装置,将冷却液的热量送入车内,然后回到发动机。有一点不同的是:取暖循环不受节温器的控制,只要打开暖气,这循环就开始进行,不管冷却液是冷的、还是热的。 冷却系统部件分析 在整个冷却系统中,冷却介质是冷却液,主要零部件有节温器、水泵、水泵皮带、散热器、散热风扇、水温感应器、蓄液罐、采暖装置(类似散热器)。 1)冷却液 冷却液又称防冻液,是由防冻添加剂及防止金属产生锈蚀的添加剂和水组成的液体。它需要具有防冻性,防蚀性,热传导性和不变质的性能。现在经常使用乙二醇为主要成分,加有防腐蚀添加及水的防冻液。 2)节温器 从介绍冷却循环时,可以看出节温器是决定走“冷车循环”,还是“正常循环”的。节温器在80℃后开启,95℃时开度最大。节温器不能关闭,会使循环从开始就进入“正常循环”,这样就造成发动机不能尽快达到或无法达到正常温度。节温器不能开启或开启不灵活,会使冷却液无法经过散热器循环,造成温度过高,或时高时正常。如果因节温器不能开启而引起过热时,散热器上下两水管的温度和压力会有所不同。 3)水泵 水泵的作用是对冷却液加压,保证其在冷却系中循环流动。水泵的故障通常为水封的损坏造成漏液,轴承毛病使转动不正常或出声。在出现发动机过热现象时,最先应该注意的是水泵皮带,检查皮带是否断裂或松动。 4)散热器

穿水冷却系统改造方案(中冶京城起草)

新兴铸管新疆有限责任公司 二厂棒材生产线穿水冷改造 预水冷、穿水冷区设备 技术规格书 北京京诚瑞信长材工程技术有限公司 2013年6月

附件1 设计依据 1.1 概述 新兴铸管新疆有限责任公司二厂棒材生产线2012年建成投产,设计年产量:60万吨/年,品种规格:Φ12~36mm螺纹钢筋,Φ16~50mm光面圆钢,坯料尺寸:160×160×12000mm,单根坯料重量:2335kg。车间±0.000布置,没有平台,目前主要生产Φ12~36mm螺纹钢筋。 原设计在12#轧机后预留预水冷的位置,12、13#轧机间距31.8m,预水冷设备预留。 原设计在18#轧机出口设有穿水冷设备,有三通道、两通道、单通道及旁通通道各一条,文氏管结构,水压6bar。由于水量及水压的缘故,投产后很少使用。 1.2 基本定义 买 方:新兴铸管新疆有限责任公司 卖 方:北京京诚瑞信长材工程技术有限公司 1.3轧制工艺参数 1.3.1产品规格及钢种 产品规格: 带肋钢筋Φ12~36 mm; 主要钢种: 普通热轧钢筋、细晶粒热轧钢筋和预应力混凝土热轧钢筋。 1.3.2水冷设备工艺参数 Φ12~16mm 采用三切分生产; Φ18mm、Φ20mm采用二切分法生产。 其余为单线生产 1.3.3工艺描述 具体的工艺描述为:将钢加热到1000~1100°C出炉,经过1H~12V粗轧中轧制12道次,终轧温度在950°C左右,通过预水冷和温度回复段,将轧件温度降到800~860°C左右进入精轧机组,经过2~6道次轧制变形,总变形量约为32~74%,终轧速度3.14~18.0m/s,850~880°C完成精轧后立即进入穿水冷却,快速冷却至相变区域600~700°C,控制奥氏体晶粒和铁素体晶粒长大,倍尺分段后轧件上冷床后继续完成相变过程。 为了充分发挥细晶粒轧制工艺的特点,可结合现有的速比和孔型系统的特点,将Φ25、Φ28、Φ32等成品规格的轧制空过放在精轧机组前几道次,一方面延长了预水冷的回复段,获得更好的截面温度梯度,另一方面轧制后在最短的时间内就进入穿水冷,防止晶粒的快速长大。 按照该生产工艺,可以采用HRB335的成分稳定生产HRB400(E),采用HRB400的成分稳定生产HRB500(E)。

相关文档