文档库 最新最全的文档下载
当前位置:文档库 › 无需在试样上预制裂纹的材料常规断裂韧性测试法

无需在试样上预制裂纹的材料常规断裂韧性测试法

无需在试样上预制裂纹的材料常规断裂韧性测试法
无需在试样上预制裂纹的材料常规断裂韧性测试法

无需在试样上预制裂纹的材料常规断裂韧性测试法

(已授权专利)

技术说明书

吴力航

一. 发明的基本目的

一个受力构件是否会发生脆性断裂主要取决于该构件材料的力学本性以及构件的几何尺度这两个基本方面的综合效果。或者说,判断材料是脆性还是非脆性的,仅仅从所谓的材料本性上认定还是不够的,还必须考虑构件的几何尺度。当构件的几何尺度大到一定程度后,由于构件内裂纹尖端附近的力学约束条件都必然接近和达到平面应变状态,因此任何固体材料都是可以呈现出低应力脆性断裂的情形来的。正由于这种外在的几何尺度与内在的材料本性在构件断裂行为上的紧密不可分割性,导致了在材料断裂韧性测试方法上的某些不可实施性。当然,从理论上讲,只要试样的几何尺度足够大,就能保证裂纹前沿处于理想的平面应变状态,目前已有的断裂韧性测试方法就能从测试上获得该材料的断裂韧性K IC值。但事实上,对于那些强度较低的材料,保障裂纹前沿处于平面应变状态所需的样品尺度过于厚大,要求材料试验机的动力规模也就过大,因此实际上是无法在目前通行的材料试验机上获取它们的断裂韧性K IC值的。可以理解,当前测试方法的这种局限性是由于测试方法本身的局限性所带来的。例如,对一些仍以低应力断裂为主要破坏形式的铝合金和镁合金的结构件,在实用中由于测试其断裂韧性值K IC所需的试样过于厚大而不可测试,只好用测试可靠性低于线弹性的K因子测试法的J IC测试来避免试样尺度的困难,甚至直接用可靠性更低的传统冲击韧性值来勉强代替对它们的抵抗低应力断裂的性能方面的评估。从某种意义上可以说,当今的工业设计,是建立在采用过于宽松的抗断裂安全系数的基础之上才得以支撑的,实际上是以付出了巨大的材料和动力浪费来制造结构件的。如果能够排除掉传统测试方法中试样尺度这个影响因素,从材料本性上更加精确、更加广泛地测定所有用来制造构件的材料的断裂韧性值,就可以使得材料的断裂韧性参数与它们的其它常规机械性能参数更好的配合起来,大大合理化工业设计中由于安全系数的不合理选定造成的浪费。

除了以上试样尺度与材料本性无法区分的缺陷之外,传统断裂韧性测试方法还有一个缺陷,这就是无法区分试样中两种不同热力学属性的力学行为。历来的测试法采用的试样都是针对一个已经含有裂纹的裂纹体进行的,采用了含裂纹型试样,试样中全体积范围的均布的、热力学可逆性的弹性变形和发生在裂纹尖端附近的、热力学不可逆性的塑性变形定会同时出现和进行,即两种热力学属性完全不同的材料力学行为混杂在了一起难以区分。显然,即使采用了某个物理参量来作为判据(例如现在的J判据等),那么这种判据也必定只能是建立在对材料作出了一定的假定,即忽略掉了裂纹尖端由于裂尖塑性区影响的前提下才能提出来的判据。但这些曾经被忽略掉了的因素,却可能在面对低强度材料时被极大地突显出来,结果导致了按这种试样进行的测试中出现了难以克服的测试误差。凡此以上这些问题的存在都是由于采用了含裂纹的试样才带来的,不跳脱出采用含裂纹型试样的窠臼,断裂韧性测试中的这些问题是无法真正得到解决的。

本发明针对这一现状,提出了一种可以采用极小尺度试样并且无需在试样上预先制造裂纹的测试方法,有可能从试验方法上解决目前的这种困境。

从试样制备方法上看,在现有的各种材料断裂韧性测试法(获取材料的K IC值和J IC值)中,都需要首先在试样中制造出一个宏观裂纹来。由于裂纹的制作过程十分繁复,以及作出的裂纹状况对随后的测试结果非常敏感,因此断裂韧性试样的制作本身就是一个较容易出现问题的环节,甚至是影响断裂韧性测试结果的决定性环节。除了上面谈到的,由于试样尺度的原因造成的对低强度材料的不可测试性外,即使是对于所谓可以测试的那些高强度材料,

也很容易发生由于试样裂纹制作过程的复杂性导致的测试数据的分散性,降低了数据的可信程度。因此试样制备的低可靠性和高成本也是一个有待改进的问题。

二. 试样的结构及其测试装置

1. 试样的形式与制作

为了解决断裂韧性测试对试样尺度依赖性的弊病,本发明采用了在待测材料试样表面附上一层已知机械性能参数的脆性薄层,通过在加载过程中这层脆性层的开裂直接在待测材料试样表面上“制造出”一个裂尖塑性区来。根据已知的脆性薄层的机械性能参数和已知的外加载荷,就可以确定该裂纹对裂尖处基底材料(待测材料)的加载数据。通过测定在这个加载条件下在待测材料表面上制造出这个裂纹前沿塑性区所需的塑性变形功,并通过合理的方法外推至使得材料在单向拉伸实验中出现内缩颈时对应的塑性变形功,就可以确定出该材料在裂尖塑性区内萌生空穴的临界塑性功,也就是待测材料中裂纹开始发生扩展的临界塑性能。

本发明中采用的试样如图1所示。

图1. 测试试样

从试样的形式上看,采用了高弹性模量的脆性薄层引入裂纹。根据材料力学,复合梁中的应力按弹性模量分配并具有成反比的规律,

σ1/K1=σ2/K2(1)其中,σ1,K1是分布于薄层中的应力及薄层材料的弹性模量;σ2,K2是待测材料中的应力分布及它的弹性模量。

由(1)式可见,脆性层弹性模量与待测的基体材料的弹性模量比值是关于薄层实际厚度与它相对于基体材料而言的等效厚度的放大系数。在薄层实际厚度一定的情况下,它的弹性模量与基体材料弹性模量差别越大,它的等效厚度也就越大。薄层开裂后,薄层的厚度就是裂纹的长度a。与上述同理,这个a 在待测材料中的等效长度也同样地被脆性层的高弹性模量放大了,使之等效为存在于基体待测材料中的一个更长的裂纹。不难想象,传统的断

