文档库 最新最全的文档下载
当前位置:文档库 › 分析一个模拟PI(比例积分)调节电路

分析一个模拟PI(比例积分)调节电路

分析一个模拟PI(比例积分)调节电路
分析一个模拟PI(比例积分)调节电路

分析一个模拟PI(比例积分)调节电路

今天来介绍一个自动控制上常用的一个调节电路:PI调节电路,也就是比例积分电路。当然作为PID调节电路,会有很多种形式,这可是最简单的由单运放构成的PI电路。你也可以通过三个运放来构成,U2构成积分器,U1做比例运算,U3构成加法器。如图1:

图1

上面的比较好理解,这里就不讨论了。我们来研究下面的PI 电路。如何来读懂这个电路呢,似乎与图1差别很大,好下面来计算一下传递函数

图2如图2 箭头表示电流的方向,取电压与电流关联参考方向。根据运放“虚短“可知运放反向输入端基本保持零电

位。则

I=Vi÷R1-------------------------(1)

由“虚断断”可得I直接流过R2 C1路径,Ur2 Uc1 分别表示R2 C1上的压降

则Ur2=I×R2可得Ur2= Vi×(R2÷R1)---(2)

由1/C1×(dUc1/dt)=I两边积分可得

1/C×∫I=Uc1=>1/C1×∫(Vi÷R1)dt--------(3)

综合2 3两式的,我们就可以华丽的得出以下

Vo=-Vi×R2/R1-1/C1×∫(Vi÷R1)dt 稍微整理一下可以看到更清楚一点

V o=﹣(R2/R1) ×Vi-1/( C1×R1) ×∫Vidt------—(4)

令Kp=﹣(R2/R1) Ki=-

1/( C1×R1)

V o=Kp×Vi+Ki×∫Vidt

这其实就是个PI调节的标准表达式。

V o通过某种方式去控制外设,常用方法如三角波比较进行脉宽调试。

我们再对上面的图进行简单的变形得到下图

图3采用上面的计算方法可以很方便的计算出输出表达式其中I=(Vi/R1+Vref/R3)

在实际系统中Vi作为实际采集的目标值Vref就是设定的目标值。在设计的时候一般将Vref设置为对应的负值,以构成负反馈。如目标值是5V,就将Vref设定为-5V.再将R3的值取

的后R1一样。则I=(VI-Vref)/R1 I=Ve/R1. 这图三可直接变换为图2,只需将Vi 变为Ve

将4式中的VI替换为Ve

V o=﹣(R2/R1) ×Ve-1/( C1×R1) ×∫Vedt------(5)

适当调节R1 R2 C1 就可以设定PID参数在看看下图据说也是有人用的,但是我没有用过,我就是推算下

图4

通过和上面同样的方法Ve=Vi-Vref;

V o=Vref﹣(R2/R1) ×Ve-1/( C1×R1) ×∫Vedt------(5)

(5)式与(4)式相比多了个直流分量Vref.。如果后级电路配合合适,应该也是可以实现反馈调节的。

反向积分电路设计

模拟电子技术课程设计报告书 课题名称 反向积分电路设计 姓 名 学 号 院、系、部 通信与电子工程学院 专 业 电子信息工程专业 指导教师 2011年 12 月 12日 ※※※※※※※※※ ※※ ※ ※ ※※ ※ ※ ※ ※ ※ ※ ※ ※ ※ 2010级电子信息工程 模拟电子技术课程设计

反向积分电路设计 1 设计目的 掌握过零电压比较器和反向积分电路的特性及原理。 2 设计思路 (1)设计一个过零电压比较器产生一个方波。 (2)将上面产生的方波作为电源,设计一个反向积分电路。 (3)将已经选择好的各部分电路组合使之构成完整的电路图。 (4)利用仿真,观察波形变化。 3 设计过程 电压比较器电路 电压比较器是一种用来比较输入信号v i和参考电压V ref的电路,电路如图1所示,图中符号C表示比较器,它在实际应用时最重要的两个动态参数是灵敏度和响应时间。此设计中选用过零比较器,即图中Vref=0时的电路。 图1 电压比较器电路 反向积分电路 积分是一中常见的数学运算,这里所讨论的是模拟积分。电路如图2所示,利用虚地和虚断的概念v n=0,I1=0,因此有i1=i2=i,电容器C以电流i1=v1/R 进行充电。假设C初始电压v C(0)=0,则

v N-v O=1/C∫i1dt=1/C∫v1/Rdt v0=-1/(RC)∫v1dt 上式表明,输出电压v0为输入电压v1对时间的积分,负号表示它们在相位上是相反的。 图2 反向积分电路 总电路设计图 将比较器电路和反向积分电路组装起来的总电路如图3所示,该电路用的是低频率电源,目的是减小积分后波形失真,在这里,我所选的频率是1Hz。 图3 总电路设计图 4 仿真结果 (1)在中按照图3总电路设计图组装电路。

