文档库 最新最全的文档下载
当前位置:文档库 › 向家坝_上海_800kV特高压直流输电线路的检测与运行维护

向家坝_上海_800kV特高压直流输电线路的检测与运行维护

向家坝_上海_800kV特高压直流输电线路的检测与运行维护
向家坝_上海_800kV特高压直流输电线路的检测与运行维护

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

特高压输电工程简介

特高压输电工程简介 ABSTRACT: Transporting electrical power with ultra-high voltage has been very popular these days, but most people in the society do not know much about it. In this essay, we will have a short cover about ultra-high voltage technology and focus on the necessity and importance of ultra-high voltage for China to develop this technology, some difficulties in this process, and finally some sample projects in destruction. KEY WORDS:ultra-high voltage, electrical power 摘要:特高压输电,作为近年来国家重点发展的示范项目,已经引起了越来越多的关注和讨论,社会中的绝大部分群体对这一新兴概念并不十分了解,本文对我国特高压输电工程进行一个简单的介绍和讨论,重点介绍我国现阶段特高压输电的必要性和重要性、期间面临的一些反对意见和应对措施、我国现阶段对特高压工程的研究进展情况,以及目前已建成的或在建的特高压示范工程规划。 关键词:特高压,电力系统 目前我国常用的电压等级有:220V、380V、6kV、10kV、35kV、110kV、220kV、330kV、500kV。交流220kV及以下的称为高压(HV),330kV到750kV为超高压(EHV),交流1000kV及以上为特高压(UHV),通常把1000KV到1150kV这一级电压称为百万伏级特高压。对于直流输电,±600kV及以下的为高压直流(HVDC),±600kV以上为特高压直流(UHVDC)。 对于我国发展特高压输电的必要性和重要性,主要有以下几个方面: (1)电力快速发展的需要 改革开放30 年以来,我国用电总量快速增长。1978 年,全社会用电量为2498 亿千瓦时,到2007 年达到32565 亿千瓦时,是1978 年的13 倍,年均增长9.45%。改革开放之初,我国逐步扭转了单纯发展重化工业的思路,轻工业得以快速发展,用电增速呈现先降后升的态势,“六五”、“七五”期间年均增长分别达到6.52%、8.62%,其间,在经济体制改革的带动下,我国用电增速曾连续6 年(1982~1987 年)逐年上升,是改革开放以来最长的增速上升周期。1990 年以来,在小平南巡讲话带动下,我国经济掀起了新的一轮发展高潮。“八五”期间,全社会用电增长明显加快,年均增长10.05%。“九五”期间,受经济结构调整和亚洲金融危机影响,用电增速明显放缓,年均增长6.44%,尤其是1998 年,增速仅为2.8%,为改革开放以来的最低水平。进入“十五”以来,受积极的财政货币政策和扩大内需政策拉动,我国经济驶入快速增长轨道,经济结构出现重型化,用电需求持续高速增长,年均增长12.96%,尤其是2003 年、2004 年达到了改革开放以来用电增长高峰,增速分别为15.3%和15.46%。“十一五”前两年,我国用电继续保持快速增长势头,增速均高于14%。 由此可以看出,随着工业化和城镇化的不断推动和发展,我国用电量逐年增加,在工业化和全面建设小康社会的带动下,预计我国到2020 年全社会用电量将达到6.5~7.5 万亿千瓦时,年均增速将达到5.5%~6.6%;人均用电量达到4500~5200千瓦时,相当于日本上世纪80 年代的水平。所以,要求现有的电力系统增大发电容量,满足用电需求。 (2)我国资源和电力负荷分布不均衡 受经济增长,尤其是工业生产增长的强劲拉动,我国电力需求实现高速增长,但是,我国用电增长地区分布不均。总体来看我国东部沿海经济发达地区用电强劲增长,西部地区高耗能产业分布较多的省区用电增长幅度也较大,中部地区增长较慢,我国电力系统的负荷也呈现出结构性变化。但是,我国的资源分布却呈现出相反的情况,水能、煤炭等电力资源主要分布在中西部地区,远离东部的集中用电区域,这同