裂韧性试样是在试样的体内人为的预先制成裂纹,裂纹是向试样体内延伸的。在本发明中,通过高弹性模量脆性层的引入就相当于将原来向试样体内延伸的裂纹向相反的方向、即向虚空中作了等效的延伸,这就将传统试样制备中难以避免的困难化解掉了。也基于同样的理由,本测试方法中的试样尺度可以远小于传统的三点弯曲和紧凑拉伸试样,可以在试样总体尺度很小的情况下,很容易地保证沿裂纹Z轴方向的尺度远大于沿X和Y方向上的尺度,因此可以保障裂纹前沿处于理想的平面应变状态。这样一来,从试样的采用上就把尺度因素有效地排除掉了。另外,由于无需在试样上预制裂纹,也就大大减少了试样制备过程中的加工误差和失败风险,因而可以大大降低试样制备的复杂程度和降低加工成本。此种试样还可以消除掉传统三点弯曲试样和紧凑拉伸试样在用高周疲劳法制作裂纹时不可避免地会出现的裂纹前沿线发生弯曲的情形。它能够保证裂纹前沿线的始终平直。这就更加理想地保障了理论上提出的平面应变状态的要求。采用这种试样还大大降低了对试验机动力规模的要求,使得在小动力试验机上就可以对低强度的韧性材料进行断裂韧性K IC值的测定。从理论上讲,是可以适用于任何材料的常规断裂韧性测试的一种测试方法。

至于附于试样表面的脆性层的形成,可有多种方法。如各种类型的物理、化学镀膜方法;采用粘结胶将脆性薄片粘贴在待测试样表面上的方法。为了保证在待测材料表面上制造出来的裂纹前沿的理想状况,要求该脆性层在整个试样的加载、裂纹形成的过程中不能出现与待测材料之间界面层上的相对滑动。

2. 试样的加载装置

本测试法采用四点弯曲方法对试样加载。材料力学指出,四点弯曲在试样的两个内支点之间的试样中形成纯弯曲状态,即试样内的剪切应力分量为零,是一种均匀而简单的拉伸应力状态,这就便于数据的计算和处理。

下面的图2是该加载装置的示意图。

图2.四点弯曲试样加载装置

该加载装置除了可以单独构成独立的加载、数据读取系统外,还可以直接连接于传统的材料拉伸试验机上,利用拉伸试验机的加载系统和位移数据读取系统来获取测试数据,从这个意义上讲,它又是一种实施方法简单、改进成本低廉的、可以大大扩展现有材料试验机功能和测试范围的有效装置。

除了四点弯曲方法之外,三点弯曲、拉伸、扭转等加载方式,只要是可以首先在表面附有了脆性层的试样中首先引发裂纹并止裂于待测的基体材料表面的其它加载方式,都可以获得相应的裂尖塑性区形成的信息,都是可以实现对不同加载方式下的裂纹扩展行为的测试的。也就是说,试样表面脆性层材料及其尺寸的采用和加载装置的加载方式就是要保障能首先在试样的表面脆性层上引发裂纹并能止裂于脆性层和基体待测材料的表面。

三. 理论依据

力学和热力学的一个重大区别在于它们方法论上的极不相同上。“平衡”是力学的立论精髓,反之,揭示“非平衡”则是热力学的基本任务。也可以说,力学(包括目前的断裂力学)本质上是一种能量平衡学,目前仍然是属于热力学第一定律范畴内的一门学科。而热力学本质上是动力学,非平衡则是一切动力过程的基本特征(断裂问题本质上显然也是一个动力学问题,一个非平衡的问题,即是一个属于热力学第二定律范畴的问题)。一个历来的力学家在处理断裂问题时,必定会尽可能通过设定一些假定从问题中寻找出平衡特征来,并据此建立求解问题的微分方程。他对一切破坏平衡性的因素都会本能的利用假定来尽力排除掉。无论从应力-应变的分析还是从能量的分析上着手,这种平衡术都在顽强地体现着。显然,表现出不可逆性的一切真实过程,由于它们运动的单向性和不可逆转性,都是“天生”的破坏平衡的因素,当然也都在被力学家们尽力排除之列。无论是建立在线弹性力学还是弹塑性力学基础上的K理论和J理论,对于裂纹尖端出现的不可逆性塑性变形都是力求要排除掉的,不排除就无法建立基于力学的理论方法。因此在传统的断裂力学中,裂尖塑性区的塑性变形行为都是被视为误差来处置的。也就是说,这些K和J判据都是根据塑性区外的弹性应力-应变为主体来建立的。对塑性区内的情形和与之相关的行为都是被当作误差或向弹性行为的方向来作出修正的(但这种修正其实是得不到任何测试数据的直接支持的),这就是当前问题关键之所在。

构件材料中的裂纹扩展过程,就热力学观点看来,是一个典型的热力学不可逆过程。那么决定这个过程能否发生的热力学判据,应该是热力学属性上的自由能Z,而不可能是代表体系(试样)与外界环境交换的总能量的焓H。严格说来,焓是不具备判据功能的。只有在可以忽略掉过程热效应的情况下,即固体力学假定的那种理想材料的情况下,焓才能完全等同于自由能,也才能够具有所谓的断裂判据的功能。不难发现,目前的所谓断裂判据(K、J等),其实都是建立在一定假定(条件)基础上的一种判据,离开了这些条件,判据就不可用了。

根据热力学第二定律的自由能表达式

W=Z+ST (2)W-外加总能;Z-过程进行的自由能;S-熵;T-绝对温度

式中的三个项代表了物理含义各不相同的能量项。其中W代表了外加载荷对试样提供的总动力能,即焓H;Z代表了真正对裂纹扩展起作用的那部分动力能;ST代表了在加载过程中转化为热量和塑性变形功的能量部分,即不会对裂纹扩展提供动力的能量占有部分。一般而言,对自由能Z项的直接测定是十分困难的。但由(2)式不难看出,如果能直接测定出ST项的大小,实际上也就完全确定了Z项的大小。

热力学第二定律指出,任何一个不可逆过程发生时,外界提供给过程的总能——焓H 都必然会在过程的进行中发生分裂,必然会分裂出不推动过程进行的非动力部分——热量Q。真正能对过程的进行提供推动力的能量是总能中扣除了热量的剩余部分,这个剩余的部分就是真正的裂纹扩展的推动力——自由能Z。作为一个理想的材料断裂判据,应该是符合热力学属性上的自由能Z性质的参量,而不能是仅代表了总能的焓H的参量。

在目前的断裂韧性测试方法中,由于测试方法本身的限制,只能是从外加总载荷和总位移的变化去获得测试数据,从这种角度获得的判据,应该是热力学意义上的焓值而不是自由能值。测试曲线上的临界拐点是焓值的改变点。因此这种判据在面对具有不同的热量分裂行为的不同材料或同一种材料的不同加载速率时,就不可避免地会出现难以排除的先天误差来。可以明了,这种误差是一种原理性的误差,是无法通过提高现有测试技术的测试精确度来消除掉的。找出一种新的材料断裂韧性测试方法,它可以将自由能项真正从外加载荷的总能中分离出来,就有可能提供从根本上排除掉这种原理性误差的方法。本发明就是基于这种思考的、一种易于实施的、并且是一种常规性的测试方法。