电路分析试题及其答案

一、填空题(每空1分,共15分) 1、一只标有额定电压20V、额定功率1W的灯泡。现接在10V的电源下使用,则其阻值为,实际电流是,实际消耗的功率为。 2、电流源IS=5A,r0=2Ω,若变换成等效电压源,则U= ,r0= . 3、b条支路、n个节点的电路,独立的KCL方程数等于,独立的个KVL 方程数等于。 4、三相四线制供电线路可以提供两种电压,火线与零线之间的电压叫 做,火线与火线之间的电压叫做。 5、正弦周期电流的有效值与最大值之间的关系是。 6、某一正弦交流电压的解析式为u=102cos(200πt+45°)V,则该正弦电流的 。当t=1s 有效值U=_____________V,频率为f= H Z 7、线性电路线性性质的最重要体现就是性和性,它们反映了电路中激励与响应的内在关系。 8、功率因数反映了供电设备的利用率,为了提高功率因数通常采用 补偿的方法。 二、判断题(正确打“√”,错误打“×”) (每题1分,共10分) 1、受控源与独立源一样可以进行电源的等效变换,变换过程中可以将受控源的控制量变异。() 2、叠加定理适用于线性电路,电压、电流和功率均可叠加。 ()

3、应用叠加定理和戴维宁定理时,受控源不能与电阻同样对待。 () 4、电流表内阻越小,电压表内阻越大,测量越准确。 () 5、含有L、C元件的正弦交流信号电路,若电路的无功功率Q=0,则可判定电路发 生 谐 振 。 ( ) 6、电压和电流计算结果得负值,说明它们的参考方向假设反了。 () 7、电功率大的用电器,电功也一定大。 () 8、结点电压法是只应用基尔霍夫电压定律对电路求解的方法。 () 9、非正弦周期量的有效值等于它各次谐波有效值之和。 () 10、实用中的任何一个两孔插座对外都可视为一个有源二端网络。 () 三、单项选择题(每小题1分,共20分)

集成运放基本应用之一模拟运算电路

实验十二集成运放基本应用之模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各 种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=x 输入阻抗n=x 输出阻抗r o=0 带宽f BW=x 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U o= A ud (U + —U-) 由于A ud=『而U o为有限值,因此,U + —U-即U + "U—,称为虚短” (2)由于「i=x,故流进运放两个输入端的电流可视为零,即I IB = 0,称为虚断”这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5—1所示。对于理想运放,该电路的输出电压与输入电压之间的 U。一割 R1

(a)同相比例运算电路 图5-3同相比例运算电路 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R 2 = R I / F F o Ri 100K -CZ) ------------- + 12V I I? 100K -12V 5-2反相加法运算电路 2)反相加法电路 电路如图5 — 2所示,输出电压与输入电压之间的关系为 R 3= R 1/R 2/R F 3)同相比例运算电路 图5— 3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 U °=(1 空)U i R 2= R I /R F 当R i —E 时,U o = U i ,即得到如图5 — 3(b)所示的电压跟随器。图中R 2= R F , 用以减小漂移和起保护作用。一般 R F 取10K Q , R F 太小起不到保护作用,太大 则影响跟随性。 Ui ------ + 12V9 + 12V? + 5 -- ° Rs ~ — [>8 + ■ + Ui a -----1—1— —+ (b)电压跟随器 图5-1反相比例运算电路图 JOK Ri Ri 100K 9 IK [RwJ 100K 1ODK. -12V Vfl

《电路分析》课程期末考试卷(A)参考答案

《电路分析》课程期末考试卷(A )参考答案 一、填空题 (10分,每空1分) 1. (2010)D =( )B = ( )H = ( )8421BCD 答案:(111 1101 1010)B = (7DA )H = (0010 0000 0001 0000)8421BCD 2. 仓库门上装了两把暗锁,A 、B 两位保管员各管一把锁的钥匙,必须二人同时开锁才能进库。这种逻辑关系为 。 答案:与逻辑 3. 逻辑函数式F=AB+AC 的对偶式为 ,最小项表达式为∑=m F ( )。 答案:))((C A B A F D ++= ∑=m F (5,6,7) 2.逻辑函数D AC CD A C AB D C ABD ABC F ''''''+++++=的最简与或式是 。 答案:'D A + 4. 从结构上看,时序逻辑电路的基本单元是 。 答案:触发器 5. JK 触发器特征方程为 。 答案:Q K JQ ''+ 6.A/D 转换的一般步骤为:取样,保持, ,编码。 答案:量化 二、选择题 (10分,每题1分) 1. 计算机键盘上有101个键,若用二进制代码进行编码,至少应为( )位。 A) 6 B) 7 C) 8 D) 51 答案:B 2. 在函数F=AB+CD 的真值表中,F=1的状态有( )个。 A) 2 B) 4 C) 6 D) 7 答案:D 3. 为实现“线与”逻辑功能,应选用( )。 A) 与非门 B) 与门 C) 集电极开路(OC )门 D) 三态门 答案:C 4. 图1所示逻辑电路为( )。 A) “与非”门 B) “与”门 C)“或”门 D) “或非” 门 A B C