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

特高压直流输电技术研究

特高压直流输电技术研究 发表时间:2017-07-04T11:23:41.107Z 来源:《电力设备》2017年第7期作者:杨帅 [导读] 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 (国网河北省电力公司检修分公司河北省石家庄 050000) 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 关键词:特高压;直流输电;应用 引言 随着国民经济的持续快速发展,我国电力工业呈现加速发展态势,近几年发展更加迅猛。按照在建规模和合理开工计划,全国装机容量 2010 年达到 9.5 亿千瓦,2020 年达到 14.7 亿千瓦;用电量 2010 年达到 4.5 万亿千瓦时,2020 年达到 7.4 万亿千瓦时。电力需求和电源建设空间巨大,电网面临持续增加输送能力的艰巨任务。同时我国资源分布不均匀,全国四分之三的可开发水资源在西南地区,三分之二的煤炭资源分布在西北地区,而经济发达的东部地区集中了三分之二的用电负荷。大容量、远距离输电成为我国电网发展的必然趋势。 同时,特高压输电具有明显的经济效益。特高压输电线路可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价约 10%-15%。特高压线路输电走廊仅为同等输送能力的 500k V 线路所需走廊的四分之一,这对人口稠密、土地宝贵或走廊困难的国家和地区带来重大的经济社会效益。 1特高压直流输电原理 高压直流输电的电压等级概念与交流输电不一样。对于交流输电来说,一般将 220k V 及以下的电压等级称为高压,330 ~ 750k V 的称为超高压 ,1000k V 及以上的称为特高压。直流输电把 ±500k V 和 ±660k V 称为超高压;±800k V 及以上电压等级称为特高压。 直流输电工程是以直流电的方式实现电能传输的工程。直流电必须经过换流(整流和逆变)实现直流电变交流电,然后与交流系统连接。 两端直流输电系统可分为单极系统(正极和负极)、双极系统(正、负两极)和背靠背直流系统(无直流输电系统)三种类型。 2特高压直流输电优点 我国目前发展的特高压输电技术包括特高压交流输电技术和特高压直流输电技术。一般特高压交流输电技术用于近距离的组网和电力输送,直流输电技术用来进行远距离、大规模的电力输送,两者在以后的电网发展中都扮演重要角色。本文对其中的特高压直流输电技术进行简要分析,其优点主要包括以下几个方面。 在直流输电的每极导线的绝缘水平和截面积与交流输电线路的每相导线相同的情况下,输电容量相同时直流输电所需的线路走廊只需交流输电所需线路走廊的2/3,在土地资源越来越紧张的今天,特高压直流输电线路可以节省线路走廊的优点显得更加突出。 在输送功率相同的情况下,直流输电的线路损耗只有交流输电的2/3,长久以往可以节约大量的能源;同时直流输电可以以大地为回路,只需要一根导线,而交流输电需要3根导线,在输电线路建设方面特高压直流输电电缆的投资要低很多。 交流输电网络互联时需要考虑两个电网之间的周期和相位,而直流输电不存在系统稳定性问题,相比交流输电网络,能简单有效地解决电网之间的联结问题。 长距离输电时,采用直流输电比交流输电更容易实现,如800kv的特高压直流输电距离最远可达2500km。 3特高压直流技术存在的不足 (1)直流输电换流站比交流变电所结构复杂、造价高、运行费用高,换流站造价比同等规模交流变电所要高出数倍。(2)为降低换流器运行时在交流侧和直流侧产生的一系列谐波,需在两侧需分别装设交流滤波器和直流滤波器,使得换电站的占地面积、造价和运行费用均大幅度提高。(3)直流断路器没有电流过零点可利用,灭弧问题难以解决。(4)由于直流电的静电吸附作用,使直流输电线路和换电站设备的污秽问题比交流输电严重,给外绝缘问题带来困难。 4特高压直流输电技术的应用分析 4.1拓扑结构 在近些年来,特高压直流输电的拓扑结构主要有多端直流和公用接地极两种,其中,多端直流是通过连接多个换流站来共同组成直流系统,在电压源换流器发展背景下,出现了混合型多端直流和极联式多端直流,前者是将合理分配同一极换流器组的位置,电源端与用户端都是分散分布。公用接地极是通过几个工程公用接地极的方式,来降低工程整体造价成本,提升接地极利用水平,提高工程经济效益、社会效益;但也存在接地电流容易过大、检修较为复杂等不足。 4.2换流技术 在特高压直流输电的换流技术方面,主要有电容换相直流输电技术和柔性直流输电技术两种,其中,电容换相直流输电技术是通过将换相电容器串接到直流换流器与换流变压器中,利用串联电容来对换流器无功消耗进行补偿,减少换流站的向设备,能够有效降低换相失