另外,如果考虑到任何实际的过程都只能是所谓的热力学过程,都是具有过程热效应的,按照前面所述的理由,一个理想的断裂判据,应该是一个具有能量量纲的参量,即自由能属性的参量。只有在固体力学假定的那种理想材料的情况下,由于忽略掉了热效应,材料的应力和应变之间的关系满足理想的虎克定律的关系,裂纹扩展也只是一个符合能量平衡的可逆的过程,只有在这种理想情况下,仅仅由应力或应变构造成的参量才是与自由能属性完全同一的。而对于实际情况,由于有热效应的加入,直接根据应力和应变而确定的参量就不再可能是裂纹扩展行为中的不变量了。由于热效应是一个与加载过程有关的量,因此应力和应变也成为了与加载过程相关的量了。那么,什么才是裂纹扩展过程中的不变量呢?金属学和材料学指出,存在于塑性区内的塑性变形损伤能才是自由能属性的参量,它才是与加载过程无关的不变量。此论点可以借助试样的简单拉伸试验曲线来说明:随着对试样加载的速率不同,拉伸曲线可以表现出在拉伸图上的上、下不同的位置上(表现出随加载过程不同而不同的应力、应变行为)。因此,拉伸载荷的大小,即试样中的应力大小并不是一个与过程无关的不变量。用载荷的大小来评定该材料的抗拉强度,严格说来,是必须指明加载速率的。但是,无论加载的速率是多少,由这个拉伸曲线与横坐标构成的面积(是一个能量参量)则是一个与加载速率无关的不变量,这个量就是自由能属性的参量,也才是真正意义上的材料常数。所以说,一个较为合理的测试方法,能直接从测试中提取出来的应该是一种具有能量量纲的自由能属性的参量。至于在实用中为了便于使用而采用的应力参量则应该是由这种能量参量导出来的二级参量。

断裂问题是一个较一般固体力学问题更为特殊的问题。从构件总体上看,涉及到的确实只是小应变和低应力,但在对断裂起着决定性作用的裂纹尖端区域内,材料又确实经受着直至塑性变形乃至萌生孔洞的破坏过程。因此,断裂力学问题实质上是一个横跨了固体力学各个学科范畴的、一个十分特殊的固体力学问题。因为裂纹的存在而将局部因素充分扩大了,是一种典型的局部决定总体的情形。如果测试方法仅从总载荷或总位移量上来测定裂尖的力学行为,由于裂尖局部的应力、应变量很容易被整个试样总体积中的应力、应变量混合起来难以区分,因此发生在裂尖附近的、程度上十分剧烈的、对材料断裂具有决定性意义的塑性变形,却会因为它在试样总体应力、应变量中只占有很小的能量份额而被掩盖掉或受到强烈的干扰,因而降低了对其测试的灵敏程度。

裂纹尖端出现塑性区就意味着外载荷施加的总能中的一部分被消耗于了形成这个塑性区的塑性功了。由于材料的塑性变形是一种将功转化为热量的机制,并且对应这部分能量的热量是不会在试样中存留住的,是必然被热传导引出到试样体外去的。因此它是不会对塑性区内的空穴形成——裂纹扩展提供动力的。这种在裂纹形成时必然会出现、又随着材料的不同而大小不同的塑性变形热量就导致了传统测试方法在测试数据处理上的巨大困难和误差。这也是当前测试方法无法将此塑性变形热量从测试参数中分离出来而必然具有的缺陷。

塑性区形成后,残存于塑性区内的弹性畸变能才是自由能属性的,它就是材料的塑性损伤能,即是真正使材料萌生孔洞从而促进裂纹扩展的真实动力能。

构件中的一个裂纹,实质上是一个将外载荷的作用转嫁于裂尖那部分材料上的施力机构。这种情形与一个可以将平行光线能聚焦于焦点的光学放大镜的功能完全类似。从施加应力作用的实质效果上而言,与对该部分材料施加一个简单拉伸的作用力并无不同,本质上仍然是造成该部分的材料出现了相应的塑性损伤。当这种损伤达到了材料可以容忍的临界值时,材料中就会出现“相变”——萌生空洞、形成新的内空洞表面(此时就意味着裂纹开始发生了扩展了)。虽然从应力分析或应变分析入手要想准确确定裂尖的状况是一件十分复杂的事情,难以获得精确的数据。但如果从对塑性变形区中的塑性损伤能测定的角度着手,找出临界塑性损伤能这个真正决定裂纹扩展的参量就可以大大简化测试技术的复杂程度,增大对不同材料的适用程度和和提高判断的精确度。

代表了总的外加载荷能中的非动力项ST的塑性功的被测知也就确定了真实的动力项自由能项(Z)。也就是说,本发明可以从具体测试方法上解决对裂纹扩展这种热力学过程的真实判据的获取。由第四节中的叙述将可以清楚地明了这一点。

四. 测试数据的获得和转换成常规的K IC值的方法

当外加载荷P持续压下到一定程度时,试样上的两个内支点间由于纯弯曲而产生的拉伸应力使得试样脆性层开裂(为了人为地确定开裂的位置与数量,可以预先在脆性层边缘出开出相应的小缺口以便引裂),并在此时停止加载。此时由于脆性层的开裂,载荷——位移图上会出现一个沿位移轴方向的“突进”。由于作为基体的待测材料的韧性远低于脆性薄层材料,因此脆性薄层中的裂纹将终止于脆性层与基体的界面上,裂纹不会进一步向基体待测材料中继续扩展。同样由于基体材料的低强度,脆性层中的裂纹就会在基体材料表面上造成一个远大于在脆性层材料中的裂尖塑性区。为了进一步确定残存于这个塑性区中的塑性损伤储存能(萌生塑性区内空洞的自由能)的大小,仍然按照原来加载的速率反向卸载。这样就可以将存在于整个试样中的总体的弹性变形能排除掉。此时基体中与加载前唯一的不同就是出现了若干条裂尖塑性区线(考虑到加强测试信息,可以在脆性层上引裂多条裂纹)。由于塑性区的出现,因此卸载的应力——应变曲线将不会回到坐标原点O,而是与O具有一段距离的C点。O点与C点之间的距离就表现了形成裂尖塑性区所造成的残余位移量。这种加载——卸载的曲线图示意如图3。