数字PI调节器

PI 调节器是一种线性控制器,它根据给定值)(t r 与实际输出值)(t c 构成控制偏差 )()()(t c t r t e -= (3.58) 将偏差的比例(P )和积分(I )通过线性组合构成控制量,对被控对象进行控制,其控制规律为 ])(1)([)(0 ? + =t I p dt t e T t e K t u (3.59) 其中)(t u 为PI 控制器的输出,)(t e 为PI 调节器的输入,p K 为比例系数,I T 为积分时间常数。 简单说来,PI 控制器各校正环节的作用如下: 1.比例环节 即时成比例的反映控制系统的偏差信号)(t e ,偏差一旦产生, 控制器立即产生控制作用,以减少偏差。通常随着p K 值的加大,闭环系统的超调量加大,系统响应速度加快,但是当p K 增加到一定程度,系统会变得不稳定。 2.积分环节 主要用于消除静差,提高系统的无差度。积分作用的强弱取 决于积分常数I T ,I T 越大,积分作用越弱,反之越强。通常在p K 不变的情况下,I T 越大,即积分作用越弱,闭环系统的超调量越小,系统的响应速度变慢。 由于DSP 的控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,因此必须对上式进行离散化处理,用一系列采样时刻点k 代表连续的时间t ,离散的PI 控制算法表达式为: ∑∑==+= + =k j i p k j I s p j e K k e K j e T T k e K k u 0 ) ()(])()([)( (3.60) 其中k =0,1,2……表示采样序列,)(k u 表示第k 次采样时刻PI 调节器的输出值,)(k e 表示第k 次采样时刻输入的偏差值,s T 表示采样周期,p K 为比例系数, i K 为积分系数。 数字PI 调节器可以分为位置式PI 控制算法和增量式PI 控制算法。如式(3.60)所表示的计算方法就是位置式PI 控制算法,PI 调节器的输出直接控制执行机构。这种算法的优点是计算精度比较高,缺点是每次都要对)(k e 进行累加,很容易出现积分饱和的情况,由于位置式PI 调节器直接控制的是执行机构,积分一旦饱和就会引起执行机构位置的大幅度变化,造成控制对象的不稳定。增量式PI 控制算法是在式(3.60)的基础上做了一些修改。根据式(3.60)可得 ∑-=+-=-1 )()1()1(k j i p j e K k e K k u (3.61) 由式(3.60),式(3.61)可得

仿真实验一-RC微分积分电路

一、RC 一阶微积分电路仿真实验 一、电路课程设计目的 1、测定RC 一阶电路的积分、微分电路; 2、掌握有关微分电路和积分电路的概念。 二、仿真电路设计原理 1.RC 电路的矩形脉冲响应 若将矩形脉冲序列信号加在电 压初值为零的RC 串联电路上, 电路的瞬变过程就周期性地发 生了。显然,RC 电路的脉冲响 应就是连续的电容充放电过程。 如图所示。 若矩形脉冲的幅度为U ,脉宽为 tp 。电容上的电压可表示为: 电阻上的电压可表示为: 21010 0)(0)1()(t t t e U t u t t e U t u t t ≤≤?=≤≤-=-- ττ 即当 0到t1时,电容被充电;当t1到t2 时,电容器经电阻R 放电。 2110 )(0)(t t t e U t u t t e U t u t R t R ≤≤?-=≤≤?=-- ττ (也可以这样解释:电容两端电压不能突变,电流可以,所以反映在图中就是电阻两端的电压发生了突变。) 2.RC 微分电路 取RC 串联电路中的电阻两端为输出端,并选择适当的电路参数使时间常数τ<

上式说明,输出电压uo(t)近似地与输入电压ui(t)成微分关系,所以这种电路称微分电路。 3.RC 积分电路 如果将RC 电路的电容两端作为输出端,电路参数满足τ>>tp 的条件,则成为积分电路。由于这种电路电容器充放电进行得很慢,因此电阻R 上的电压ur(t)近似等于输入电压ui(t),其输出电压uo(t)为: ????≈?=?==dt t u RC dt R t u C dt t i C t u t u R R C C )(1)(1)(1)()(0 上式表明,输出电压uo(t)与输入电压ui(t)近似地成积分关系。 4.时间常数 RC 电路中,时间常数τ=R*C ; RL 电路中,时间常数τ=L/R 。 三、仿真实验电路搭建与测试 1、一阶RC 微分电路: 1u c u

电路分析基础期末试卷A及参考答案

桂 林 电 子 科 技 大 学 试 卷 2018-2019 学年第 一 学期 课号 BT122003_01 课程名称电路与电场导论 (A 、B 卷; 开、闭卷) 适用班级(或年级、专业)17电子信息类 一.选择题:本大题共15个小题,每小题2分,共30分,在每小题给出的四个选项中,只有一项是符合题意要求的,把所选项前的字母填在题后的括号内。 1、已知空间有a 、b 两点,电压U ab =8V ,a 点电位为V a =3V ,则b 点电位V b 为( )。 A 、5V B 、-5V C 、 11V D 、15V 2、两个电阻,当它们串联时,功率比为4:9;若它们并联,则它们的功率比为:( )。 A 、4:9 B 、9:4 C 、2:3 D 、3:2 3、图1所示电路中,已知元件A 放出功率10W ,则电流I =( )。 A 、 1A B 、2A C 、-1A D 、 5A 图2 。 、 D 、2A 5、由电压源、电流源的特性知,几个( )的电压源可以等效为一个电压源;几个( )的电流源可以等效为一个电流源,电压源与任意二端元件( ),可以等效为电压源;电流源与任意二端元件( ),可以等效为电流源。( ① 并联 ② 串联 ) A 、② ,① ,① ,② B 、①,②,②,① C 、② ,①, ② ,① D 、①,②,①,② 6、用戴维南定理分析电路求端口等效电阻时,电阻为该网络中所有独立电源置零时的等效电阻。其独立电源置零是指( )。 A 、独立电压源开路,独立电流源短路 B 、独立电压源短路,独立电流源短路 C 、独立电压源短路,独立电流源开路 D 、以上答案都不对 7、314μF 电容元件用在100Hz 的正弦交流电路中,所呈现的容抗值为( ) A 、Ω B 、Ω C 、Ω D 、51Ω 装 订 线 内 请 勿 答 题 4a