高压直流输电会不会取代交流输电

一、首先我们来看高压直流输电的特点: 换流器控制复杂,造价高; 直流输电线路造价低,输电距离越远越经济; 没有交流输电系统的功角稳定问题,适合远距离输电; 适合海底电缆(海岛供电、海上风电)和城市地下电缆输电; 能够非同步(同频不同相位,或不同频)连接两个交流电网,且不增加短路容量; 传输功率的可控性强,控制速度快,可有效支援交流系统; 换流器大量消耗无功(注意这是对LCC-HVDC而言,VSC-HCDC整流侧和逆变侧均可独立灵活控制无功,两种系统差别下文将单独说明。),且产生谐波; 双极不对称大地回线运行时存在直流偏磁问题和电化学腐蚀问题(地电流危害); 不能向无源系统供电(依然是对LCC-HVDC系统而言),构成多端直流系统困难(由于直流没有过零点,难以熄弧,所以现在缺少大容量直流断路器,无法切除输电线路的短路故障,从而限制了多端直流输电的发展。最近ABB貌似把这个东西搞出来了,不明觉厉。)。 二、经济问题: 高压直流输电主要是两头换流站贵,线路便宜。所以相较于交流输电,距离越远越经济。 架空线路等价距离约在640~960km 地下电缆线路的等价距离为56~90km 海底电缆线路的等价距离为24~48km

*交流输电时电缆线路会与周边介质(海水、土壤)形成一个较大的电容,影响电网的经济稳定,直流输电不存在这个问题。 三、电能质量: 直流输电系统的主要缺点是存在谐波,特别是低次谐波(主要是LCC-HVDC,而VSC-HVDC最低次谐波频率较高,滤波器可以有效消除这种高次谐波)。另一个不太突出的缺点是地电流。 谐波的危害: 对铁磁设备的影响。谐波造成额外的铁耗导致发热、振动和噪声,降低了设备出力、效率及寿命; 对旋转电机的影响:谐波造成转矩脉动,转速不稳; 对电力电容器的影响:谐波可能引起谐振过电压; 对电力系统测控的影响:谐波使测量误差增加,可能导致控制失灵,保护误动; 三次谐波电流过大可能使中性线过流; 谐波叠加在基波上,使电气应力增加,对各种电气设备尤其是电容器的绝缘造成威胁; 谐波对通信线路造成干扰。 HVDC引起的变压器直流偏磁(地电流) : 现象:直流输电系统接地极流过较大电流时(如单极大地运行)会导致中性点接地变压器产生直流偏磁现象。 后果:导致铁芯饱和,产生谐波,引起振动和噪声,引起发热,严重时损坏变压器,引起保护误动等。 四、电网安全: 直流输电对电网稳定的贡献: 紧急功率支援:如交流电网出现大幅度功率缺额(联络线跳开、某些大电厂跳开等),HVDC 可以快速增加输送功率或者快速潮流反转。HVDC快速有效的潮流控制能力对于所连交流系统的稳定控制,交流系统正常运行过程中应对负荷随机波动的频率控制及故障状态下的频率变动控制都能发挥重要作用。 直流输电对电网的不利影响:

《直流输电原理》题库

《直流输电原理》题库 一、填空题 1.直流输电工程的系统可分为两端(或端对端)直流输电系统和多端直流输电系统两大类。 2.两端直流输电系统的构成主要有整流站、逆变站和直流输电线路三部分。 3.两端直流输电系统可分为单极系统、双极系统和背靠背直流输电系统三种类型。 4.单极系统的接线方式有单极大地回线方式和单极金属回线方式两种。 5.双极系统的接线方式可分为双极两端中性点接地接线方式、双极一端中性点接地接线方 式和双极金属中线接线方式三种类型。 6.背靠背直流系统是输电线路长度为零的两端直流输电系统。 7.直流输电不存在交流输电的稳定性问题,有利于远距离大容量送电。 8.目前工程上所采用的基本换流单元有6脉动换流单元和12脉动换流单元两种。 9.12脉动换流器由两个交流侧电压相位差30°的6脉动换流器所组成。 10.6脉动换流器在交流侧和直流侧分别产生6K±1次和6K次特征谐波。12脉动换流器在 交流侧和直流侧分别产生12K±1次和12K次特征谐波。 11.为了得到换流变压器阀侧绕组的电压相位差30°,其阀侧绕组的接线方式必须一个为 星形接线,另一个为三角形接线。 12.中国第一项直流输电工程是舟山直流输电工程。 13.整流器α角可能的工作范围是0<α<90°,α角的最小值为5°。 14.α<90°时,直流输出电压为正值,换流器工作在整流工况; α=90°时, 直流输出电为 零,称为零功率工况; α>90°时,直流输出电压为负值,换流器则工作在逆变工况。15.直流输电控制系统的六个等级是:换流阀控制级、单独控制级、换流器控制级、极控制 级、双极控制级和系统控制级。 16.换流器触发相位控制有等触发角控制和等相位间隔控制两种控制方式。 17.直流输电的换流器是采用一个或多个三相桥式换流电路(也称6脉动换流器)串联构 成。其中,6脉动换流器的直流电压,在一个工频周期内有6段正弦波电压,每段60°。