图3.试样加载-卸载示意图

图中纵坐标P表示外载荷,横坐标V表示沿试样长度X方向上的位移。

下面针对图3各线段的含义作一说明。

O-A线段:表现了试样开裂前的弹性加载历程

A点:是脆性层开裂的临界点

A-B线段:表现了基体材料表面上裂尖塑性区形成的载荷——位移情况

B-C线段:表现了为获得裂尖塑性区形成造成的残余变形而对样品卸载的历程

A-E线:对横坐标的垂直线。表示脆性层开裂时的位移量

B-F线:对横坐标的垂直线。表示裂尖塑性区形成完毕时的位移量

在图3中,最具有意义的有两块面积。一个是ADEF构成的矩形的面积;另一个是ABD 构成的曲边三角形的面积。由于材料的理想塑性变形是一种没有任何形变硬化的行为,并且

是能完全将形变功转化为热量的一种机制,因此在载荷——位移图上表现为一段与位移坐

标平行的水平线。在这里就是由A-D线段表现的裂尖塑性区塑性变形中的理想塑性变形的

分量。这个由ADEF构成的矩形面积的大小就是被这个理想塑性变形分量全部转化为了热量

的那部分能量。

A-B曲线表达了裂尖塑性区形成过程中的材料冷作硬化情况。因此ABD曲边三角形面积表现的是除去了热量转换外的那部分以塑性损伤能形式储存于塑性区中的能量大小。这个

储存能是不会被传热而释放掉的,也是不会随着外载荷的卸除而消失的。它就是造成塑性区

中萌生空洞的自由能属性的储存能。这个部分的能量才是真正的材料常数和不随加载历程、加载速率而变的不变量。不难想象,随着加载速率的不同,A-B曲线的斜率也不同。由于

ABD曲边三角形面积的不变性,从而导致了ADEF矩形面积也随之变化。这就说明,塑性

区形成时的热效应大小也是随着加载速率的改变而改变的。但是,不管加载速率如何变化,对于确定的待测材料,ABD曲边三角形的面积都是始终不会改变的。在此用符号W o来代

表这个裂尖塑性损伤能。这样一来,通过本发明的测试方法,就提取出了一个在裂尖塑性区

形成过程中的、不变量性质的与材料断裂韧性相关的参量了。

经过对同一种材料在不同脆性层厚度时的测试,以及对不同材料进行的此类测试,不难建立起裂纹长度a,外加载荷P,裂尖塑性区塑性损伤能W o之间的关系式

W o=f(a,P) (2)

获得了塑性损伤能W o及它与裂纹长度、外载的关系式后,下面的任务就是将W o外推至材料发生裂纹扩展时的临界值,并将这个对应于塑性区内空洞萌生的临界塑性损伤能用符号W IC来表示。本人也已从理论上和计算方法上提出了这种外推的依据和实验方案。

图4.材料的简单拉伸曲线

由本发明测试法中得到W o值,按照面积相等的关系,就是在图4中ABD曲边三角形面积。由简单拉伸曲线揭示的该材料的临界塑性损伤能由抗拉强度σb 指出的曲边三角形Aσb D’的面积大小确定。因此,表现了裂纹开始扩展的材料断裂韧性的临界断裂塑性损伤能W IC可表示为

W IC=f(a,σb) (3)

注意到参量K、J与能量释放率G之间具有定量关系,又根据(2)式可以求出在待测材料中形成某个长度裂纹的能量释放率G,因此可以建立起W o与K、J之间的定量关系式

W o=g(k,J) (4)同理,也就可以建立起材料断裂韧性K IC、J IC和W IC之间的关系

W IC=g(K IC,J IC) (5)

通过以上步骤,就可以将本发明测试方法中获得的测试参数直接转换成与当前工程界通用的材料断裂韧性参量。因此,本测试方法无论从试验方法上还是数据的处理上就成为了一种可以十分方便地被采用的材料断裂韧性的常规性测试方法。

可以想见,用此方法测试材料的裂尖塑性损伤能W o,如果材料的屈服强度越低,可以获得的裂尖塑性区就越大、塑性变形能也就越大、测试结果就越准确。而对于那些高强度材料,则因为可以获得的裂尖塑性区较小,因此测试结果可能就没有那么灵敏。我们知道,传统的材料断裂韧性测试方法对于高强度材料的测试结果是十分灵敏和可信的,但对于低强度材料的测试则较为困难。由此可见,本发明提出的测试方法成为了目前传统测试方法的一个十分有力的互补性的方法。对于那些高强度材料可以采用传统方法测试;对于低强度材料则可以采用本测试法测试。

采用本发明的试样,可以清楚地将试样加载过程中两种不同的热力学属性的力学行为区分跟开来。在表面材料开裂点A之前,是一个理想的线弹性材料的弹性变形过程,A点过后,裂尖塑性区形成。因此,利用此试样,可以将线弹性断裂力学的计算方法用于任何强度材料的断裂韧性的测试和计算。把理论上十分可靠和成熟的线弹性理论与实验上十分可靠的材料简单拉伸实验直接沟通起来,形成了一种从理论到实验方法都十分可靠的材料断裂韧性的常规测试方法。

从本方法的测试原理和试样形式不难看出,从理论上讲,本测试法可以适用于任意低的强度的材料断裂韧性测试。因此,加上它对传统方法的互补关系就有可能使得工程界可以将对材料的断裂韧性的测试拓宽到任意材料中去。从当前的试验机制造上来看,正如前面提到过的,本测试法完全可以作为一个简单的试验机附件很容易地加装到目前已经定型的任何试验机上去,其结果将大大扩展已有试验机产品对各种材料的适用范围和改良其测试的精确程度,形成一个具有巨大市场的材料试验机生产的产业模式。