PI控制器要点

PI 控制原理 1.1 比例(P )控制 比例控制是一种最简单的控制方式。其控制器实质上是一个具有可调增益的放大器。在信号变换过程中,P 控制器值改变信号的增益而不影响其相位。在串联校正中,加大了控制器增益k ,可以提高系统的开环增益,减小的系统稳态误差,从而提高系统的控制精度。控制器结构如图1: 图1 1.2 比例-微分控制 具有比例-微分控制规律的控制器称PI 控制器,其输出信号m(t)同时成比例的反应出输入信号e(t)及其积分,即: ?+=t i dt t e T k t ke t m 0)()()( (1) 式(1)中,k 为可调比例系数;i T 为可调积分时间常数。PI 控制器如图2所示。 图2 在串联校正时,PI 控制器相当于在系统中增加了一个位于原点的开环极点,同时也增加了一个位于s 左半平面的开环零点。位于原点的极点可以提高系统的型别,以消除或减小系统的稳态误差,改善系统的稳态性能;而增加的负实零点则用来减小系统的阻尼程度,缓和PI 控制器极点对系统稳定性及动态性能产生的不利影响。只要积分时间常数i T 足够大,PI 控制器对系统稳定性的不利影响可大为减弱,在控制工程中,PI 控制器主要用来改善控制系统的稳态性能。 k r(t) - c(s) e(t) m(t) ) 11(s T k i +R(s) - C(s) E(s) M(s)

2 P 和PI 控制参数设计 2.1 初始条件: 反馈系统方框图如图3所示。K (s)D =1(比例P 控制律),s K K (s)D I + =2(比例积分PI 控制律),)6s )(1s (1s G 1+-+= s (s),) 2s )(1s (1 G 2++=(s) 2.2 P 控制器设计 2.2.1 比例系数k 的设定 由题目给出的初始条件知,当G(s)=(s)1G ,未加入D(s )校正环节时,系统开环传递函数为: 6)1)(s -s(s 1 s (s)H(s)++= G s s s 651 s 23-++= (2) 又系统结构图可知系统为单位负反馈系统所以闭环传递函数为: )6)(1(11) 6)(1(1 )(+-+++-+= s s s s s s s s s φ 1551 23 +-++=s s s s (3) 则系统的闭环特征方程为:D(s)=1552 3+-+s s s =0. 按劳斯判据可列出劳斯表如表1: )s (D G(s) R Y e + - 图3

积分电路的设计

156 实验四 积分电路的设计 一. 实验目的: 1.学习简单积分电路的设计与调试方法。 2.了解积分电路产生误差的原因,掌握减小误差的方法。 二. 预习要求 1.根据指标要求,设计积分电路并计算电路的有关参数。 2.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 3.写出预习报告 三.积分电路的设计方法与步骤 积分电路的设计可按以下几个步骤进行: 1. 选择电路形式积分电路的形式可以根据实际要求来确定。o 若要进行两个信号的求和积分运算,应选择求和积分电路。若只要求对某个信号进行一般的波形变换,可选用基本积分电路。基本积分电路如图所示: 图1 基本积分电路 2.确定时间常数τ=RC τ的大小决定了积分速度的快慢。由于运算放大器的最大输出电压U omax 为有限值(通 常U omax =±10V 左右),因此,若τ的值太小,则还未达到预定的积分时间t 之前,运放已经饱和,输出电压波形会严重失真。所以τ的值必须满足: dt u U t i o ?-≥0max 1 τ 当u i 为阶跃信号时,τ的值必须满足: max o U Et - ≥τ (E 为阶跃信号的幅值)

157 另外,选择τ值时,还应考虑信号频率的高低,对于正弦波信号u i =U im sin ωt ,积分电 路的输出电压为: t U tdt U u im im ωτωωτcos sin 1 0=-=? 由于t ωcos 的最大值为1,所以要求: max o im U U ≤τω 即: ω τmax o im U U ≥ 因此,当输入信号为正弦波时,τ的值不仅受运算放大器最大输出电压的限制,而且与 输入信号的频率有关,对于一定幅度的正弦信号,频率越低τ的值应该越大。 3.选择电路元件 1)当时间常数τ=RC 确定后,就可以选择R 和C 的值,由于反相积分电路的输入电阻 R i =R ,因此往往希望R 的值大一些。在R 的值满足输入电阻要求的条件下,一般选择较大的 C 值,而且C 的值不能大于1μF 。 2)确定R P R P 为静态平衡电阻,用来补偿偏置电流所产生的失调,一般取R P =R 。 3)确定R f 在实际电路中,通常在积分电容的两端并联一个电阻R f 。R f 是积分漂移泄漏电阻,用来 防止积分漂移所造成的饱和或截止现象。为了减小误差要求R f ≥ 10R 。 4.选择运算放大器 为了减小运放参数对积分电路输出电压的影响,应选择:输入失调参数(U IO 、I IO 、I B ) 小,开环增益(A uo )和增益带宽积大,输入电阻高的集成运算放大器。 四.积分电路的调试 对于图1所示的基本积分电路,主要是调整积分漂移。一般情况下,是调整运放的外接 调零电位器,以补偿输入失调电压与输入失调电流的影响。调整方法如下:先将积分电路的 输入端接地,在积分电容的两端接入短路线,将积分电容短路,使积分电路复零。然后去掉 短路线,用数字电压表(取直流档)监测积分电路的输出电压,调整调零电位器,同时观察 积分电路输出端积分漂移的变化情况,当调零电位器的值向某一方向变化时,输出漂移加快,而反方向调节时,输出漂移变慢。反复仔细调节调零电位器,直到积分电路的输出漂移最小 为止。