特高压交直流输电系统技术经济分析

特高压交直流输电系统技术经济分析 摘要:随着我国电力事业的快速发展,我国特高压输电工程建设正处于稳步上 升阶段。特高压输电技术的广泛应用,很好地解决了当前输电技术存在的经济性 较低以及无法实现或者实现难度较大的更远距离输电问题,进一步提高了输电系 统供电的稳定性、安全性以及经济性。对于当前特高压输电网而言,1000kV以及±800kV输电系统的技术经济性是重中之重。基于此,研究特高压交直流输电系统 技术经济性具有重要的现实意义。 关键词:特高压交直流水电系统;技术经济性 引言: 1000kV与±800kV输电系统的技术经济性是发展特高压输电网的重要基础。从我国特高压交直流输电示范工程成功运行经验讨论1000kV与±800kV输电的技术 经济性对推进特高压输电网的规划建设具有重要现实意义。 1 1000kV和±800kV输电系统建设成本阐述 1.1 1000kV输电系统的建设成本 一般来说,都是使用单位输电建设成本来表示1000kV与±800kV输电系统的 建设成本。同时,参照示范工程投资决算实对其施估算。以2009年投入运行的1000kV特高压交流试验示范工程为例来看,其最初建设成本为56.9亿元。根据 试验示范工程相关元器件成本以及建设成本的实际情况,使用工程成本计算方法 对其建设成本进行估算,拟使用1000kV、4410MW、1500km特高压输电系统, 其单位输电建设成本预期估算成本为1900元/km?MW。若将500kV输电系统建 设成本按照2500元/km?MW的价格来看,那么此1000kV特高压输电系统的单位 建设成本则近似为500kV输电系统的8成左右。 1.2 ±800kV输电系统的建设成本 对于±800kV直流输电系统而言,首先需要把各发电单元机组通过电站500kV 母线汇集在一起,接着借助500kV输电线路连通到直流输电的整流站中,从而把 三相交流电更换成直流电,再使用两条正负极输电线路将其配送到逆变站中,再 把直流电转变为三相交流电,最后输送到有电压作为保障的500kV枢纽变电站中。和其余输电系统相同,±800kV直流输电系统在进行长距离、大规模输电的过程中,也需要两个电厂作为支撑,拟将其发电机组定位6×600MW以及5×600MW,线路 总长度为1500km,通过±800kV特高压直流输电示范工程数据对其输电建设成本 实施估算。某±800kV特高压直流输电示范工程的直流输电线路总长度为1891km,额定直流电流为4kA,额定换流功率为6400MW,分裂导线的规格为6×720mm2,开工建设的时间为2007年,不断对系统进行调试,最终于2010年正式投入使用。根据系统调试以及投入运行的实际结果来看,自助研发的±800kV特高压直流输电 系统及其相关设备具有较高的运行性能。该±800kV直流输电示范工程建设成本为190亿元,其中换流站与相关线路的成本均占总成本的一半。根据示范工程建设 成本进行估算,±800kV、6400MW、1500km直流输电系统的单位输电建设成本应为1780元/km?MW。 1.3 1000kV和±800kV输电系统建设成本对比分析 一般来说,通过逆变站的输出功率对交流输电进行估算,而直流输电的估算 亦是如此;1000kV交流输电系统的单位建设成本与±800kV直流输电系统的单位 建设成本基本一致,都为1900元/km?MW,处于相同等级。1000kV交流输电系 统的对地电压为578kV和±800kV直流输电系统极线的对地电压相匹配。±800kV

为什么采用高压直流输电

问题63:为什么采用高压直流输电? 发布时间:2007-07-23 点击次数: 追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。当时输电电压仅100V。随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V。但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。19世纪80年代末,人类发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国竣工。此后,交流输电普遍代替了直流输电。随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置;1954年,建起了世界上第一条远距离高压直流输电工程。之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kV,投入商业运营的直流工程最高电压等级为 ±600kV(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kV电压等级。 在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。在直流输电系统中,通过控制换流器,可以使其工作于整流或逆变状态。 我国目前建成的高压直流输电工程均为两端直流输电系统。两端直流输电系统主要由整流站、逆变站和输电线路三部分组成,如图5-1所示。