材料的韧性及断裂力学简介

第二节材料的韧性及断裂力学简介 一、低应力脆断及材料的韧性 人们在对船舶的脆断、无缝输气钢管的脆断裂缝、铁桥的脆断倒塌、飞机因脆断而失事、石油、电站设备因脆断而发生重大事故的分析中,发现了一些它们的共同特点: 1.通常发生脆断时的宏观应力很低,按强度设计是安全的; 2.脆断事故通常发生在比较低的工作温度环境下; 3.脆断从应力集中处开始,裂纹源通常在结构或材料的缺陷处,如缺口、裂纹、夹杂等; 4.厚截面、高应变速率促进脆断。 由此,人们发现了传统设计思想和材料的性能指标在强度设计上的不足,试图提出新的性能指标和安全判据,找到防止脆断的新的设计方法。 传统的强度设计所依据的性能指标主要为弹性模量E、屈服极限σs、抗拉强度σb,而塑性指标延伸率δ和面收缩率φ在设计中只是参考数据,通常还会考虑应力集中现象,即使如此,设计的安全判据仍不足以防止脆断的发生,这说明材料的强度、塑性、弹性这些性能指标还不能完全反映材料抵抗脆断的发生。经过对众多脆断事故的分析和研究,人们提出了一个便于反映材料抗脆断能力的新的性能指标——韧性,从使脆性材料和韧性材料断裂所消耗的能量不同,归纳出韧性的定义为:所谓韧性是材料从变形到断裂过程中吸收能量的太小,它是材料强度和塑性的综合反映。 例如图l-2为球墨铸铁和低碳钢的拉伸曲线,可以用拉伸曲线下的面积来表示材料的韧性,即 图中可见,虽然球墨铸铁的抗拉强度σb比低碳钢高,但其断裂时的塑性应变εp确远较低碳钢小,综合起来看,低碳钢的韧性高。 图1-2 球铁和低碳钢拉伸曲线表示的韧性 材料的韧性可用实验的方法测试和判定。应用较早和较广泛的是缺口冲击试验,这种方法已经规范化。具体方法是将图1-3所示的缺口试样用专用冲击试验机施加冲击载荷,使试 样断裂,用冲击过程中吸收的功除以断口面积,所得即为材料的冲击韧性,以αk表示,单位为J/cm^2。目前国际上多用夏氏V型缺口试样,我国多用U型缺口试样。由于缺口冲击

断裂韧性基础

第六章 断裂韧性基础 第一节Griffith 断裂理论 第二节裂纹扩展的能量判据 能量释放率G 裂纹扩展单位面积时,系统所提供的弹性能量 U A ??是裂纹扩展的动力,此力叫裂纹扩展力或称为裂纹扩展时的能量释放率。以1G 表示(1表示Ⅰ型裂纹扩展)。G 与外加应力,试样尺寸和裂纹有关,而裂纹扩展的阻力为 2()s p γγ+,随 1,a G σ↑→↑→增大到某一临界值时,1G 能克服裂纹失稳扩展阻力,则裂纹使失稳扩 展而断裂,这个1G 的临界值它为1c G ,称为断裂韧性。表示材料组织裂纹试稳扩展时单位面积所消耗的能量。 平面应力下: 2 211,C c C a a G G E E σπσπ= = 平面应变下: 2 22211(1)(1),C c C a v v a G G E E σπσπ--== G 的单位1 2 MPa m - ?。 第三节 裂纹顶端的应力场 可看成线弹性体12005001000s s MPa MPa σσ?? =??=-??? 玻璃,陶瓷高强钢 的横截面中强钢低温下的中低强度钢 6.3.1三种断裂类型 ?? ??? 张开型断裂滑开型断裂撕开型断裂 最危险Ⅰ型 6.3.2Ⅰ型裂纹顶端的应力场 无限大平板中心含有一个长为2a 的穿透裂纹,受力如图 欧文(G 。R 。Irwin )等人对Ⅰ型裂纹尖端附近的应力应变进行了分析,提出应力应变场的

数字解析式,由此引出了应变场强度因子 1 K的概念。并建立了裂纹失稳扩展的K判据和断 裂韧性 1C K。 若用极坐标表达式表达,则有近似数字表达式: 当裂尖某点不确定,即,rθ一定后,应力大小均由1K决定———盈利强度因子1K 故 1 K大小反映了裂纹尖端应力场的强弱,取决于应力大小,裂纹尺寸。 6.3.3 应力场强度因子及判据 将上面应力场方程写成: () ij ij f σθ = 其中 1 K Y = Y:形状系数。对无限大板Y=1。 1 K: 1 2 MPa m- ? 1 1 1 , , a K K a a K σ σ σ ?↑→↑ ? ? ? ↑→↑ ?? 不变 是一个决定于和的复合物理量 不变 当此参量达到临界时,在裂纹尖端足够大的范围内,应力便会达到断裂强度,裂纹便沿着X 轴失稳扩展,从而使材料断裂。这个临界或失稳状态的 1 K值记为 1C K→断裂韧性。 1C K为平面应变的断裂韧性,表示在平面应变下材料抵抗裂纹失稳扩展的能力,显然 1C K Y = 可见,材料的 1C K越高,则裂纹体的断裂应力或临界断裂尺寸就越大,表明难以断裂。因此1C K是材料抵抗断裂的能力 11 1 S C s C K K K σ σσ σ → ? ? ↑→ ? ? ↑→ ? ?→ ? 和力学参量,且和载荷,试样尺寸有关,和材料无关 当临界时,材料屈服 当K临界时,材料断裂 和材料的力学性能指标,且和材料成分,组织结构有关而和载荷及试样尺寸无关 断裂判据: c a 或 1C Y K ≥

断裂韧性试验

断裂韧性试验 创建时间:2008-08-02 test for fracture toughness 在线弹性断裂力学及弹塑性断裂力学基础上发展起来的一种评定材料韧性的力学试验方法(见断裂力学)。 20世纪以来,曾发生过多起容器、桥梁、舰船、飞机等脆断事故;事故分析查明,断裂大多起源于小裂纹。为解决金属脆断问题,美国在1958年组成ASTM断裂试验专门委员会,目的是建立有关测定材料断裂特性的试验方法。于1967年首次制定了用带疲劳裂纹的三点弯曲试样(图1 [两种常用断裂韧性试 样])测定高强度金属材料平面应变断裂韧性操作规程草案,并于1970年颁发了世界第一个断裂韧性试验标准ASTME399-70T。此后,断裂韧性试验受到世界各国的普遍重视并蓬勃发展。中国于1968年前后开始这方面的试验研究。 取样原则由于裂纹或类裂纹缺陷是导致工程结构断裂的主要原因,所以断裂韧性试验采用带尖锐裂纹的试样(图1[两种常用断

裂韧性试样]),用 直接观察或间接测量法连续监测裂纹的行为;如用夹式引伸计连续测量裂纹嘴张开位移随载荷的变化(图2[用夹式引伸计测裂纹嘴张开位移随载荷变化的曲线]随载荷变化的曲线" class=image>),以测定材料抗裂纹扩展的能力及裂纹在疲劳载荷或 应力腐蚀下的扩展速率;求得平面应变断裂韧度[ic]、动态断裂韧度[id]、裂纹临界张开位移,应力腐蚀临界强度因子[111-21] [kg2],疲劳裂纹扩展速率d/d(毫米/周)等断裂韧性参数。其中,角标Ⅰ代表张开型裂纹,或称Ⅰ型裂纹,角标c代表临界值。此外,尚有滑开型(Ⅱ型)裂纹,撕开型(Ⅲ型)裂纹(图3 [裂纹的扩展 类型示意图])。Ⅰ型裂纹最易引起脆断,所以目前断裂韧性试验多限于Ⅰ型加载。