电路分析_4_试题卷

山东工商学院 2020学年第一学期电路分析课程试题 A卷 (考试时间:120分钟,满分100分) 特别提醒:1、所有答案均须填写在答题纸上,写在试题纸上无效。 2、每份答卷上均须准确填写函授站、专业、年级、学号、姓名、课程名称。 一单选题 (共20题,总分值40分 ) 1. 已知在非关联参考方向下,某个元件的端电压为5V,流过该元件的电流为2mA,则该元件功率状态为()。(2 分) A. 吸收10W B. 发出10W C. 吸收10mW D. 发出10mW 2. 关于叠加定理的应用,下列叙述中错误的是()。(2 分) A. 只适用于线性电路,不适用于非线性电路; B. 仅适用于线性电路的电压、电流的计算; C. 对于不作用的电流源可用短路替代,不作用的电压源可用开路替代; D. 对于不作用的电流源可用开路替代,不作用的电压源可用短路替代。 3. 关于叠加定理的应用,下列叙述中错误的是()。(2 分) A. 只适用于线性电路,不适用于非线性电路; B. 仅适用于线性电路的电压、电流的计算; C. 对于不作用的电流源可用短路替代,不作用的电压源可用开路替代; D. 对于不作用的电流源可用开路替代,不作用的电压源可用短路替代。 4. 电路中的一条支路如图1.2所示,电压和电流的方向已表示在图中,且,则图中,对于该支路, ()。(2 分) A. 、为关联方向,电流的实际方向是自A流向B B. 、为关联方向,电流的实际方向是自B流向A C. 、为非关联方向,电流的实际方向是自A流向B D. 、为非关联方向,电流的实际方向是自B流向A。

5. 回路电流法是以回路电流为未知量,由于回路电流自动满足_________________的约束,所以只需列写个_________________方程,进而求解电路中相应变量的方法。下列叙述正确的是()。(2 分) A. KVL,n1,KCL; B. KVL,b n+1,KCL; C. KCL,n1,KVL; D. KCL,b n+1,KVL。 6. 一阶电路的全响应是指()。(2 分) A. 电容电压或电感电压,且电路有外加激励作用 B. 电容电流或电感电压,且电路无外加激励作用 C. 电容电流或电感电流,且电路有外加激励作用 D. 电容电压或电感电流,且电路有外加激励作用。 7. 已知3个串联电阻的功率分别为,,,电阻,则电阻和的阻值分别为()。(2 分) A. , B. , C. , D. , 8. 已知3个串联电阻的功率分别为,,,电阻 ,则电阻和的阻值分别为()。(2 分) A. , B. , C. , D. , 9. 若、两电容并联,则其等效电容为()。(2 分) A.

模拟运算电路(三)

实验五模拟运算电路(三) 一、实验目的 1、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念。 2、熟练掌握运算放大电路的故障检查和排除方法,以及输入阻抗、输出阻抗、增益、幅频 特性、传输特性曲线的测量方法。 二、实验原理 三、预习思考 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。 T:TIP 参数名称参数值参数意义及设计时应该如何考虑 直流参数 输入 失调电压V IO 1(T) <6mV 该参数表示使输出电压为零时需要在输入端作用的电压差。理 想运放当输入电压为零时,其输出电压也为零,但实际运放当 输入电压为零时,其输出端仍有一个偏离零的直流电压,这是 由于运放电路参数不对称所引起的。 输入 偏置电流I IB 80(T)<500nA 该参数指运算放大器工作在线性区时流入输入端的平均电流。 指运放输入级差分对管的基极电流 12 , B B I I,通常由于晶体管参