三大特高压直流输电线路背景资料

三大特高压直流输电线路背景资料 一、特高压直流线路基本情况 ±800kV复奉直流线路四川段起于复龙换流站,止于377#塔位,投运时间2009年12月,长度187.275km,铁塔378基,途径四川省宜宾市宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共8个区县,在合江县出境进入重庆境内。线路全部处于公司供区,途径地市公司供电所35个。接地极线路79公里,铁塔189基。±800kV 复奉线输送容量6400MW。 ±800kV锦苏直流线路四川段起于锦屏换流站,止于987#塔位,投运时间2012年12月,长度484.034km,铁塔988基,自复龙换流站起与复奉线同一通道走线,途径四川省凉山州西昌市、普格县、昭觉县、美姑县、雷波县、云南省昭通市绥江县、水富县、宜宾市屏山县、宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共16个区县,在合江县出境进入重庆境内。线路处于公司供区长度268.297公里、铁塔563基,途径地市公司供电所44个;另有0036#-0344#、0474#-0493#区段(长度153.268公里、铁塔320基)处于地方电力供区,0494#-0598#区段(长度62.469公里、铁塔105基)处于南方电网供区。接地极线路74公里,铁塔207基。±800kV锦苏线输送容量7200MW。

±800kV宾金直流线路工程四川段起于宜宾换流站,止于365#塔位,试运行时间2014年03月,长度182.703km,铁塔366基,途径四川省宜宾市宜宾县、珙县、兴文县、泸州市叙永县、古蔺县共5个区县,在古蔺县出境进入贵州境内。线路全部处于公司供区,途径地市公司供电所22个。接地极线路101公里,铁塔292基。±800kV宾金线输送容量8000MW。 线路名称线路长度 (km) 杆塔数量投运时间 途径区县数 量 途径属地公 司供电所 ±800kV 复奉直流 187.275 378 2009.12 8 35 复龙换流站 接地极线路 79.106 189 ±800kV 锦苏直流 484.034 988 2012.12 16 44 锦屏换流站 接地极线路 74.147 207 ±800kV 宾金直流 182.703 366 2014.03(试 运行)5 22 宜宾换流站 接地极线路 101.174 292