断裂韧性的结果分布

断裂韧性 编辑词条参与讨论 所属分类:冶金术语化学各种化学名称机械机械工程机械零件金属加工 表征材料阻止裂纹扩展的能力,是度量材料的韧性好坏的一个定量指标。在加载速度和温度一定的条件下,对某种材料而言它是一个常数。当裂纹尺寸一定时,材料的断裂韧性值愈大,其裂纹失稳扩展所需的临界应力就愈大;当给定外力时,若材料的断裂韧性值愈高,其裂纹达到失稳扩展时的临界尺寸就愈大。 目录 ?? 概述 ?? 规律与测试 ?? 论文 ?? 参考资料 断裂韧性-概述 构件经过大量变形后发生的断裂。主要特征是发生了明显的宏观塑性变形(不包括压缩失稳),如杆件的过量伸长或弯曲、容器的过量鼓胀。断口的尺寸(如直径、厚度)比原始尺寸也明显变化。韧性断裂的断口一般能寻见纤维区和剪唇区。断口尺度较大时还出现放射形及人字形山脊状花纹。形成纤维区断口的断裂机制一般是“微孔聚合”,在电子显微镜中呈韧窝状花样。韧性断裂一般由超载引起,而材料的塑性与韧性又很优良。纤维区一般是断裂源区。剪切唇总是在断口的边缘,并与构件的表面约成45°夹角,是在平面应力受力条件下发生剪切撕裂而形成的断口,剪切唇表面较光滑,断裂时的名义应力高于材料的屈服强度。 断裂韧性-规律与测试 随着概率断裂力学工程应用的逐步深入,材料断裂韧性分散性问题,已成为影响含缺陷结构概率安全评定的关键因素之一。合理解决材料断裂韧性分散性是一个十分复杂的问题。一方面巾于冶金过程等方面的偏差,造成材料断裂韧性的分散性;另一方面由于试样几何尺寸、裂纹长度测量等试验误差,亦会导致测试结果的不确定性,还有不同测试规范和标准对测试数据的处理也会导致测试结果的不

确定性。若缺陷位厂焊接部位,影响因素将更加复杂。除上述原因外,还会有诸如焊接上艺、焊材、以及不同操作人员及焊后热处理等因素导致断裂韧性测试结果分散性更加严重。尽管分析和解决其分散性问题如此复杂,十分困难,然而,在对含缺陷焊接结构(尤其是工业锅炉、压力容器和管道)进行安全评定时,重点就是焊接接头区而不是母材。如何处理断裂韧性的分散忭问题已成为工程界不可回避的问题,也是概率安全评定应解决的基本问题之—。 对材料断裂韧性分散性规律的研究,在理论和实践上均已取得较大进展。 Wallin分别根据Weibuli统计模型和微结构分析模型,推得基于断裂韧性尺I(单位:MN·m-3/2)失效准则的累积失效概率 并从理论上得到Kl服从形状参数m:为4的Weibull分布,同时指山m1不等于4是由厂测试数据不够而造成的,并且认为延性撕裂和材料非均匀性对分散性只具有较轻微的影响。这一理论建立在裂尖小范围有效体积基础上。 Slatcher将裂尖等效为多个单元的串联模型,推导出基寸:断裂韧性,J(单位:N/inlTl)失效准则的累积失效概率 式中,a=B中,B为试样宽度,中为常数;B=2。 这一理沦基于如下假设: 1)裂纹体能被分成若干单元,任一单元的失效意味着整体失效,各单元强度彼此独立且同分布。 2)第一个失效单元的应力和应变与裂尖应力场强度,J和该单元到裂尖的垂直距离r有关,仅由r/J确定。 3)第一千失效单元必须位于r和O定义的区域内(r,O为该单元的柱坐标)对任何O均有Jg(O)≤r≤Jh(O)。g(O)和h(O))为o的函数,分别为该区域的内、外界限。 由式(5.2)可知,理论上断裂韧性/服从形状参数为2的双参数威布尔分布。对充分小的试验数据集,式(5.2)比对数正态分布和威布尔分布能更好地描述断裂韧性的分布规律。 Neville提出了另一种描述断裂韧性分布的模型,该模型不用作任何假设和近似处理。由断裂韧性构成一个样本u,样本u中的子样ui由g2,J2或K1确定,g2,J2或K1分别由CTOD、JIC和Kic的测试数据计算得到。累积失效概率由如下双参数分布函数表达 式中,a,b为分布参数。 Neville将该模型分别对几组断裂韧性的测试数据进行厂分析,结果表明该模型应用方便,与实测数据分布吻合较好,并略偏保守。 Hauge和Thualow分别采用Weibull分布、Log—Normal分布、Slather模型以及Neville模型,对两组CTOD数据(86个母材和16个焊材)进行了统计分析,其主要结论如下: 1)两组CTOD数据并非服从形状参数为2的Weibull分布(或Slather模型);双参数Weibull分布、Log—Normal分布和Neville分布都适宜拟合这些数据。 2)90%置信限的中位期望值可较好地由I.og—Normal分布得到;对于只有三个子样时,能较好地等效于三个值十取最小值的方法;对大子样,Log—Normal 吻合更好。

金属的断裂韧性

第四章金属的断裂韧性 断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。自从四五十年代之后,脆性断裂的事故明显地增加。 1.强度储备法,许用应力,强度储备系数(安全系数) 按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就被认为是安全的了。而[σ],对塑性材料[σ]=σs/n,对脆性材料[σ]=σb/n,其中n为安全系数。经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。 2.低应力脆性断裂(低应力脆断):高强度机件及中低强度大型件。 3.裂纹体:传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。 4.人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。断裂力学,建立了材料性质、裂纹尺寸和工作应力之间的关系。 5.断裂韧性,断裂韧度 §4.1 线弹性条件下的断裂韧性 断口分析表明,金属机件的低应力脆断断口没有宏观塑性变形痕迹,可以应用线弹性断裂力学。两种分析方法:(1)应力场强度分析方法;(2)能量分析方法。 一、裂纹扩展的基本形式 根据外加应力与裂纹扩展面间的取向关系,裂纹主要有三种基本形式: 张开型(I型),滑开型(II型)、撕开型(III型)。 二、应力场强度因子K I及断裂韧性K IC

断裂力学与断裂韧性

断裂力学与断裂韧性 3.1 概述 断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。自从四五十年代之后,脆性断裂的事故明显地增加。例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧! 按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就 被认为是安全的了。而[σ],对塑性材料[σ]=σ s /n,对脆性材料[σ]=σ b /n, 其中n为安全系数。经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。 人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。 3.2 格里菲斯(Griffith)断裂理论 3.2.1 理论断裂强度 金属的理论断裂强度可由原子 间结合力的图形算出,如图3-1。 图中纵坐标表示原子间结合力,纵