数的分散性,12B B I I ≠。输入偏置电流的大小,在电路外接电阻确定之后,主要取决于运放差分输入级的性能,当他的β值太小时,将引起偏置电流增加。从使用角度看,偏置电流愈小,由信号源内阻变化引起的输出电压变化也愈小。 输入 失调电流I IO 20(T)<200nA 该参数是指流入两个输入端的电流之差。输出电压为零时,两 输入端静态电流的差值,即12io B B I I I =-。其典型值为几十至 几百Na .由于信号源内阻的存在,io I 会引起一输入电压,破坏放大器的平衡,使放大器输出电压不为零。io I 越小越好,他反映了输入级有效差分对管的不对称程度。 失调电压温漂 αV IO 20/uV C ±? 该参数指温度变化引起的输入失调电压的变化,通常以 /uV C ? 为单位表示.指在规定范围内io V 的温度系数。 共模抑制比K CMR 70(T)<90dB 差模电压增益VD A 与共模电压增益VC A 之比 开环差模 电压增益A VD 6 10 集成运放工作在线性区,接入规定的负载,无负反馈情况下的 直流差模电压增益。VD A 与输出电压0V 的大小有关。通常是在规定的输出电压幅度(如010V V =±)测得的值。VD A 又是频率的函数,频率高于某一数值后,VD A 的数值开始下降。 输出 电压摆幅V OM +/-10 ~14 正负输出电压的摆动幅度极限 差模输入电阻R ID 0.3~2M Ω 输出电阻R O 75 Ω 交流参数 增益带宽积G.BW 0.7~1.6MHZ 增益带宽积A OL * ? 是一个常量,定义在开环增益随频率变化的特性曲线中以-20dB/十倍频程滚降的区域。运放的增益是随信号的频率而变化的,输出电压随信号频率增大而使其下降到最大值的0.707倍的频率范围,称为带宽。 转换速率S R 0.25~0.5V/us (RL>2K) 该参数是指输出电压的变化量与发生这个变化所需时间之比的最大值。SR 通常以V/μs 为单位表示, 有时也分别表示成正向变化和负向变化。当运放在闭环情 况下,其输入端加上大信号(通常为阶跃信号时) ,其输出电压 波形将呈现一定的延时,其主要原因是运放内部电率中的电容 充放电需要一定的时间。SR 表示运放在闭环状态下,每1us 时间内输出电压变化的最大值。 极限参数 最大差模 输入电压V IOR 30V ± 反相和同相输入端所能承受的最大电压值。超过这个电压值, 运放输入级某一侧的BJT 将出现发射结的反向击穿,而使运放的性能显著恶化,甚至可能造成永久性损坏。 最大共模 13V ± 运放所能承受的最大共模输入电压。超过IC R V 值,它的共模抑

运算放大器积分电路图

运算放大器积分电路图 原理图1 积分运算电路的分析方法与加法电路差不多,反相积分运算电路如图1所 示。根据虚地有, 于是 由此可见,输出电压为输入电压对时间的积分,负号表明输出电压和输入电压在相位上是相反的。 当输入信号是阶跃直流电压U I时,电容将以近似恒流的方式进行充电,输出 电压与时间成线性关系。即 例:在图1的积分器的输入端加入图2中给定输入波形,画出在此输入波形作用下积分器的输出波形,电容器上的初始电压为0。积分器的参数R=10kW、C=0.1mF。 图2给出了在阶跃输入和方波输入下积分器的输出波形。画出积分器输出波形,应对应输入波形,分段绘制。例如对于图2(a)阶跃信号未来之前是一段,阶跃信号到来之后是一段。 对图2(a),当t<t0时,因输入为0,输出电压等于电容器上的电压,初始值为0; 当t≥t0时,u I = -U I,积分器正向积分,输出电压 要注意,当输入信号在某一个时间段等于零时,参阅图2(b)的1ms~2ms、 3ms~4ms…各段。积分器的输出是不变的,保持前一个时间段的最终数值。因为虚地的原因,当输入为零时,积分电阻 R 两端无电位差,故R中无电流,因此 C 不能放电,故输出电压保持不变。 实际应用积分电路时,由于运放的输入失调电压、输入偏置电流和失调电流的影响,会出现积分误差;此外,积分电容的漏电流也是产生积分误差的原因之一。

(a) 阶跃输入信号(b)方波输入信号 图2 积分器的输入和输出波形 实际的积分电路,应当采用失调电压、偏置电流和失调电流较小的运放,并在同相输入端接入可调平衡电阻;选用泄漏电流小的电容,如薄膜电容、聚苯乙烯电容,可以减少积分电容的漏电流产生的积分误差。

电路分析基础_期末考试试题与答案

命题人: 审批人: 试卷分类(A 卷或B 卷) A 大学 试 卷 学期: 2006 至 2007 学年度 第 1 学期 课程: 电路分析基础I 专业: 信息学院05级 班级: 姓名: 学号: (本小题5分) 求图示电路中a 、b 端的等效电阻R ab 。 1 R R ab =R 2 (本小题6分) 图示电路原已处于稳态,在t =0时开关打开, 求则()i 0+。 Ω

i(0+)=20/13=1.54A ( 本 大 题6分 ) 求图示二端网络的戴维南等效电路。 1A a b u ab =10v, R 0=3Ω (本小题5分) 图示电路中, 电流I =0,求U S 。 Us=6v

(本小题5分) 已知某二阶电路的微分方程为 d d d d 22 81210u t u t u ++= 则该电路的固有频率(特征根)为____-2________和___-6______。该电路处于___过_____阻 尼工作状态。 (本小题5分) 电路如图示, 求a 、b 点对地的电压U a 、U b 及电流I 。 U a =U b =2v, I=0A. ( 本 大 题10分 ) 试用网孔分析法求解图示电路的电流I 1、I 2、I 3。 I 1=4A, I 2=6A, I 3=I 1-I 2=-2A (本小题10分) 用节点分析法求电压U 。