特高压交流和高压直流输电系统运行损耗及经济性分析

特高压交流和高压直流输电系统运行损耗及经济性分析 发表时间:2018-04-12T10:36:46.213Z 来源:《电力设备》2017年第32期作者:常彦 [导读] 摘要:特高压交流和高压直流输电系统的运行损耗对于输电系统运行的经济性具有直接重要的影响,对于提高输电系统设备的运行效率和使用寿命,促进电力资源优化合理配置都有着积极的促进作用。 (国网山西省电力公司检修分公司山西省太原市 030031) 摘要:特高压交流和高压直流输电系统的运行损耗对于输电系统运行的经济性具有直接重要的影响,对于提高输电系统设备的运行效率和使用寿命,促进电力资源优化合理配置都有着积极的促进作用。 关键词:特高压交流;高压直流;输电系统;运行损耗分析;经济分析 在我国覆盖全国电网的整体输电系统中,输电系统运行损耗都是不可避免的重要问题,运行损耗的大小直接影响到输电系统的经济效益和经济性。其中,关于特高压交流和高压直流输电系统,这一在整个电网中占有重要比重的输电系统的运行损耗和相关经济性分析研究具有十分重要的意义。 1特高压交流和高压直流输电系统及其经济性概述 中国是世界上国土面积第四大的国家,幅员辽阔,人口众多,地形复杂多样,并且由于地形地势气候等多方面的原因,中国的人口规模、经济发展状况以及资源能源需求量呈现西低东高的阶梯式分布。与其相反的是,我国的能源资源分布却是西高东低,具体到与电力相关的资源能源来说,我国目前有超过百分之七十的水力资源在西南,有大约百分之七十五的煤炭资源储存西北,风电和太阳能等能够用于发电的可再生能源也主要分布在西部、北部。因此,这种电力资源能源分布和电力资源需求的极不平衡性,决定着我国能源分配面对的巨大压力,以及通过多种方式优化电力资源配置的迫切性和重要性,其中,特高压交流和高压直流输电系统就是当前技术成熟,应用较为普及的两种主流输电方式,它们为我国电力资源的合理配置的大好局面,提供了重要的助力。所以,不断地分析和研究特高压交流和高压直流输电系统,也是提高电力资源配置效率和质量的必然要求。 分析输电系统经济性的重要内容,就是分析输电系统的运行损耗。对于本文的研究对象来说,特高压交流和直流输电系统经济性分析主要集中在前期建设投资、中期的输电网络运性维修、输电运行中不可避免的输电损耗和以及停电造成的损失费用四个方面。 2特高压交流和直流输电系统经济性分析 本文主要运用对比法分析特高压交流和直流系统的经济性,其中涉及二者经济性比较,主要从投资、运维、输电损耗和停电损失费用四个方面来进行比较,最后再进行综合汇总。 在对比分析法中,我们需要设定一个恒量,为了便于比较和计算,设置特高压交流和高压直流两种输电系统中,输电距离相同,在500-2000千米范围内,分为500千米、1000千米、1500千米和2000千米四个固定值。然后在此基础上,根据输电能力的大小、额定输送量和负载率对两种输电系统的影响大小。 采用的研究对象中,两种输电系统的具体参数分别为:特高压交流输电系统2个1000千伏变电站和多个中间开关站以及1回输电线路组成,线路规格为8×500平方毫米,并且每400千米一个间距设置一个开关站。高压直流输电系统无变电站及中间开关,但需架设1台换流站,同时采用的是6×900平方毫米的线路。 2.1投资费用分析 特高压交流输电系统中,需要建设变电站,变电站的建设费用为430元/千伏,8×500平方毫米规格的线路为425万元/千米。所以,变电站的建设费用为86亿元,线路的费用为500千米21.25亿元,1000千米42.5亿元,1500千米6 3.75亿元、2000千米85亿元。 高压直流输电系统中,不需要建设变电站,但是需要投资建设换流站,一台换流站单价为65亿元,6×900平方毫米规格的线路单价为397万元/ 千米,因此,线路的费用为500千米19.85亿元,1000千米39.7亿元,1500千米59.55亿元、2000千米79.4亿元。 因此,经过对比,在不考虑其他任何因素的情况下,在特高压交流电输电网络的前期站设投资要远远大于高压直流电的输电网络。直到输电距离达到6000千米,高压直流输电网络才更加具有经济价值。 2.2运维费用分析 输电网络的运维就是指输电网络硬件设备的元件耗损率和故障维修的费用。通过对比,我们不难发现,高压直流换流站设备和阀组众多,系统的运行状态比交流系统多,类似换流变压器和阀组这部分元件故障频率较多,维修更新的时间较长,特高压交流变电站的元件较少且故障持续时间短。因此,可以说在各个距离高压直流输电网络的运维费用都要大于特高压交流输电网络,在运维费用方面,特高压交流输电网络更具经济性。 2.3输电损耗费用分析 特高压和超高压交流输电系统的运行损耗主要包括变电站损耗和输电线路损耗两部分。一方面变电站损耗包括变压器、电抗器、电容器等设备损耗等硬件和变电站日常运行用电造成的损耗,这种损耗鱼输电系统的随输送容量基本成正比,随着输送容量的变化成比例调整。另一方面,输电线路损耗主要包括电阻损耗、电晕损耗和泄漏损耗,其中电阻损耗属于硬件损耗的一种,电阻损耗量同样随输送容量的变化成比例变化,电晕损耗的变化则基本受电压等级、导线结构和天气情况等因素影响,泄漏损耗通常并不计入记录分析中。 2.3.1电阻损耗 通常情况下,电路损耗是理论意义上的损耗,是指线路在满负荷运行时造成的功率损耗。然而在实际电力输送中,输电系统不可能不间断地满负荷运行。 计算公式如下:线路电阻损耗值=线路电阻×额定电流×损耗小时数 计算结果可由两种输电系统的具体参数估算到。 2.3.2电晕损耗 交流线路电晕损耗很容易受到线路电压、导线结构和气候条件的影响,经过研究发现,在雨雪天起电晕平均损耗可以达到为晴朗天气平均损耗的37-50倍。电晕损耗年平均值计算公式为 电晕损耗年平均值=(好天气小时数损耗+雪天小时数损耗+雨天小时数损耗)/全年日历小时数” 2.4停电损失费用分析

高压直流输电课后习题答案

《高压直流输电技术》思考题及答案 一.高压直流输电发展三个阶段的特点? 答:1 1954年以前——试验阶段; 参数低;采用低参数汞弧阀;发展速度慢。 2 1954年~1972年——发展阶段; 技术提高很大;直流输电具有多方面的目的(如水下传输;系统互联;远距离、大容量传输)。 3 1972年~现在——大力发展阶段; 采用可控硅阀;几乎全是超高压;单回线路的输电能力比前一阶段有了很大的增加;发展速度快。 二.高压直流输电的基本原理是什么? 答:直流输电线路的基本原理图见图1.3所示。从交流系统 向系统 输电能时,换流站CS1把送 端系统送来的三相交流电流换成直流电流,通过直流输电线路把直流电流(功率)输送到换流站CS2,再由CS2把直流电流变换成三相交流电流 三.高压直流输电如何分类? 答:分两大类: 1 单极线路方式; A.单极线路方式; 采用一根导线或电缆线,以大地或海水作为返回线路组成的直流输电系统。 B.单极两线制线路方式; 将返回线路用一根导线代替的单极线路方式。 2 双极线路方式; A. 双极两线中性点两端接地方式; B. 双极两线中性点单端接地方式; C. 双极中性点线方式; D. “背靠背”(back- to- back)换流方式。 四.高压直流输电的优缺点有哪些? 答:优点:1 输送相同功率时,线路造价低; 2 线路有功损耗小; 3 适宜海下输电; 4 没有系统的稳定问题; 5 能限制系统的短路电流; 6 调节速度快,运行可靠 缺点:1 换流站的设备较昂贵; 2 换流装置要消耗大量的无功; 3 换流装置是一个谐波源,在运行中要产生谐波,影响系统运行,所以需在直流系统的交流侧和直 流侧分别装设交流滤波器和直流滤波器,从而使直流输电的投资增大; 4换流装置几乎没有过载能力,所以对直流系统的运行不利。 5 由于目前高压直流断路器还处于研制阶段,所以阻碍了多端直流系统的发展。 6 以大地作为回路的直流系统,运行时会对沿途的金属构件和管道有腐蚀作用;以海水作为回路时, 会对航海导航仪产生影响。 五.为什么输送相同功率时,直流输电线路比交流输电线路造价低? 答:因为(1)对于架空线路,交流输电通常采用了三根导线而直流只需一根或二根导线,在输送