轴上方为吸引力下方为斥力,当两原子间距为a即点阵常数时,原子处于平衡位置,原子间的作用力为零。如金属受拉伸离开平衡位置,位移越大需克服的引力 时吸力最大以越大,引力和位移的关系如以正弦函数关系表示,当位移达到X m σc表示,拉力超过此值以后,引力逐渐减小,在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏,达到完全分离的程度。可见理论断裂强度即相当于克服最大引力σ 。该力和位移的关系为 c 图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。分离后形成两个新表面,表面能为。 可得出。 若以=,=代入,可算出。 3.2.2 格里菲斯(Griffith)断裂理论 金属的实际断裂强度要比理论计算的断裂强度低得多,粗略言之,至少低一 陶瓷、玻璃的实际断裂强度则更低。 个数量级,即 。 实际断裂强度低的原因是因为材料内部存在有裂纹。玻璃结晶后,由于热应力产生固有的裂纹;陶瓷粉末在压制烧结时也不可避免地残存裂纹。金属结晶是紧密的,并不是先天性地就含有裂纹。金属中含有裂纹来自两方面:一是在制造工艺过程中产生,如锻压和焊接等;一是在受力时由于塑性变形不均匀,当变形受到阻碍(如晶界、第二相等)产生了很大的应力集中,当应力集中达到理论断裂强度,而材料又不能通过塑性变形使应力松弛,这样便开始萌生裂纹。

陶瓷材料断裂韧性的测定(优选材料)

实验陶瓷材料断裂韧性的测定 一、前言 脆性材料的破坏往往是破坏性的,即材料中裂纹一旦扩展到一定程度,就会立即达到失稳态,之后裂纹迅速扩展。材料的断裂韧性可以用来衡量它抵抗裂纹扩展的能力,亦即抵抗脆性破坏的能力。它是材料塑性优劣的一种体现,是材料的固有属性。裂纹扩展有三种形式:掰开型(I型)、错开型(II型)、撕开型(III型),其中掰开型是最为苛刻的一种形式,所以通常采用这种方式来测量材料的断裂韧性,此时的测量值称作K IC。在平面应变状态下材料K IC 值不受裂纹和几何形状的影响。因此,K IC值对了解陶瓷这一多裂纹材料的本质属性,具有非常重要的意义。 目前,断裂韧性的测试方法多种多样,如:单边切口梁法(SENB)、双扭法(DT)、山形切口劈裂法、压痕法、压痕断裂法等。其中,有些方法技术难度较高,不太容易实现大规模实用化;有些方法会出现较大测量误差,应用起来存在一定困难。相对而言,比较普遍采用的SENB法,该方法试样加工较简单,裂纹的引入也较容易。 本实验采用SENB法进行。但是,这种方法存在裂纹尖端钝化、预制裂纹宽度不易做得很窄等缺陷;另外,它适用于粗晶陶瓷材料,对细晶陶瓷其所测的K IC值偏大。 二、仪器 测试断裂韧性所需仪器如下: 1.材料实验机 对测试材料施加载荷,应保证一定的位移加载速度,国标规定断裂韧性测试加载速度为0.05mm/min。 2.内圆切割机 用于试样预制裂纹,金刚石锯片厚度不应超过0.20mm。 3.载荷输出记录仪 输出并记录材料破坏时的最大载荷,负荷示值相对误差不大于1。本实验在材料实验机上配置了量程为980N的称重传感器输出载荷,采用电子记录仪记录断裂载荷。 4.夹具 保证在规定的几何位置上对试样施加载荷,试样支座和压头在测试过程中不发生塑性变形,材料的弹性模量不低于200GPa。支座和压头应有与试样尺寸相配合的曲率半径,长度应大于试样的宽度,与试样接触部分的表面粗糙度R a(根据规定不大于1.6μm)。试样支座为两根二硅化钼发热体的小圆柱,置于底座两个凹槽上。压头固定在材料实验机的横梁上。 5.量具 测量试样的几何尺寸和预制裂纹深度,精度为0.0lmm,需使用游标卡尺和读数显微镜。 三、试样的要求 试样的形状是截面为矩形的长条,试样表面要经过磨平、抛光处理,对横截面垂直度有一定的要求,边棱应作倒角。在试样中部垂直引入裂纹,深度大约为试样高度的一半,宽度应小于0.2mm。试样尺寸比例为: c/W=0.4~0.6 L/W=4 B≈W/2 式中:c-裂纹深度;

第二章材料的脆性断裂与强度

第二章材料的脆性断裂与强度 §2.1 脆性断裂现象 一、弹、粘、塑性形变 在第一章中已阐述的一些基本概念。 1.弹性形变 正应力作用下产生弹性形变,剪彩应力作用下产生弹性畸变。随着外力的移去,这两种形变都会完全恢复。 2.塑性形变 是由于晶粒内部的位错滑移产生。晶体部分将选择最易滑移的系统(当然,对陶瓷材料来说,这些系统为数不多),出现晶粒内部的位错滑移,宏观上表现为材料的塑性形变。3.粘性形变 无机材料中的晶界非晶相,以及玻璃、有机高分子材料则会产生另一种变形,称为粘性流动。 塑性形变和粘性形变是不可恢复的永久形变。 4.蠕变: 当材料长期受载,尤其在高温环境中受载,塑性形变及粘性形变将随时间而具有不同的速率,这就是材料的蠕变。蠕变的后当剪应力降低(或温度降低)时,此塑性形变及粘性流动减缓甚至终止。 蠕变的最终结果:①蠕变终止;②蠕变断裂。 二.脆性断裂行为 断裂是材料的主要破坏形式。韧性是材料抵抗断裂的能力。材料的断裂可以根据其断裂前与断裂过程中材料的宏观塑性变形的程度,把断裂分为脆性断裂与韧性断裂。 1.脆性断裂 脆性断裂是材料断裂前基本上不产生明显的宏观塑性变形,没有明显预兆,往往表现为突然发生的快速断裂过程,因而具有很大的危险性。因此,防止脆断一直是人们研究的重点。2.韧性断裂 韧性断裂是材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。韧性断裂时一般裂纹扩展过程较慢,而且要消耗大量塑性变形能。 一些塑性较好的金属材料及高分子材料在室温下的静拉伸断裂具有典型的韧性断裂特征。 3.脆性断裂的原因 在外力作用下,任意一个结构单元上主应力面的拉应力足够大时,尤其在那些高度应力集中的特征点(例如内部和表面的缺陷和裂纹)附近的单元上,所受到的局部拉应力为平均应力的数倍时,此过分集中的拉应力如果超过材料的临界拉应力值时,将会产生裂纹或缺陷的扩展,导致脆性断裂。虽然与此同时,由于外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。因此,断裂源往往出现在材料中应力集中度很高的地方,并选择这种地方的某一个缺陷(或裂纹、伤痕)而开裂。 各种材料的断裂都是其内部裂纹扩展的结果。因而,每种材料抵抗裂纹扩展能力的高低,表示了它们韧性的好坏。韧性好的材料,裂纹扩展困难,不易断裂。脆性材料中裂纹扩展所需能量很小,容易断裂;韧性又分断裂韧性和冲击韧性两大类。断裂韧性是表征材料抵抗其内部裂纹扩展能力的性能指标;冲击韧性则是对材料在高速冲击负荷下韧性的度量。二者间存在着某种内在联系。 三.突发性断裂与裂纹的缓慢生长 裂纹的存在及其扩展行为,决定了材料抵抗断裂的能力。 1.突发性断裂 断裂时,材料的实际平均应力尚低于材料的结合强度(或称理论结合强度)。在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好等于结合强度时,裂纹产生突发性扩展。一旦扩展,引起周围应力的再分配,导致裂纹的加速扩展,出现突发性断裂,这种断裂往往并无先兆。 2.裂纹的生长