U U=4.8V ( 本 大 题12分 ) 试用叠加定理求解图示电路中电流源的电压。 3V 4A 单独作用时,u ’=8/3V; 3V 单独作用时,u ’’=-2V; 共同作用时,u=u ’+u ’’=2/3V 。 十、 ( 本 大 题12分 ) 试求图示电路中L R 为何值时能获得最大功率,并计算此时该电路效率

模电-模拟运算电路实验

实验五 模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽 f BW =∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 i F O U R U -=

关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 / R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F ,用以减小漂移和起保护作用。一般R F 取10KΩ, R F 太小起不到保护作用,太大则影响跟随性。 (a) 同相比例运算电路 (b) 电压跟随器 图5-3 同相比例运算电路 4) 差动放大电路(减法器)

电路分析基础试卷

“电路分析基础”试题(120分钟)—III 一、 单项选择题(在每个小题的四个备选答案中,选出一个正确答案,并将正确答案的 填入提干的括号。每小题2分,共40分) 1、 图示电路中电流i 等于( ) 1)1A 2)2A 3)3A 4)4A 2、图示单口网络的短路电流sc i 等于( ) 1)1A 2)1.5A 3)3A 4) -1A 3、图示电路中电压 u 等于( ) 1)4V 2)-4V 3)6V 4)-6V 4、图示单口网络的开路电压oc u 等于( ) 1)3V 2)4V 3)5V 4)9V 7A Ω 16V Ω - 10V + u -+ Ω1Ω 26V 3V

5、图示电路中电阻R吸收的功率P等于() 1)3W 2)4W 3)9W 4)12W 6、图示电路中负载电阻 L R吸收的最大功率等于()1)0W 2)6W 3)3W 4)12W 7、图示单口网络的等效电阻等于() 1)2Ω 2)4Ω 3)6Ω 4)-2Ω 8、图示电路中开关断开时的电容电压 ) 0(+ c u等于( 1)2V 2)3V 3)4V 4)0V 9、图示电路开关闭合后的电压 ) (∞ c u等于() 1)2V 2)4V 3)6V 4)8V Ω 2 Ω 1 5:1 L R Ω 4 a b 2V 6V - c u

10、图示电路在开关断开后电路的时间常数等于( ) 1)2S 2)3S 3)4S 4)7S 11、图示电路的开关闭合后,电感电流)(t i 等于() 1)t e 25- A 2)t e 5.05- A 3))1(52t e -- A 4))1(55.0t e -- A 12、图示正弦电流电路中电压)(t u 的振幅等于() 1)1V 2)4V 3)10V 4)20V 14、图示单口网络相量模型的等效阻抗等于() 1)(3+j4) Ω 2)(0.33-j0.25) Ω 3)(1.92+j1.44) Ω 4)(0.12+j0.16) Ω 15、图示单口网络相量模型的等效导纳等于() 1)(0.5+j0.5) S 2)(1+j1) S 3)(1-j1) S 4)(0.5-j0.5) S 16、图示单口网络的功率因素为() Ω 2F 15A 1H u 1H s u V t t u s )2cos()(=_ Ω 4j b Ω -1j Ω 3

PI调节规律

比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进

一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能

够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。 5、PID控制器的参数整定 PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID 控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采

【免费下载】电路分析基础参考试卷答案

电路分析基础 i1、当电路中电流的参考方向与电流的真实方向相反时,该电流( b ) A 、一定为正值 B 、一定为负值 C 、不能肯定是正值或负值 2、已知空间有a 、b 两点,电压Uab=10V ,a 点电位为Va=4V ,则b 点电位Vb 为( b ) A 、6V B 、-6V C 、14V 3、当电阻R 上的u 、i 参考方向为非关联时,欧姆定律的表达式应为( b )A 、u = Ri B 、u = -Ri C 、u = R ︳i ︳ 4、一电阻R 上u 、i 参考方向不一致,令u =-10V ,消耗功率为0.5W ,则电阻R 为( a ) A 、200Ω B 、-200Ω C 、±200Ω5、两个电阻串联,R 1:R 2=1:2,总电压为60V ,则U 1 的大小为( b )A 、10V B 、20V C 、30V 6、一线圈(其等效参数为R 、L ) 与电容串联,接于100V 的电压源上,电路发生电压谐振,测得电容两端电压为100V ,则线圈两端电压为( c )。A 、100 V B 、150 V C 、V D 、200 V 21007、正弦稳态电路中,已知负载阻抗Z L =5+j10,若电源内阻抗Z 0 的虚部和实Ω部可单独调节,要使负载获得尽可能大的功率的条件是( a )。A 、Z 0=0-j10Ω B 、Z 0=5-j10Ω C 、Z 0=5+j10Ω D 、 Z 0= 0 Ω8、已知=10∠30°A,则该电流对应的正弦量瞬时值ip =( a )。 I A 、 A B 、 A )30cos(210?+t ω)30cos(10?-t ωC 、 A D 、 A )30cos(10?+t ω)30cos(210?-t ω9、在正弦交流电路中提高感性负载功率因数的方法是( b )。 A 、负载串联电感 B 、负载并联电容 C 、负载并联电感 10、当两个10μF 的电容器并联,则并联电容器的总电容为( a )。 A 、20μF B 、40μF C 、10μF 到位。在管路敷设过程中,要加强行调整使其在正常工况下与过度来确保机组高中资料试卷安全,并