直流输电技术及其应用论文

直流输电技术及其应用 The Feature Development and Application of Direct CurrentTransmission Techniques 山东农业大学电气工程及其自动化10级 摘要本文介绍了直流输电技术在电力系统联网应用中的必要性,直流输电系统的 结构,直流控制保护技术以及直流输电的特点和应用发展方向;同时认为直流输电技术是新能源发电并网的最佳解决方式。 电力工程是21世纪对人类社会生活影响最大的工程之一,电力技术的发展对城乡人民的生产和生活具有重大的关系,电力工业是关系国计民生的基础产业。电力的广泛应用和电力需求的不断增加,推动着电力技术向高电压、大机组、大电网发展,向电力规模经济发展。电力工业按生产和消费过程可分为发电、输电、配电和用电四个环节。输电通常指的是将发电厂发出的电力输送到消费电能的负荷中心,或者将一个电网的电力输送到另一个电网,实现电网互联。随着电网技术的不断进步,输电容量和输电距离的不断增加,电网电压等级不断提高。电网电压从最初的交流13.8KV,逐步发展到高压35KV、66KV、110KV、220KV、500KV、1000KV。电网发展的经验表明,相邻两个电压等级的级差在一倍以上才是经济合理的。这样输电容量可以提高四倍以上,不仅可与现有电网电压配合,而且为今后新的更高级别电压的发展留有合理的配合空间。我国从20世纪80年代末开始对特高压电网的规划和设备的制造进行研究;进入21世纪后,加快了特高压输电设备、电网研究和工程建设。2005年9月26日,第一条750KV输电实验线路(官亭——兰州东)示范工程投运;2006年12月,云南——广东±800KV特高压直流输电工程开工建设,并于2010年6月18日,通过验收正式投运,该工程输电距离1373KM,额定电压±800KV,额定容量500万KW,和2010年7月8日投运的向家坝——上海±800KV特高压直流示范工程一样,是当今世界电压等级最高的直流输电项目。 1.使用直流输电的原因 随着电力系统规模的不断扩大,输电功率的增加,输电距离的增长,交流输电遇到了一些技术困难。对交流输电来说,在输电功率大,输电导线横截面积较大的情况下,感抗会超过电阻,但对稳定的直流输电,则只有电阻,没有感抗。输电线一般是采用架空线,但跨过海峡给海岛输电时,要用水下电缆,电缆在金属线芯外面包裹绝缘层,水和大地都是导体,被绝缘层隔开的金属线芯和水或大地构成了一个电容器,在交流输电的情况下,这个电容对输电线路的受电端起旁路电容的作用,并且随着电缆的增长,旁路电容会增大到几乎不能通交流的程度。另外,交流电路若要正常工作,经同一条线路供电的所有发电机都要必须同步运行;要使电力网内众多的发电机同步运行,技术上是很困难的,而直流输电不存在同步问题。现代的直流输电,只是输电环节是直流,发电仍是交流,在输电线路的起端有专用的换流设备将交流转换为直流,在输电线路的末端也有专用的换流设备将直流换为交流。 2.直流输电技术的特点 随着电网的不断扩大,输电功率、输电距离迅速增加,交流输电遇到了一些难以克服的技术问题,直流输电所具有的的技术特点,使之作为解决输电技术难题的方向之一而受到重视。 2.1直流输电系统运行稳定性好 为保证电网稳定,要求网上所有发电机都必须同步运行,即所谓系统稳定性问题。对于交流长距离输电,线路感抗远远超过了电阻,并且输电线路越长,电抗越大,系统稳定越困难,