断裂韧性实验报告材料

断裂韧性测试实验报告 随着断裂力学的发展,相继提出了材料的IC K 、()阻力曲线J J R 、)(阻力曲线CTOD R δ等一些新的力学性能指标,弥补了常规试验方法的不足,为工程应用提供了可靠的断裂判据和设计依据。下面介绍下这几种方法的测试原理及试验方法。 1、三种断裂韧性参数的测试方法简介 1. 1 平面应变断裂韧度IC K 的测试 对于线弹性或小围的I 型裂纹试样,裂纹尖端附近的应力应变状态完全由应力强度因子I K 所决定。I K 是外载荷P ,裂纹长度a 及试样几何形状的函数。在平面应变状态下,当P 和a 的某一组合使I K =IC K ,裂纹开始失稳扩展。I K 的临界值IC K 是一材料常数,称为平面应变断裂韧度。测试IC K 保持裂纹长度a 为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时的C P 、a 代入所用试样的I K 表达式即可求得IC K 。 IC K 的试验步骤一般包括: (1) 试样的选择和准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲 劳预制裂纹等); (2) 断裂试验; (3) 试验结果的处理(包括裂纹长度a 的测量、条件临界荷载Q P 的确定、实验测试值Q K 的 计算及Q K 有效性的判断)。 1. 2 延性断裂韧度R J 的测试

J 积分延性断裂韧度是弹塑性裂纹试样受I 型载荷时,裂纹端点附近区域应力应变场强度力学参量J 积分的某些特征值。测试J 积分的根据是J 积分与形变功之间的关系: a B U J ??-= (1-1) 其中U 为外界对试样所作形变功,包括弹性功和塑性功两部分,a 为裂纹长度,B 为试样厚度。 J 积分测试有单试样法和多试验法之分,其中多试样法又分为柔度标定法和阻力曲线法。但无论是单试样法还是多试样柔度标定法,都须先确定启裂点,而困难正在于此。因此,我国GB2038-80标准中规定采用绘制R J 阻力曲线来确定金属材料的延性断裂韧度。这是一种多试样法,其优点是无须判定启裂点,且能达到较高的试验精度。这种方法能同时得到几个J 积分值,满足工程实际的不同需要。 所谓R J 阻力曲线,是指相应于某一裂纹真实扩展量的J 积分值与该真实裂纹扩展量的关系曲线。标准规定测定一条R J 阻力曲线至少需要5个有效试验点,故一般要5~8件试样。把按规定加工并预制裂纹的试样加载,记录?-P 曲线,并适当掌握停机点以使各试样产生不同的裂纹扩展量(但最大扩展量不超过0.5mm )。测试各试样裂纹扩展量a ?,计算相应的J 积分,对试验数据作回归处理得到R J 曲线。R J 阻力曲线的位置高低和斜率大小代表了材料对于启裂和亚临界扩展的抗力强弱。 R J 阻力曲线法测试步骤一般包括: (1) 试样准备 ①试样尺寸的选择原则: 1)平面应变条件:标准规定 )/(05.0s J B σα≥ (1-2) 其中

第四章金属的断裂韧性

第四章 金属的断裂韧性 1. 名词解释: ⑴ 低应力脆断;⑵ 张开型(Ⅰ型)裂纹;⑶ 应力场强度因子 (4)裂纹扩展K 判据;(5) 裂纹扩展能量释放率;(6) 裂纹扩展G 判据 (7)小范围屈服;(8) 塑性区;(9) 有效屈服应力;(10)等效裂纹; 2. 传统强度设计与线弹性断裂力学性能设计的基本思路有何差异?它们在实 零件设计中的应用各有何局限性? 3. 何谓“低应力脆断”?为什么会产生低应力脆断? 4. 何谓“应力场强度因子”? “断裂韧性”?它们的物理意义是什么?量纲 是什么? 5. 什么是平面应力状态?什么是平面应变应力状态?实际构件承载时哪些可 以看成是平面应变应力状态? 6. 说明IC I K a Y K ≥?=σ,式中各符号所代表的物理意义?这一不等式可以解 决哪些问题? 7. 设有两条Ι型裂纹,其中一条长为4a ,另一条长为a ,若前者加载至σ,后 者加载至2σ,试问它们裂纹顶端附近的应力场是否相同,应力场强度因子是否相同? 8. 改善材料断裂韧性的途径? 9. 对实际金属材料而言,裂纹顶端形成塑性区是不可避免的,由此对线性弹性断裂力学分析带来哪些影响。反映在 试验测定上有何具体要求。 10. 有一大型板件,材料的σ0.2=1200MPa ,K IC =115 MPa·m 1/2,探伤发现有20mm 长的横向穿透裂纹,若在平均轴向应力900MPa 下工作,试计算K I 和塑性区宽度并判断该件是否安全。 11. 有一构件加工时,出现表面半椭圆裂纹,若a=1mm,a/c=0.3,在1000MPa 的 应力下工作,对下列材料应选哪一种?

σ0.2/ MPa 1100 1200 1300 1400 1500 KIC/ MPa·m 1/2110 95 75 60 55 12. 已知裂纹长2a=8mm ,σ=400MPa ,若取Y 为0.8636,求K 1? 13. 某高压气瓶壁厚18mm ,内径380mm ,经探伤发现沿气瓶体轴向有一表面深 裂纹,长 3.8mm ,气瓶材料在-40℃时的抗拉强度为86 Kgf/mm 2,K IC = 166Kgf/mm 23,试计算在-40℃时临界压力是多少?(提示:可把表面深裂纹看作穿透裂纹)

相关文档