实验二集成运算放大器的应用模拟运算 (1)

实验七 集成运算放大器的应用(一) 模拟运算电路 预习部分 一、实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 掌握运算放大器的使用方法,了解其在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。本实验采用的集成运放型号为μA741,引脚排列如图2-7-1所示。它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K Ω的电位器并将滑动触头接到负电源端。 ⑧脚为空脚。 当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 1) 反相比例运算电路 电路如图2-7-2所示。对于理想运放, 该电路 的输出电压与输入电压之间的关系为 Uo =-(R F / R 1)Ui 为了减小输入级偏置电流引起的运算误差,在 同相输入端应接入平衡电阻 R 2=R 1‖R F 。 2) 反相加法电路 图2-7-2 反相比例运算电路 图2-7-3反相加法运算电路 电路如图2-7-3所示,输出电压与输入电压之间的关系为 F i F i F O //R //R R R U R R U R R U 2132211 =??? ? ??+-= 图2-7-1 μA741管脚图

3) 同相比例运算电路 图2-7-4(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 Uo =(1+R F / R 1)Ui R 2=R 1 // R F 当R 1→∞时,Uo =Ui ,即得到如图2-7-4(b)所示的电压跟随器。图中R 2=R F ,用以减小漂移和起保护作用。一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a) 同相比例运算电路 (b) 电压跟随器 图2-7-4 同相比例运算电路 4) 差动放大电路(减法器) 对于图2-7-5所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式 图2-7-5 减法运算电路 图2-7-6 积分运算电路 5) 积分运算电路 反相积分电路如图2-7-6所示。在理想化条件下,输出电压uo 等于 ()()01 C t i O U dt U RC t U +-=? 式中 Uc(o)是t =0时刻电容C 两端的电压值,即初始值。 如果u i (t)是幅值为E 的阶跃电压,并设Uc(o)=0,则 ()RC E Edt RC t U t O -=-=?01 即输出电压 Uo(t)随时间增长而线性下降。显然R C 的数值越大,达到给定的Uo 值所需的时间就越长。积分输出电压所能达到的最大值受集成运放最大输出范围的限值。 ()121 i i F O U U R R U -=

积分电路设计

积分电路的设计 一. 实验目的: 1.学习简单积分电路的设计与调试方法。 2.了解积分电路产生误差的原因,掌握减小误差的方法。 二. 预习要求 1.根据指标要求,设计积分电路并计算电路的有关参数。 2.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 3.写出预习报告 三.积分电路的设计方法与步骤 积分电路的设计可按以下几个步骤进行: 1. 选择电路形式积分电路的形式可以根据实际要求来确定。o 若要进行两个信号的求和积分运算,应选择求和积分电路。若只要求对某个信号进行一般的波形变换,可选用基本积分电路。基本积分电路如图所示: 图1 基本积分电路 2.确定时间常数τ=RC τ的大小决定了积分速度的快慢。由于运算放大器的最大输出电压U omax 为有限值(通 常U omax =±10V 左右),因此,若τ的值太小,则还未达到预定的积分时间t 之前,运放已经饱和,输出电压波形会严重失真。所以τ的值必须满足: dt u U t i o ∫?≥0max 1 τ 当u i 为阶跃信号时,τ的值必须满足: 156

157 另外,选择τ值时,还应考虑信号频率的高低,对于正弦波信号u i =U im sin ωt ,积分电路的输出电压为: t U tdt U im im ωτωωτcos sin 1 0=?=∫u 由于t ωcos 的最大值为1,所以要求: max o im U U ≤τω 即: ωτmax o im U U ≥ 因此,当输入信号为正弦波时,τ的值不仅受运算放大器最大输出电压的限制,而且与输入信号的频率有关,对于一定幅度的正弦信号,频率越低τ的值应该越大。 3.选择电路元件 1)当时间常数τ=RC 确定后,就可以选择R 和C 的值,由于反相积分电路的输入电阻R i =R ,因此往往希望R 的值大一些。在R 的值满足输入电阻要求的条件下,一般选择较大的C 值,而且C 的值不能大于1μF 。 2)确定R P R P 为静态平衡电阻,用来补偿偏置电流所产生的失调,一般取R P =R 。 3)确定R f 在实际电路中,通常在积分电容的两端并联一个电阻R f 。R f 是积分漂移泄漏电阻,用来防止积分漂移所造成的饱和或截止现象。为了减小误差要求R f ≥ 10R 。 4.选择运算放大器 为了减小运放参数对积分电路输出电压的影响,应选择:输入失调参数(U IO 、I IO 、I B )小,开环增益(A uo )和增益带宽积大,输入电阻高的集成运算放大器。 四.积分电路的调试 对于图1所示的基本积分电路,主要是调整积分漂移。一般情况下,是调整运放的外接调零电位器,以补偿输入失调电压与输入失调电流的影响。调整方法如下:先将积分电路的输入端接地,在积分电容的两端接入短路线,将积分电容短路,使积分电路复零。然后去掉短路线,用数字电压表(取直流档)监测积分电路的输出电压,调整调零电位器,同时观察积分电路输出端积分漂移的变化情况,当调零电位器的值向某一方向变化时,输出漂移加快,

相关文档
相关文档 最新文档