特高压直流输电线路基本情况介绍

特高压直流输电线路基本情况介绍 问:直流输电线路有哪些基本类型? 答:就其基本结构而言,直流输电线路可分为架空线路、电缆线路以及架空——电缆混合线路三种类型。直流架空线路因其结构简单、线路造价低、走廊利用率高、运行损耗小、维护便利以及满足大容量、长距离输电要求的特点,在电网建设中得到越来越多运用。因此直流输电线路通常采用直流架空线路,只有在架空线线路受到限制的场合才考虑采用电缆线路。 问:建设特高压直流输电线路需要研究哪些关键技术问题? 答:直流架空线路与交流架空线路相比,在机械结构的设计和计算方面,并没有显著差别。但在电气方面,则具有许多不同的特点,需要进行专门研究。对于特高压直流输电线路的建设,尤其需要重视以下三个方面的研究: 1. 电晕效应。直流输电线路在正常运行情况下允许导线发生一定程度的电晕放电,由此将会产生电晕损失、电场效应、无线电干扰和可听噪声等,导致直流输电的运行损耗和环境影响。特高压工程由于电压高,如果设计不当,其电晕效应可能会比超高压工程的更大。通过对特高压直流电晕特性的研究,合理选择导线型式和绝缘子串、金具组装型式,降低电晕效应,减少运行损耗和对环境的影响。 2. 绝缘配合。直流输电工程的绝缘配合对工程的投资和运行水平有极大影响。由于直流输电的“静电吸尘效应”,绝缘子的积污和污闪特性与交流的有很大不同,由此引起的污秽放电比交流的更为严重,合理选择直流线路的绝缘配合对于提高运行水平非常重要。由于特高压直流输电在世界上尚属首例,国内外现有的试验数据和研究成果十分有限,因此有必要对特高压直流输电的绝缘配合问题进行深入的研究。 3. 电磁环境影响。采用特高压直流输电,对于实现更大范围的资源优化配置,提高输电走廊的利用率和保护环境,无疑具有十分重要的意义。但与超高压工程相比,特高压直流输电工程具有电压高、导线大、铁塔高、单回线路走廊宽等特点,其电磁环境与±500千伏直流线路的有一定差别,由此带来的环境影响必然受到社会各界的关注。同时,特高压直流工程的电磁环境与导线型式、架线高度等密切相关。因此,认真研究特高压直流输电的电磁

特高压直流输电技术过电压和绝缘配合研究综述教学内容

特高压直流输电技术过电压和绝缘配合研 究综述

特高压直流输电技术过电压和绝缘配合研究综述 摘要: 特高压直流输电具有大容量、远距离和低损耗等优点,特高压直流输电作为一个全新的输电电压等级,非常适合特大型能源基地向远方负荷中心输送电能。直流换流站的绝缘配合研究是直流输电工程实施中的关鍵技术之一,缘水平的高低直接关系到整个直流工程造价。本文从特高压换流站的避雷器布置方案的设计,确定换流站设备的过电压水平、绝缘裕度、关键设备的绝缘水平等方面概括总结了国内外工作者在特高压直流输电的过电压和绝缘配合方面所做的工作,并提出在以后的相关研究中可以进一步考虑的问题。 关键词:特高压直流换流站避雷器绝缘配合过电压 0引言 我国能源资源和经济发展具有分布不均的地域性特点,能源资源主要集中在西部地区,而负荷主要集中在中东部地区[1,2]。为了保证中东部地区的电力供应,必须采取相关技术措旅将能源送往负荷中心。特高压直流输电具有超大容量、超远距离、低损耗的特点,且具有灵活的调节性能,因此非常适合大型能源基地向远方负荷中心送电。我国已成为世界上直流输电容量最大、电压等级最高、发展最快的国家[3]。为了满足未来更大容量、更远距离的输电需求,有必要进一步研究更高电压等级的直流输电技术,±1100kV特高压直流输电是我国目前正在研究的一个全新输电电压等级。 特高压直流输电由于具有大容量、远距离和低损耗等优点,将在我国“西电东送”战略中发挥重要作用。±1100kV特高压直流输电作为一个全新的输电电压等级,电压等级更高、输送容量更大、输电距离更远,非常适合特大型能源基地向远方负荷中心输送电能。 1特高压直流输电背景 自20世纪70年代初期开始,美国、苏联、巴西等国家就开启了对特高压直流输电相关工作的研究,其中CIGRE、IEEE、美国EPRI、瑞典ABB等科研机构和制造厂商在特高压直流输电关键技术研究、系统分析、环境影响、绝缘特性和工程可行性等方面开展了大量研究,并取得了丰硕的成果。相关研究认为,±

相关文档
相关文档 最新文档